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Abstract

A graded k-algebra A is called a Koszul algebra if the minimal graded

free A-resolution of k has only linear maps. This article is a survey on

results obtained about Koszul algebras since they were introduced by

Priddy in 1970. We start with giving several equivalent conditions to

being Koszul, and then give lots of examples of Koszul algebras from

different fields. We show that the class of Koszul algebras is closed under

a number of natural operations. Almost no proofs are given, but ample

references to the literature are provided.

1 Introduction

Let k be a field and V a vector space over k with basis (x1, . . . , xn). The tensor
algebra (or the noncommutative polynomial ring) T (V ) = ⊕i≥0(T (V ))i is a
graded k-algebra with the monomials xm1

· · ·xmi
as a k-basis for (T (V ))i. We

will use the notation k〈x1, . . . , xn〉 for T (V ). With a graded algebra we will
mean an algebra A = k〈x1, . . . , xn〉/I , where I is a two-sided ideal generated
by homogeneous elements. The graded algebra A is called quadratic if I is
generated by elements of degree two. As an example, the usual commutative
polynomial ring is quadratic, since k[x1, . . . , xn] = k〈x1, . . . , xn〉/I , where I is
generated by all commutators xixj −xjxi. Also algebras k[x1, . . . , xn]/I , where
I is generated by quadratic forms, are quadratic. The Hilbert series A(z) of a
graded algebra A = ⊕Ai is the generating function for the k-dimensions of Ai,

A(z) =
∑

i≥0

dimk Ai · z
i.

If A = k〈x1, . . . , xn〉 we have dimk Ai = ni, so A(z) = 1 + nz + n2z2 + · · · =
1/(1 − nz), and if A = k[x1, . . . , xn] we have dimk Ai =

(

i+n−1
n−1

)

, so A(z) =
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1/(1 − z)n. It is well known that if A is a commutative graded algebra, A =
k[x1, . . . , xn]/I , then A(z) is a rational function, namely A(z) = p(z)/(1− z)n

for some polynomial p(z) ∈ Z[z]. If A is a graded algebra, then ⊕i>0Ai is a
graded maximal ideal which we will denote by A+.

For any graded algebra A there exists a minimal free graded A-resolution of
k

F : · · ·
φ3

−→ Ab2 φ2

−→ Ab1 φ1

−→ A −→ k.

That the resolution is graded means that the nonzero entries of the matrices φi

are homogeneous, that the resolution is minimal means that all nonzero entries
have positive degrees. Since φi ⊗ k = 0 in a minimal resolution we have

TorA
i (k, k) ' Abi ⊗ k ' kbi ' Exti

A(k, k).

The Poincaré series PA(z) of A is the generating function for the k-dimensions
of TorA

i (k, k),

PA(z) =
∑

i≥0

dimk TorA
i (k, k) · zi =

∑

i≥0

dimk Exti
A(k, k) · zi.

If we shift the degrees such that all φi becomes maps of degree 0, we see that
the grading on A induces a grading on TorA

i (k, k) = ⊕j(TorA
i (k, k))j and on

Exti
A(k, k) = ⊕j(Exti

A(k, k))j and we can define a Poincaré series in two vari-
ables

PA(x, y) =
∑

i,j

dimk(TorA
i (k, k))j · x

iyj =
∑

i,j

dimk(Exti
A(k, k))j · x

iyj .

The existence of a minimal resolution gives that (TorA
i (k, k))j = (Exti

A(k, k))j =
0 if j < i.

Koszul algebras were first introduced in [Pr] (under the name homogeneous
Koszul algebras). We define a Koszul algebra to be a graded algebra such that
(TorA

i (k, k))j = 0 if i 6= j or, equivalently, such that (Exti
A(k, k))j = 0 if i 6= j.

Another way to say this is that the minimal graded A-resolution of k is linear,
i.e., all nonzero entries of all φi are of degree one. If A = k〈x1, . . . , xn〉 a minimal
A-resolution of k looks like

0 −→ An φ1

−→ A −→ k −→ 0

with φ1 = (x1 · · · xn) and hence it is linear. We get that the Poincaré series of
k〈x1, . . . , xn〉 equals 1 + nz, the double Poincaré series equals 1 + nxy.

If A = k[x1, . . . , xn], the Koszul complex

0 −→ A(n

n) φn

−→ · · · −→ A(n

2) φ2

−→ A(n

1) φ1

−→ A −→ k −→ 0

is a minimal graded resolution of k with free A-modules. If we denote a ba-

sis for A(n

i) by {em1···mi
; 1 ≤ m1 < · · · < mi ≤ n}, then φi(em1···mi

) =
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∑i
k=1(−1)k−1xmk

em1···
�

mk···mi
and hence φi is linear. The Poincaré series of

k[x1, . . . , xn] equals 1+
(

n
1

)

z+ · · ·+
(

n
n

)

zn = (1+z)n, the double series (1+xy)n.
Thus both k〈x1, . . . , xn〉 and k[x1, . . . , xn] are examples of Koszul algebras

since k has a linear resolution over these algebras.
If A = k〈x1, . . . , xn〉/I , then TorA

2 (k, k) ' I/(A+I + IA+), so TorA
2 (k, k) =

(TorA
2 (k, k))2 if and only if A is quadratic. Hence a Koszul algebra is necessarily

quadratic.
The formula above for TorA

2 (k, k) is just a special case of a general result in
[Go]. There it is shown that

TorA
2i(k, k) ' (A+I i−1A+ ∩ I i)/(A+I i + I iA+)

and that

TorA
2i−1(k, k) ' (A+I i−1 ∩ I i−1A+)/(A+I i−1A+ + I i)

if A = k〈x1, . . . , xn〉/I . This is used in [B1] to get another equivalent con-
dition for an algebra to be Koszul. Let L(A) be the lattice associated to

A = k〈x1, . . . , xn〉/I , i.e., the lattice generated by {Af
+IgAh

+ ; f, g, h ≥ 0}
under + and ∩. Then A is Koszul if and only if A is quadratic and L(A) is
distributive. It is also shown in [B1] that this is equivalent to that A is quadratic

and all lattices Lj(A) generated by {Af
+IgAh

+ ; f, g, h ≥ 0, f + g + h = j} are
distributive.

2 The Koszul Dual

Let k〈x1, . . . , xn〉 = Λ and Λ/I a quadratic algebra. Let Λ∗ = Homk(Λ, k) =
⊕i≥0Homk(Λi, k) = ⊕i≥0Λ

∗
i with multiplication induced by µν(ab) = µ(a)ν(b),

where µ ∈ Λ∗
i , ν ∈ Λ∗

j , a ∈ Λi, b ∈ Λj . Let I⊥2 = {µ ∈ Λ∗
2 ; µ(I2) = 0} and let

I⊥ be the ideal generated by I⊥
2 . The Koszul dual of A is A! = Λ∗/I⊥. The

Koszul dual is a quadratic algebra and (A!)! = A.
To calculate a presentation of A! from the presentation of A is just some

elementary linear algebra. We give some examples. If A = k〈x1, . . . , xn〉,
then A! = k〈y1, . . . , yn〉/(yiyj , 1 ≤ i, j ≤ n). If A = k[x1, . . . , xn], then
A! = k〈y1, . . . , yn〉/(y2

i , 1 ≤ i ≤ n, yiyj + yjyi, 1 ≤ i < j ≤ n). If A =
k〈x1, . . . , xn〉/I , where I is generated by monomials of degree two, then A! =
k〈y1, . . . , yn〉/J , where J is generated by those monomials yiyj such that xixj /∈
I . If A = k[x1, . . . , xn]/(f1, . . . , fr), where fi =

∑

j≤k bijkxjxk , then A! =

k〈y1, . . . , yn〉/J , where J = (g1, . . . , gs), s =
(

n
2

)

− r, and gi =
∑

j≤k cijk [yi, yj ]

(here [yi, yj ] = yiyj + yjyi if i 6= j and [yi, yi] = y2
i ) and (cijk)jk , i = 1, . . . , s is

a basis of the solutions to the linear system
∑

j≤k bijkXjk = 0, i = 1, . . . , r, cf.
[L]. As an example, if

A = k[x1, x2, x3]/(x2
1, x2x3, x1x3 − x2

3),

then
A! = k〈y1, y2, y3〉/(y2

2 , y1y2 + y2y1, y1y3 + y3y1 + y2
3).
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For any quadratic algebra A there is a natural differential d : Ai⊗k (A!
j)

∗ −→

A!
i+1 ⊗k (A!

j−1)
∗, where ∗ indicates vector space dual, cf. [Pr], [L], or [Ma],

namely if f ∈ (A!)∗n, then df ∈ A1⊗(A!)∗n−1 is defined by identifying A1⊗(A!)∗n−1

with (A!
1 ⊗ A!

n−1)
∗ and letting (df)(x ⊗ m) = f(xm), where x ∈ A!

1, m ∈
A!

n−1 and extend A-linearly. This makes A ⊗k A! into a complex U . (If A =
k[x1, . . . , xn], then U is the usual Koszul complex.) This “generalized Koszul
complex” is exact if and only if A is Koszul.

There is a well known product Exti
A(k, k)×Extj

A(k, k) −→ Exti+j(k, k), the
Yoneda multiplication, making ExtA(k, k) into an associative graded algebra. It
is shown in [L] (also cf. [Pr]) that A! is the subalgebra [Ext1A(k, k)] of ExtA(k, k)
generated by its one-dimensional elements. It is clear that for any graded algebra
A we have Ext1A(k, k) = (Ext1A(k, k))1, so [Ext1A(k, k)] ⊆ ⊕i(Exti

A(k, k))i, but
in fact there is equality, cf. [L]. Hence A is a Koszul algebra if and only if
ExtA(k, k) = [Ext1A(k, k)]. In particular we see that if A is a Koszul algebra,
then ExtA(k, k) is finitely generated.

For any graded algebra A, for each j, the restriction of the minimal A-
resolution of k to degree j is a finite exact complex of finite dimensional vector
spaces. Using that the alternating sum of the dimensions in this finite di-
mensional complex equals the alternating sum of its homologies one gets the
formula A(z)PA(−1, z) = 1 for each graded algebra A. If A is a Koszul alge-
bra we have PA(x, y) = PA(xy), so for a Koszul algebra we have the formula
A(z)PA(−z) = 1. This formula is in fact equivalent to A being Koszul, cf. [L].

We sum up with a theorem

Definition-Theorem 1 A graded algebra A is Koszul if and only if the fol-
lowing equivalent conditions are satisfied
i) TorA

i (k, k) = (TorA
i (k, k))i for all i.

ii) Exti
A(k, k) = (Exti

A(k, k))i for all i.
iii) The minimal graded A-resolution of k is linear.
iv) ExtA(k, k) = [Ext1A(k, k)].
v) A(z)PA(−z) = 1.
vi) A(xy)PA(−x, y) = 1.
vii) PA(z) = A!(z).
viii) PA(x, y) = A!(xy).
ix) A is quadratic and L(A) is distributive.
x) A is quadratic and Lj(A) are distributive for all j.
xi)-xx) A is quadratic and A! satisfies any of the above conditions.
xxi) A is quadratic and the complex U is exact.

It follows that a Koszul algebra has a finitely generated Ext-algebra and
rational Poincaré series.

There are some further more technical characterizations of Koszul algebras.
The algebra A is Koszul if and only if the map A −→ A/A2

+ is “small”, cf.
[BF1]. In [L3] there are conditions (for a commutative algebra A) in terms of a
“minimal model” for A and of the “homotopy Lie algebra” of A.
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3 Examples of Koszul Algebras

We will now give some examples of classes of Koszul algebras. Since Koszul
algebras are necessarily quadratic, we will in this section assume that all algebras
are of the form k〈x1, . . . , xn〉/I , where I is generated by homogeneous elements
of degree two.

3.1 Commutative Examples

We start with commutative algebras. If A is a complete intersection, i.e., A =
k[x1, . . . , xn]/(f1, . . . , fr) where (f1, . . . , fr) is a regular sequence (of forms of
degree two), then A is Koszul. The exact sequences

0 −→ k[x]/(f1, . . . , fi−1)
fi·
−→ k[x]/(f1, . . . , fi−1) −→ k[x]/(f1, . . . , fi) −→ 0

easily give that A(z) = (1 − z2)r/(1 − z)n. The Poincaré series of a complete
intersection was determined in [T], PA(z) = (1+z)n/(1−z2)r. (Tate considered
local rings, but the same arguments can be applied.) Since A(z)PA(−z) = 1, A
is Koszul.

If A = k[x1, . . . , xn]/I and I is generated by an arbitrary set of monomials
(of degree two), then A is Koszul, cf. [F1]. A concrete example: If A =
k[x1, . . . , xn]/(xixj ; i 6= j) then A(z) = 1+nz+nz2+· · · = (1+(n−1)z)/(1−z),
so we can conclude that PA(z) = (1 + z)/(1− (n− 1)z). There are interesting
classes of quadratic monomial ideals coming from combinatorics. If P is a poset
on {x1, . . . , xn}, the associated Stanley-Reisner ring k[P ] = k[x]/(xixj ; xi 6≤
xj , xj 6≤ xi) is Koszul. When studying general Stanley-Reisner rings k[∆] one
can sometimes reduce problems to the barycentric subdivision ∆′ of ∆, and
k[∆′] is Koszul.

The result above on monomial ideals was extended in [Ko] to algebras k[x]/I ,
where I is generated by monomials and certain binomials.

If the (finite) k[x]-resolution of I is linear, i.e., if (Tor
k[x]
i (A, k))j = 0 if

j 6= i + 1 for all i ≥ 1 (Tor
k[x]
1 (A, k) = (Tor

k[x]
1 (A, k))2 is always true since

A is quadratic), then A is Koszul, cf. [BF1]. If A is CM then e.dimA ≤
e(A)+dim A−1, where e(A) is the multiplicity or degree of A. If there is equality,
A is said to be of maximal embedding dimension or minimal multiplicity. CM
algebras of maximal embedding dimension have linear resolutions. We give some
concrete examples. If (xij) is a 2× n-matrix of indeterminates and I the ideal
in k[xij ] generated by all maximal minors in (xij), then k[xij ]/I has a linear
resolution. If (xij ) is a symmetric 3 × 3-matrix of indeterminates and I the
ideal of 2× 2-minors then k[xij ]/I is another example, cf. [Sc] and [F2] and the
references in them. There are more examples of CM rings with linear resolutions
in [FLa].

Extremal Gorenstein rings were introduced in [Sc]. These are Koszul alge-
bras (if they are quadratic), cf. [F2]. A concrete example is k[xij ]/I where I is
generated by the 4× 4-Pfaffians in a skew-symmetric 5× 5-matrix (xij). If I is

5



the ideal of 2 × 2-minors in a 3 × 3-matrix (xij ) we get another example of a
quadratic extremal Gorenstein ring.

If f1, . . . , fr are “generic” quadratic forms in k[x1, . . . , xn], then we have that
k[x1, . . . , xn]/(f1, . . . , fr) is Koszul if and only if r ≤ n or r ≥

(

n+1
2

)

− [n2/4], cf
[L2].

If A = ⊕i≥0Ai is a graded algebra, the dth Veronese subalgebra is A(d) =
⊕i≥0Aid. An element in Aid is considered to have degree i. If ⊕i≥0Ai and
⊕i≥0Bi are graded algebras their Segre product is A ◦ B = ⊕i≥0Ai ⊗k Bi. An
element in Ai ⊗ Bi has degree i. It is shown in [BM] that, if one starts with a
polynomial ring and performs a finite number of Segre products and Veronese
subalgebras in any order, the result will be a Koszul algebra. There is a partial
generalization to “weighted” Segre products in [C].

A classical theorem in geometry states that any projective variety can be cut
out by quadrics (cf. [Mu], but the result is certainly older). This was generalized
in [BF1] where it is shown that for any graded algebra A (commutative or not)
we have A(d) quadratic if d >> 0 (an actual bound is given). In [B3] it is
shown that if A is commutative, then A(d) is even Koszul if d >> 0. This was
sharpened in [ERT]and [BGT], see below.

3.2 Examples from Geometry

There are several examples of coordinate rings of projective varieties that are
Koszul. In [Ke1] it is shown that any algebra A with straightening law whose
discrete algebra is defined by quadratic monomials is Koszul (called wonderful
in [Ke1]). In [VF] it is shown that the coordinate ring of a general curve of
genus ≥ 5 is Koszul. There are more examples in [Ke2], [Pa], [Pol], [PP], and
[Ra].

3.3 Noncommutative Examples

If I is generated by an arbitrary set of monomials (of degree two) in k〈x〉, then
k〈x〉/I is Koszul, cf. [F1]. A slight generalization of this result was used in
[BHV] to calculate the number of walks of certain kinds in a directed graph.

If (f1, . . . , fr) is a sequence of homogeneous elements of degree two in k[x]
then k[x]/(f1, . . . , fr)(z) ≥ (1 − z2)r/(1 − z)n with equality if and only if the
sequence is regular. There is a corresponding property in k〈x1, . . . , xn〉. If
(f1, . . . , fr) is a sequence of homogeneous elements of degree two in k〈x1, . . . , xn〉
then k〈x〉/(f1, . . . , fr)(z) ≥ 1/(1− nz + rz2), cf. [An2]. If there is equality the
sequence is called strongly free. That (f1, . . . , fr), r ≥ 1, is strongly free is
equivalent to gl.dim(k〈x〉/(f1, . . . , fr)) = 2. This is shown in [An2], and then it
follows easily that these rings are Koszul.

The results above can also be formulated in a relative situation. If f is a
quadratic form in a commutative algebra A, then A/(f)(z) ≥ (1− z2)A(z) with
equality if and only if f is a nonzerodivisor in A. Similarly if f is a quadratic
form in any graded algebra A, then A/(f)(z) ≥ A(z)/(1 + z2A(z)), and f is
called strongly free in A if there is equality. We will use this below.
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4 Gröbner Bases and Koszul Algebras

If A = k〈x〉/I and I has a (noncommutative) Gröbner basis consisting of ele-
ments of degree two, then A is Koszul. This follows from the spectral sequence
Tork〈x〉/in(I)(k, k) =⇒ Tork〈x〉/I(k, k), where in(I) denotes the ideal generated
by the initial monomials of the elements in the Gröbner basis, cf. [An3]. There
is a similar result in the commutative case, cf. [An3], so if I has a quadratic
(commutative) Gröbner basis then k[x]/I is Koszul. Another proof of this fact
could be found in [BHV]. As an example, the ideal I of 2×2-minors in a matrix
(xij) has a quadratic Gröbner basis, cf. [St1], so k[xij ]/I is Koszul.

If A is any commutative graded algebra then A(d) has a quadratic Gröbner
basis if d >> 0, cf. [ERT]. This improves the result in [B3] mentioned above.
The result in [ERT] is further generalized to a larger class of algebras (not
necessarily generated in degree one) in [BGT].

Let A = k[x1, . . . , xn]. The subring of A(d) generated by the monomials
{xi1

1 · · ·x
in

n ; i1 + · · ·+ in = d, 0 ≤ i1 ≤ s1, . . . , 0 ≤ in ≤ sn} is called an algebra
of Veronese type. (If s1 = · · · = sn = d we get A(d).) It is shown in [St1] that the
defining ideal of an algebra of Veronese type has a Gröbner basis (in a certain
ordering) which is not only quadratic but also squarefree. This has interesting
combinatorial consequences, cf. [St1].

5 Operations on Koszul algebras

The class of Koszul algebras is closed under a number of operations. The copro-
duct of two graded algebras A and B over k is the pushout A

∐

B of A and
B of A ←− k −→ B. The (fibre) product A

∏

B over k is the pullback of
A −→ k ←− B. The following results are proved in [BF1].

Theorem 2 i) A is Koszul if and only if the Veronese subalgebra A(d) is Koszul
for all d.
ii) If A and B are Koszul then the Segre product A ◦B is Koszul.
iii) A

∐

B is Koszul if and only if A and B are both Koszul.
iv) A

∏

B is Koszul if and only if A and B are both Koszul.
v) A⊗k B is Koszul if and only if A and B are both Koszul.
vi) If f is strongly free of degree one or two, then A is Koszul if and only if
A/(f) is Koszul.
vii) If f is a nonzerodivisor of degree one or two in a commutative algebra A,
then A is Koszul if and only if A/(f) is Koszul.

6 More Examples and some Counterexamples

In this section we consider only quadratic algebras.
If A = k〈x〉/I and I is principal, then A is Koszul, cf. [B2], but there

are counterexamples already when I is generated by two elements. The ideals

7



generated by two elements in k〈x〉 are classified up to isomorphisms in [B1],
and all possible Hilbert and Poincaré series are determined. There is a small
number of exceptions to Koszulness.

On the commutative side, probably the first counterexample to Koszulness
(due to C. Lech) is the following. Let f1, . . . , f5 be “generic” quadratic forms in
k[x1, . . . , x4]. (A concrete example is (f1, . . . , f5) = (x2

1, x
2
2, x

2
3, x

2
4, x1x2+x3x4).)

It is not so hard to see that if A = k[x1, . . . , x4]/(f1, . . . , f5) then A(z) =
1 + 4z + 5z2, so 1/A(−z) = 1 + 4z + 11z2 + 24z3 + 41z4 + 44z5 − 29z6 − · · ·.
Since this series has negative coefficients, A is not Koszul.

In [Ro1], J.-E. Roos constructed an example of an algebra A for which
ExtA(k, k) is not finitely generated, and in [An1] D. Anick gave an example
of an algebra with non-rational Poicaré series.

In embedding dimension two all commutative algebras are Koszul. In [BF2]
all quadratic ideals in k[x1, x2, x3] generated by three elements and which are not
complete intersections are classified up to isomorphisms and their Hilbert and
double Poincaré series are determined. There are two exceptions to Koszulness
(the ideals (x2

1, x2x3, x1x3 + x2
2) and (x1x2, (x1 + x2)x3, x

2
1 + x1x3 + x2

2)) if
char(k) 6= 3 and one further (namely (x2

1, x2x3, x1x2+x1x3+x2
2)) if char(k) = 3.

It is shown in [BF2] that these are the only counterexamples in embedding
dimension three to Koszulness.

J.-E. Roos has made an extensive study of homological properties of quadra-
tic commutative algebras. He has found 83 different double Poincaré series in
embedding dimension four and more than 4500 in embedding dimension five.
Among the examples in embedding dimension four there are 37 Koszul alge-
bras. In embedding dimension five there are about ten per cent Koszul alge-
bras. There are lots of examples of the homological behaviour of commutative
quadratic algebras given in [Ro4], [Ro5], [Ro6], and [Ro7].

If A is commutative and dimk A2 ≤ 2, then A is Koszul, cf. [B1], and the
examples in [BF2] show that there are counterexamples if dimk A2 = 3.

There are commutative Koszul algebras which do not have a quadratic
Gröbner basis in any ordering, even after any linear change of coordinates.
An example from [ERT]: Take three generic forms (of degree two) f1, f2, f3 in
k[x1, x2, x3]. Since k[x1, x2, x3]/(f1, f2, f3) is a complete intersection it is Koszul.
If I = (f1, f2, f3) had a quadratic Gröbner basis, then in(I) = (x2

1, x
2
2, x

2
3) since

this is the only quadratic monomial ideal with correct Hilbert series. But if x1 >
x2 > x3, say, and x2

3 ∈ in(I) then x2
3 ∈ I . But it is easily seen that I does not

contain any square. A concrete example is I = (x2
1 +x1x2, x

2
2 +x2x3, x

2
3 +x1x3),

cf. [ERT].
Given the embedding dimension n of A it is natural to ask for a bound N(n)

such that if TorA
i (k, k) = (TorA

i (k, k))i for i ≤ N(n) then A is Koszul. That
such a bound does not exist for noncommutative algebras follows from a result
in [FLo]. As an example, if A = k〈x1, x2, x3, x4〉/(x1x2 − x1x3, x2x3 − x3x2 −
λx2

3, x2x4), char(k) = 0, λ−1 = l ∈ N, then TorB
i (k, k) = (TorB

i (k, k))i if i ≤ l+2
and TorB

l+3(k, k) 6= (TorB
l+3(k, k))l+3, where B = A!. More surprising is perhaps

that not even for commutative algebras such a bound exist. An example is given
in [Ro2], k[x1, . . . , x6]/I , where I = (x2

1, x1x2, x2x3, x
2
3, x3x4, x

2
4, x4x5, x5x6, x

2
6,
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x1x3 + λx3x6 − x4x6, x3x6 + x1x4 + (λ − 2)x4x6), λ ∈ N. Over this algebra k
has a linear resolution up to and including degree λ, but not in degree λ + 1.

It has been conjectured that the equality A(z)A!(−z) = 1 should imply that
A is Koszul. Counterexamples to this is independently given in [Po] (noncom-
mutative algebras) and [Ro3] (commutative algebras). One example in [Ro3] is
k[x1, . . . , x5]/(x2

1, x1x2 +x2
3, x

2
3 +x4x5, x1x3, x2x3 +x1x4, x3x4 +x2x5, x3x5, x

2
5).

7 Local Rings

If (A, m) is a local ring and the associated graded algebra g(A) = ⊕i≥0m
i/mi+1

is a Koszul algebra, then A is called generalized Koszul. For a generalized
Koszul algebra it is true that g(A)(z)PA(−z) = 1, cf. [F3] or [HRW]. Concrete
examples of generalized Koszul algebras are local CM rings of maximal embed-
ding dimension. Another example is local Gorenstein rings (A, m) of maximal
embedding dimension e(A) + dim A− 2, cf. [Sc] and [F2].

8 Semigroup rings

Let S be a subsemigroup of N
d and let k[S] = k[x]/I(S) be its semigroup ring.

In [HRW] a topological condition for the initial ideal in(I(S)) to be quadratic
is given.

In [PRS] it is shown that all normal subsemigroups of N
2 give quadratic

initial ideals (in some ordering) and thus are (generalized) Koszul algebras.
This result is also proved in [HRW] in another way.

It has been asked if all monomial projective curves with quadratic defining
ideal were Koszul, and even if they had a quadratic Gröbner basis. Sturmfels
has recently shown that for projective monomial curves in P n, n ≤ 4 this is
true, and for n = 5 there is only one exception (and its symmetric), namely
k[s11, s8t3, s6t5, s5t6, s4t7, t11], which is not Koszul, cf. [St2]. All Koszul algebras
have quadratic Gröbner bases for n = 5.

In [RS] projective monomial curves in P n, n > 5 are studied. It is shown
that all such Koszul algebras have quadratic Gröbner bases if n = 6 and
that there is a counterexample to this if n = 7. This counterexample is
k[t22, t19s3, t18s4, t17s5, t16s6, t15s7, t11s11, s22] ' k[x1, . . . , x8]/(x2

2−x1x5, x2x3−
x1x6, x

2
3−x2x4, x3x4−x2x5, x2x6−x3x5, x

2
4−x3x5, x1x7−x4x5, x3x6−x4x5, x4x6−

x2
5, x2x7−x2

6, x1x8−x2
7), cf. [RS]. There is also an example of a monomial curve

in P 6 for which the Ext-algebra of its coordinate ring is not finitely generated,
and an example in P 8 with non-rational Poincaré series.

9 Generalizations

The concept of Koszul algebras has been generalized (starting with [Ma]) to
other tensor categories than k-algebras. A good general reference is [BGSo].
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We will not discuss this subject, but only give some references: [Ar], [BGSc],
[BG], [Be], [GK], [GM], [H], [M-V], [Pl], [PV], [PS], and [Rs].
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