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DETERMINATION OF A CLASS OF POINCARE SERIES

RALPH FROBERG

1. Introduction.

CoNVENTION. A ring is a ring with unit element, a local ring is a
commutative Noetherian local ring.

In his proof of the fact that a local ring @ is regular if and only if
gl.dim. @) < oo (in [7]), Serre showed that the Poincaré series of a re-
gular local ring is (1+Z)* where n is the Krull dimension of @, the
Poincaré series of a local ring (@,m) being defined as the formal power
series

BQ(Z) = zigobizi

with b;=dim,Tor (%, k), k=¢@/m. This was done by using the Koszul
complex for @. Since then it has been shown for certain other classes of
local rings that the Poincaré series is rational. The most important of
these classes are:

1. Complete intersections (in [12]).
2. Golod rings (defined by the vanishing of certain homology opera-
tors on the Koszul complex of the ring) (see [1]).
(These two classes cover the case, where m is generated by two ele-
ments ([6]).)
3. Regular local rings modulo an ideal generated by two elements

([91, [2]).

Other results are given in [13], [10], [11] and [4]. Most of the results
mentioned can be found in [3], which we also give as a general reference
on the subject.

In all cases we know of, the Poincaré series has the form (1 + Z)"/p(Z)
where p(Z) is a polynomial with integer coefficients and » the embedding
dimension of @. In case 1 above p(Z)=(1—Z%"-™ (m the Krull dimen-
sion of ), in case 2

P(Z) = 1=3z, 0,24

(¢;=dim, H(K), K the Koszul complex of ) and in case 3 p(Z)=
1—-2Z72-273 if Q is not a complete intersection.
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The purpose of this paper is to show the rationality of the Poincaré
series for the quotient of a regular local ring modulo an ideal, generated
by any set of monomials of degree two in a minimal system of genera-
tors for the maximal ideal. For such rings we obtain a formula for the
Poincaré series of the form (1+ Z)*/p(Z) with

p(Z) = 1+ 3 c(— 12,

where ¢;;=dim, H{*/(K), the upper index indicating a graduation on
H(K), induced by a filtration of the Koszul complex K to @ (see Sec-
tion 5).

Our method consists in constructing a minimal @-resolution of k= Q/m,
by means of a generalization of the Koszul complex. This resolution is
closely related to a G(Q)-resolution of K where G(Q) is the graded ring
associated with the m-filtration of Q. G(Q) is a commutative k-algebra,
but the proper scope of our method is a certain class of non-commuta-
tive k-algebras. So we shall start by studying such rings in Section 2,
deriving the ‘“‘associated’ resolutions in Section 3 and determine their
“Poincaré series’” in Section 4. Finally, in Section 5, we pass to local
rings.

2. Certain quotient rings of polynomial rings in non-commuting
variables.

Norations. If R is a ring (commutative or not), we let R{(X,,
..,X,> denote the polynomial ring in n non-commuting variables over
R (the variables commute with the elements of R).

The rings we are going to study in this section are quotients of
KX, .o, X )<Y q,..., YD)

(K a commutative field) modulo certain systems of n? relations, the
images of X, and Y, being denoted z; and y, respectivly. The systems
of relations considered can be described as follows:

(1) Forevery: (1l £ ¢ < n) one of the relations X2, = 0 and Y%, = 0

For every pair (¢, k) where ¢ + k one of the following five types of relations,
where c,; € K —{0}:

(2) X Xp+eXpXy = Yi¥y—6, Y, Yy = 0
(3) Xth = XkXi =0
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(4) Y Y, =Y, Y,=0
(5) XX, =Y, Y, =0
(6) XkXi = YiYk =0

In case (2) we say that the pair (7,k) commutes.

On a ring R of the described type, we will define K-linear maps d,
and D; (¢=1,...,n). We call an element

Tyt o Xy Ypyt e Yy, = 2@y®) = m 0

in B a monomial. It suffieces to define d;, and D; on monomials in R,
and then extend them K-linearly to R. We say that «; can be factored
out to the right in a monomial m (respectively y; can be factored out
to the left in m) if

m = cx®z;y® for some c; € K

(respectively m =c;" x®@y,y*? for some ¢;’ € K).

DEFINTTIONS.
Dym) = ¢ x(”')yiy(”) if m = aWy® = c,aa,y® ,
Dym) = if 2, cannot be factored out to the right in m.
di(m) =c¢;/ 2@z, y®) i m = 2Wy® = ¢/ aWy,y®),

)
dy(m) =

if y; cannot be factored out to the left in m.

Lemma 1.
(7) diz = O .
(8) didk+dkdi = O i.fi ='= k .

(10)  If m i3 a monomial with di(m) + 0, then D,(m) = 0 .
(11)  If m is @ monomial with d,(m) + O, then D d,(m) = m .

(For symmetry reasons the analogues of the above statements, ob-
tained by interchanging d; and D, are also true.)

Proor. (7) follows directly from (1). To prove (8), let m be a monomial.
If none of y; and y; can be factored out to the left in m, then dy(m)=
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d,(m)=0, and thus (8) follows in this case. Now suppose that y, but not
¥, can be factored out to the left in m, so dy(m) =0, If now y, cannot be
factored out to the left in d,(m), we have d,d;(m)= 0. If y, can be factored
out to the left in d,(m) one of the relations (3) or (5) must hold for (s, k),
but then x,x, =0 which gives d,d,(m)=0, so (8) follows also in this case.
Finally, if both y, and y, can be factored out to the left in m, relation
(2) must hold for (¢,k), and that relation implies d,d,(m)= —d,;d,(m), so
(8) is proved in full. (9) is proved similarly, (10) and (11) are fairly
obvious from the definitions.

DEeriNiTION. If M is & monomial in R, we let

Index(m) = {¢; d;(m) + 0 or Dy(m) % 0}.

NotEe. Index(1) is always empty but Index(m) could be empty also
if m is a monomial of positive degree. An example is: Let n=4, only
(2,3) commutes, X, X;=X;X,=Y,Y,=Y,Y,=0 (the other relations
chosen arbitrarily). Then Index (z,2,y5y,) is empty. But in the cases of
interest for us, Index (m) is always nonempty for monomials of positive
degree (see Lemma 4 below).

It is now easy to prove that (d,D,+ D,d;)(m)=mn,m for some integer
n,,> 0 if every monomial of positive degree has non-empty Index. This
would be sufficient for our needs if char(K)=0 (see the Theorem in next
section), but to cover also the case char(K)> 0, we must argue further.

LemMa 2. If ¢,k € Index (m), then (i,k) commutes.

Proor. If dym)+0 and d;(m)+0 (or if Dy(m)+0 and D,(m)=+0),
(¢,k) must commute, so we can assume that d,(m)+0 and D,(m)=*0.
But then .

m = ¢ 2¥x,y, y*) .
Now if (¢,k) does not commute, either zx, =0 or y,y, =0, which contra-
dicts the assumption.

LemwMa 3. If dy(m)=+0, then Index(d,(m))=1Index (m).
If D,(m')+0, then Index(D,(m'))=Index (m').

Proor. It suffices to show the first statement. Since d,(m) + 0, D,d,(m)
=m=+0 so k € Index(d(m)). If i+k and ¢,k € Index (m), then i € Index
(di(m)) since (i,k) commutes according to Lemma 2. But then

Index(m) < Index(d;(m)) < Index(D,d,(m)) = Index(m) .
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DEFINITIONS.
i(m) = min(Index(m)) and S(m) = Dy,(m)

where we assume Index(m) to be non-empty.

THEOREM.
(12) Ifd =d,+...+d, thend? = 0
and
(13) (Sd+dS)(m) = m

tf m is @ monomial with Index (m) non-empty.

Proor. (12) follows from (7) and (8). On a monomial m, with Index (m)
non-empty, we have
Sd+dS = Dyyd+dDypmy = Digm(dy+ . . . +dy)+
+(di+ ... +43) Dy = Dyrimy + ity Dimy = 1
according to (9) and (11).

We single out the types of rings of special interest for us in the following
lemma.

Levmma 4. Every monomial af positive degree has non-empty Index if:

A’'. No pair is commutative.
B'. For some pairs i+k, (1,k) commutes, and for all other pairs (i k)

‘X'i‘Xk = XkX'i = 0 .

Proor. A'. If m=aWz,y,y*", either d,(m)=+=0 or D,(m)+0.
B'. If m=y,y*, then d;(m)=+0. If m contains z; and if D,(m)=0, we
must have y,2=0, but then z;24 0 so d,(m)+0.

3. Resolutions.
We shall construct resolutions of the residue class field K for rings of
the following two types:

A. K(X,,...,X,y/I where K is a commutative field and I is an
ideal generated by any set of monomials of degree 2 in {X,}.

B. K(X,,...,X /I where K is a commutative field and [ is an
ideal generated by any set of monomials of degree 2 in {X,} and further-
more by one element X, X, + ¢, X, X; for each ¢+k, where c,; € K —{0}.
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If R is a ring of type A (respectively B), there is exactly one ring R’
of type A’ (respectively B’) (definition in Lemma 4 in Section 2), with
the same number of X-variables and the same relations between these
variables. This is so, because the ralations between the X-variables
determine the relations between the Y-variables in the rings examined
in Section 2. We shall say that R’ belongs to R. Now R’ is in a natural
way a graded algebra over R,

R = @igo R'i

(R’; consists of the homogenous elements of degree ¢ in {y;}). Clearly
d becomes a homogenous R-linear map of degree — 1.

THEOREM. If R is a ring of type A (respectively B) and R’ @;»o R'; the
ring of type A’ (respectively B') belonging to R, then
d ¢ R4S R " KES0

75

18 a resolution of K (n s the natural map.)

Proor. Lemma 4 shows that every monomial in R’; (¢>0) has non-
empty Index. The Theorem preceeding Lemma 4 then gives that we have
a complex with a chain homotopy, i.e. an exact sequence (n is obviously
an augmentation map).

We illustrate the connection between R and R’ with some simple
examples, which in particular shed light on the obvious duality between
the X- and Y-variables.

la. If R=K{(X,...,X,), then R'=R(Y,..., Y, >/M? where
M=(Y,,...,Y,).

1b. If R=K{(X,,...,X,)/m* where m=(X,,...,X,), then R'=
RB(Y ..., YD)

2a. If

R = K[X,... ,X,] = KX,,...,. X )/({XX;-X,;X;;¢ + j}),
then
R = R(Yy,.... Y )[({Y 2}, {Y: Y+ Y, Y50 * j})

(the Koszul complex of R).
2b. If

R = K(Xy,.. ., X)[({X 2 (X X+ XX 5 i%5})
(R “Koszul”) then R’ = R[Y,,...,Y,].
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Note. If BR=®;.,R; is a graded ring with R, a field, then gl.dim.R=
=h.d. R, (see [5]). So a ring R of type A will have finite global dimension
if R’ has finite rank as an algebra over R, i.e. if (yy,...,¥,) is nilpotent
in R'.

4. “Poincaré series”.

Norarrons. If R'=@,.,R’; is a graded algebra over a ring R, with
R'; free R-modules, we let

HRp® = 3, oh;Zt, where h; = rankzR’; .

If R=K(X,,...,X,)/I is a ring of type A, we study R=K(X,,...,
X,>/I, where I is generated by monomials of degree two, such that
X,X; el if and only if X,X;¢I. We call R the complement K-algebra
to R.

TurEOREM. If R is a ring of type A, R the complement K-algebra to R,
then
H®(—2)-HgR(Z) = 1.

Proor. Let
HyB(Z) = JnohZt and HgR(Z) = 3, hZ¢.
We shall show, that %,-hy=1 (clear) and that
B bo—hyy byt ... +(=1)"hy-h, = 0 ifn>0.

Now %, is the number of different monomials of degree r in {X,}, such
that their images in R is +0. We say that a monomial X, ...X, can
be divided after X, , if X, -... X, has animage +0in R, at the same
time as X, -...-X, has an image +0 in E. If a monomial can be
divided in this sense at some place, then it can be divided at exactly
two places (besides after X, also after X; or X, , depending on
whether X, X, = has an image +0 in R or in R). This shows, that
there are just as many monomials, that can be divided after an even
number of steps, as after an odd number of steps. As the total number
of monomials of degree n, that can be divided after r steps is A,-h,_,,

this shows that

B hg+ly_ghot ... =Ry g byt hy g byt ...



36 RALPH FROBERG

CoroLLARY 1. If R is a ring of type A, R’ the ring of type A’ belonging
to R, then
HeR(—Z)-Hg®(Z) = 1.

Proor. HpF (Z)=HxE(Z), where R is the complement K-algebra to
R.

CoroOLLARY 2. If R is a ring of type B, R’ the ring of type B’ belonging
to R, then
Hy®(-Z)-Hp®(Z) = 1.

Proor. Let
R = K(X,,...,.X,»/I and R = R(Y,,.... Y yI'.

Now h;=rank,R’; is the maximum number of linearly independent
elements in R’;. But since R’; can be generated by monomials in {y,},%;
is the maximum number of linearly independent monomials of degree 4
in R’,, that is the number of different monomials in R’;, when represented
in lowest possible lexicografical way. So HzpF(Z)=HgS(Z), where
S=RY,..., Y, »J, and J is generated by the following monomials of
degree two:

{Y,Y;; i>j and (i,j) commutes} and {Y?%; Y% el'}.

It is clear that HpS(Z)=Hg?”(Z), where T=K(Y,,...,Y>/L, and L
is generated by ‘“the same’’ monomials as J. Representing the monomials
in R in the highest possible lexicografical way, one sees that HzE(Z)=
HpU(Z), where U=K(X,,...,X,)/N, N generated by the following
monomials of degree two:

{X;X;; i<j} and {X,X;; izjand X;X;el}.

But then y,2=0 in 7' if and only if 2,240 in U, and y,5;=0 in T'(i +})
if and only if x;x;40 in U. Hence U is the complement K-algebra to
T, and the result follows from the Theorem.

5. Local rings.
The Poincaré series for a local ring @ with residue class field k is defined

as )
BUZ) = 3420027,

where b;=dim, Tor;?(k, k). To determine b,, one can construct a minimal
resolution of k. A resolution

R N N Y
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is minimal, if ¢; has been chosen minimally, which means that
di ® idk: Qci ® k-—)Imdi ® k

is an isomorphism for every ¢ (Nakayamas lemma). Then ¢,=b,. See e.g.
(8.

We shall determine the Poincaré series for a ring @ of the following
type: @=§/I, where @ is a regular local ring and I is generated by a
set of monomials of degree two in a minimal set of generators for the
maximal ideal 7% in §). The associated graded ring

R = G(Q) = @izomi/m+
to @ (m the maximal ideal of @) is then a ring of type B. Let
R = R(Y,,....Y »J'
be the ring of type B’ belonging to R, and let

Q' = QYy,.... YD,

where I’ is generated by ‘“‘the same” elements as J'. On Q'=®;,@’;
(graded by the degree in {y,;}), we define a map 0, in the same way as
the differential d is defined at R’.

THEOREM.

4 2

Q—— ... @, Q——k~0

18 a minimal resolution of k=@Q[m (n is the natural quotient map).

Proor. That 92=0 is clear. Now let a(3,9;m; ,)=0, where ¢;€@ and
m; , are monomials in {y;} of some degree r. Let g; be the images of g,
in @/m. Then d(3,qm; ,)=0 in R’ (we identify the monomials in {y;} in
@ and G(Q)). Since (R',d) is a resolution of k, we have 3.gm; ,=d(r")
for some 7' € R, ;. Let ¢’ be an inverse image of r’ in ¢’,,,. Then 3.g,m, ,
—0(r')e@,, so

Kerd < Imo+m@' .

In the same way we see that Kerd<Imo+m»Q’ for all n. But then
Kerd = Np-y(Imo+m*Q’) = Ima,

the last equality by Artin-Rees’ lemma applied to the various ¢’,. The
resolutions are clearly minimal.
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CoroLLARY 1. Let § be a commutative regular Noetherian local ring, I
an ideal in @ generated by monomials of degree two in a minimal system
of generators for the maximal ideal. Let the maximal ideal and residue class
field of @Q=GQ/I be m and k. Let

HQ(Z) = 3,02, where h; = dim, (mi[mi+)
(we call HQ(Z) the Hilbert series for Q).
Then HQ(—Z)-BR(Z)=1.

Proor. If R=G(Q) is the associated graded ring to @, R’ the ring of
type B’ belonging to R, then B9(Z)=H;®(Z) since the resolution is
minimal. Since HQ(Z)=H,®(Z) the result follows from Corollary 2 of
Section 4.

Let @ be a local ring with maximal ideal m=(¢,,...,t,) (minimal set
of generators), K its Koszul complex in the variables 7%,...,7,. Let
¢yy=dim Hi*(K), where the upper index indicates the succesive quoti-
ent in the filtration of H(K), induced by the filtration

K? = (4....,t,,Ty,...,T,)PK
of the Koszul complex. Then we can give the Hilbert series for @ as
(14 e(—1)iZi+9) (1= Z)»
(see [8] chapitre IV. 3). Thus we get

CoroLraRY 2. If @ is as in Corollary 1, then with the notions above
BQ(Z) = (14 Z)*/(1+ 3cyi( — 1)1 Zi49) .
We conclude with a concrete example. If
Q = k[[Xy, X5, X3]]/(X 2 X2, X2, X, X,, X, X)),
then HQ(Z)=1+3Z+Z2, so
BQ(Z) = 1/(1-8Z+ 2% = (1+Z)3|(1 - 5Z%—5Z3+ Z5)
(cf. the Gorenstein ring
F[[ X1, X X1 /(X2 X2, X2, X Xy — X, X3, X, Xy — X, X,)

with the same Poincaré series, see [13]).
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Note. An example by Gunnar Sjodin shows that our formula of
Corollary 1 is false in general if I is generated by forms of degree two.
Namely, let

Q = k[[Xsz, X3,X4]]/(X12—X22,X22—-X32,X32- X42:X1X2,
X Xy - X,X,) .

Then HQ(Z)=1+4Z+ 522, so 1/H® (— Z) will have negative coefficients.
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