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This is a survey to apply theory from noncommutative graded algebras to 
questions about the holonomy algebra and the Orlik-Solomon algebra of a hy­
perplane arrangement. We first recall the main properties of Koszul a lgebras 
and hyperplane arrangements. Then, we focus our interest on the class of hy­
persolvable arrangements which includes both the fiber-type and the generic 
arrangements. For these hypersolvable arrangements, the holonomy algebra is 
Koszul and koszulness of the Orlik-Solomon algebra characterizes the subclass 
of fiber-type's. 

1. Koszul Duality and Koszul Algebras (overall) 

Let k be an arbitrary field and let V be an n-dimensional k-vector space 
(V ~ kn) and let T(V) = EBn>O Tn be the k-tensor algebra over V where 
T0 ~ k, T1 ~ V. Then T(V) ~ k < x1, ... ,Xn >, the free associative 

k-algebra. Let A be a k-graded algebra, A = L Ap, Assume that A is 
p?:O 

connected, i.e. Ao = k and is generated by A1 . A is "naturally" represented 
as the factor of the tensor algebra T(A1) by a homogeneous ideal I = L Ip, 

p?:2 

Definition 1.1. A is said to be quadratic if I is generated by 12 C 

A1 (8)A1. 

Therefore, a quadratic algebra A is determined by a vector space of 
generators V=A 1 and a subspace of quadratic relations h CV® V. Such 
a quadratic algebra is denoted as A= {V; I}. 
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Definition 1.2. Let A = {V; J} be a quadratic algebra. The quadratic 
dual or Koszul dual algebra of A is defined by A1 = {V*; 11- }, where V* 
is the dual of V, 11- c V* ® V* is the orthogonal complement to l with 
respect to the natural pairing: (v ® v', v* ® v'*) = (v, v*) (v', v'*) between 
V@V and V*@V*. 

Remark 1.1. (A 1
)

1 = A. 

Example 1.1. 

A = k[x1, ... , Xn] ( commutative polynomial algebra) 

k(r1, ... ,xn)/(xiXj - XjXi) for i < j. 

Then A~ Sn which is the symmetric algebra. A is a quadratic algebra. 

A' = k(y1, · · ·, Yn) / wt YiYj - YjYi) (for i < j) 

= I\ (Y1, ... , Yn) ( exterior algebra). 

Definition 1.3. Let A be a quadratric algebra,and Ak be the trivial graded 
left A-module A/A+ where A+ is the augmentation ideal E9Ap. A is said 

p>O 
to be Koszul if Ak admits a free graded resolution: 

. . . --; pi --; pi-1 --; ... --; pl --; pO --; A k --; 0, 

where pi is generated by its components of degree i. 

Let denote the following objects: 
E(A) := Ext::i_(Ak,A k) the graded cohomology algebra of the trivial graded 
A-module Ak . 

The Hilbert series H(A, t) := L dim(An)tn. 
n:2'.0 

The Koszul complex of A: 

d · 
• • • --+ Ki ---4 Ki-I --+ • • • --+ K1 --+ Ko --+ A k --+ 0, 

where Ki free A-modules, Ki= Homk(AL A) and di is defined as dd(a) = 
n 

L f(xia)ei, a E AL1, (x1, ... , Xn) is the basis of A, dual basis of the 
k=l 
basis (e1, ... ,en) of A1. 

Theorem 1. 1. Let A be a quadratic algebra. Then the fallowing assertions 
are equivalent: 

(1) A is Koszul; 



(2) A' is Koszul; 
(3) E(A) = A'; 
(4) The Koszul complex of A is acyclic; 
(5) H(A, t).H(E(A), -t) = 1. 

Corollary 1.1. A is Koszul iff H(A, t).H(A', -t) = l. 

Example 1.2. A= k[x1, ... , Xn] is Koszul and H(A, t) = (i-\n, 

A'= l\(Yl , · .. ,Yn) is Koszul and H(A',t) = (1 +t)n. 

2. Hyperplane Arrangements 

We refer the reader to [6] as a general reference on arrangements. 
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Let A be an arrangement of hyperplanes over C i.e. A = {H1, ... , Hn}, 
where Hi are linear hyperplanes of ct. Define the complement M(A) = 

n 

ct - LJ Hi and L(A) the geometric lattice intersection of hyperplanes with 
i=l 

reverse order 

X::::; Y if Y ~ X. 

Notice that rk(X) = codim(X). 
Orlik-Solomon algebra (combinatorially defined) 

Ai:,(A) := (\ (e1, ... , en)/ :1 ~ H*(M(A); k), 

where :1 ideal generated by the relations of the form: 

for all 1 ::::; i1 < ... < is ::::; n such that rk(Hi1 n · · · n Hi.) < s. 
Ai:,(A) is not necessary quadratic. 

Poincare polynomial 

P(A, t) := L dimAi(A)ti 

L µ(X)(-ttodim(X) 

XEL(A) 

= P(Ai:,(A), t) 

Quadratic Orlik-Solomon algebra 
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where .:J ideal generated by: 

eieJ - eiek + ejek, 1 ::; i < j < k ::; n, 

and 

rk(Hi n Hj n Hk) = 2. 

Ak(A) only depends on L2 (A), the elements of codimension 2 of L(A). 
Quadratic Poincare polynomial 

P(A, t) := P(Ak(A), t) 

Example 2.1. Braid arrangements in C1. 

A1 = {Hij I 1::; i < j::; l}, where Hij = ker(zi - ZJ)-
Notice that the fundamental group of the complement is isomorphic to 

the Pure braid group P1. 
Moreover, AHA1) = Ak(A1), the Orlik-Solomon algebra of a braid ar­

rangement is quadratic. 

Remark 2.1. There is a linear fibration given by forgetting the last coor­
dinates: 

C - {(l - 1) points} L...; M(A1)-, M(A1-1) 

where M(A1) is the complement of the braid arrangement in C1. 

ci _ c1-1 

u u 
M(A1)-, M(A1-1) 

Remark 2.2. The Coxeter arrangements V 1, l 2'. 4 in C1 are defined by 
{(xi - Xj), (xi+ Xj), 1 ::; i < j ::; n} . Then Ak(Vi) -=J. Ak(V1), and the 
Orlik-Solomon algebra is not quadratic. 

As a "natural" generalization of braid arrangements, we define the 
fiber-type arrangements. 

Definition 2.1 (Falk,Randell). (1) A= {O} is a fiber-type arrangement 
in C . The arrangement A in C 1 is fiber-type if it is strictly linearly fibered 
with base M(B) the complement of the fiber-type arrangement B in c1- 1 . 



Then A is a fiber-type arrangement iff there is a composition series 

A1 C , , , C A C A+1 C , · , C Ai = A 

where rkA1 = 1 and (Ai+1, Ai) defines a linear fibration 

C - {IAi+1 -A I points}'-> M(A+1)-+ M(A). 

A is fiber-type iff the lattice L(A) is supersolvable. 

Proposition 2.1. Let A be a fiber-type arrangement. Then 

Ak(A) = Aj;(A). 

2.1. Holonomy Lie Algebra 
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Let Libk(A) be the k-graded free Lie algebra over {x1, ... ,xn}, 

Definition 2.2 (Kohno). (4) The holonomy Lie algebra of A is denoted 
~h(A) : 

where N ideal generated by [xik, z:;= 1 XiJ] fork = 1, • • • , s, 1 :::; i1 < · · · < 
s 

is :::; n such that rk n Hij = 2 and it is maximal with this property. 
j=l 

Remark 2.3. Let H*(M(A)) be the homology coalgebra with coefficients 
in k and comultiplication dual to the cup product, 

{h(A) ~Libk (H1(M(A))/ker(H2(M(A))-A2 H 1 (M(A))). 

Definition 2.3. The holonomy algebra of A denoted Uk(A) is the uni­
versal enveloping algebra of Qk(A). 

A holonomy algebra is a quadratic algebra. 

Lemma 2.1. 

In the following, we will study a "large" class of arrangements for which 
Uk(A) is Koszul. However, let us give an example showing that this result 
is not always true. 

Example 2.2. Let A be the arrangement defined by the linear forms x, y, z, 
x + y, x + z , y + z. Then P(A, t) = 1 + 6t + 12t2 + 7t3 and P(A, t) = 
1 + 6t + 12t2 + 8t3 + t4 . The holonomy algebra Uk (A) is not Koszul because 
(1 - 6t + 12t2 - 8t3 + t4 )-1 has some negative coefficients (eg t 13 ). 



184 

Remark 2.4. Let (r n 1r1 ( M (A))) be the Lower Central Series of the 
n>l 

fundamental group, defined as follows: 

(1) r11r1(M(A)) = 1r1(M(A)), 
(2) rn+11r1(M(A)) = [1r1(M(A)),rn1r1(M(A))], 

grr ( 1r1 (M(A))) := E9 gr~ ( 1r1 (M(A))), 
i~l 

where gr~(1r1(M(A))) = ri+11r1(M(A)) / ri1r1(M(A)) . 

Then as graded Lie algebras 

QQ(A) ~ grr(1r1(X)) Q9 Q. 

2.2. Hypersolvable Arrangements 

This is a "large" class of arrangements containing both, the fiber-type ones 
(whose the complement is a K[1r, l]-space), and the generic ones (whose the 
complement is never a K[1r, l]-space). 

Let B be a subarrangement of A, denote B = A - B. In the following 
definition, we denote rk(o:, /3) as rk(Ha n Hf3), where Ha= kero: and Hf3 = 
ker/3. 

Definition 2.4. [2] (A, B) is said to be a solvable extension if 

(1) For any Ha, Hf3 EB and any Ha EB, then rk(o:,/3, a)= 3. 
(2) Given Ha , Hb EB, a-=/ b, there exists H-y EB such that rk(a, b, -y) = 2. 

Denote -y = f(a, b). 
(3) Given distinct elements Ha , Hb , He EB, then 

rk(f(a,b),f(b,c),f(c,a)) = 2. 

Then we can distinguish 2 cases: 

(1) There is a fibration: 

C - {IA- Bl points}._. M(A) - M(B) 

called the fibered case. 
(2) rkB = rkA, called the singular case. 

In case 2, there exists a deformation such that we eliminate singular 
case in order to get a fibration as in case 1. 
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Definition 2.5. [2,3] A is said to be hypersolvable if there is a compo­
sition series 

A1 C , , , C A C Ai+l C , , , C At(A) = A 

with rk(A1) = 1 and (Ai+1, Ai) is a solvable extension. 

Then, after "enough" deformations, we can eliminate all the fibered cases 
and we get A which is a fiber-type arrangement with the same lattice up 
to rank 2. 

Remark that both fiber-type and generic arrangements are hypersolv­
able. The arrangement defined (in the Example 2.2) by the defining equa­
tion: 

xyz(x + y)(x + z)(y + z) = 0 is not hypersolvable. 
The arrangement defined by the following equation: 
(x + y)(x - y)(z + 2y)(z + y)(z - y)(z - 2y)z = 0 is hypersolvable but 

neither fiber-type nor generic. 
The Orlik-Solomon algebra of a hypersolvable arrangement is not nec­

essary quadratic. 

Theorem 2.1 (Jambu, Papadima). (2} Let A be a hypersolvable ar­
rangement; then Ak(A) is Koszul, for any field k; therefore Uk(A) is Koszul. 

Corollary 2.1 (Jambu, Papadima). (2} Let A be a fiber-type arrange­
ment; then Ak(A) is Koszul. 

Sketch of the (algebraic) proof of the theorem: 

(1) H*(V S1; k) ~ T(V) is Koszul where V ~ km . 
m 

(2) Suppose (A, B) solvable, then as Ak(B)-modules 

Ak(A) ~ Ak(B) ® H*(V s1; k). 

IBI 

(3) Recall that a graded subalgebra B * of A* is normal if AB+ = B+ A. 
Then there is a canonical graded algebra projection 1r : A - F = 
A/AB+ (B ~ A - F). 

( 4) Lemma : Suppose B normal subalgebra of A such that A is free as a 
right B-module and all algebras are quadratic. If B and F are Koszul, 
then A is K oszul. 

(5) Let point out that Ak(B) is normal in Ak(A) which is a free right 

Ak(B)-module, the quotient F ~ H *(V S1; k) is Koszul. Then Ak(A) 

IBI 
is Koszul if Ak(B) is Koszul. 
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Another proof is given using Shelton and Yusvinsky's result [8] saying that 
the Orlik-Solomon algebra of a fiber-type arrangement is Koszul altogether 
with the deformations from A to a fiber-type arrangement A. 
Theorem 2.2 (Jambu, Papadima). /2/(Generalized LCS Formula) Let 
A be a hypersolvable arrangement; then for any field k: 

00 

P(A, -t) = IT (1 _ ti)dim91(A). 

i=l 

Proof. Recall that for all arrangements Uk(A) ~ (Ai:,(A))'. 
Compute the inverse of the Hilbert series of Uk(A) by the well-known 

Poincare-Birkhoff-Witt theorem: 
00 

H(Uk(A), t)- 1 = IT (1 _ ti)dim91(A). 
i =l 

Ai:,(A) is Koszul, then H(Ai:,(A) ,t).H((Ai:,(A))',-t) = +l. D 

Corollary 2.2. (LCS Formula) Let A be a fiber-type arrangement. Then 

00 

P(A, -t) = IT (1 _ tilim9i,(A). 
i=l 

Remark 2.5. Kohno obtained this result for braid arrangements. 

Theorem 2.3 (Jambu, Papadima). /2} Let A be a hypersolvable ar­
rangement. Then 

9z(A) ~gr~(1r1(M(A))) 

as graded Lie algebras. 

The main point of the proof is to show that 9z(A) is torsion-free as a 
graded abelian group. 

Definition 2.6. A is said to be a rational K[1r, 1]-arrangement if the Q­
completion of M(A), denoted Q 00 (M(A)), is aspheric. 

Equivalently, A is rational K[1r , 1] iff the 1-minimal model M of M(A) 
satisfies f* : H *(M)----+ H*(M(A), Q) is an isomorphism. 

Theorem 2.4 (Papadima, Yuzvinsky). /7/ A is rational K[1r, 1] iff 
H*(M(A); Q), (~ Aq(A)) is a Koszul algebra and the LCS formula holds. 
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Theorem 2.5 (Jambu, Papadima). /2} Let A be a hypersolvable ar­
rangement. Then the following assertions are equivalent: 

{1) A is fiber-type. 
{2) Q=(M(A)) is aspheric. {ie Aq(A) is Koszul) 
(3) The LCS formula holds. 

Let us remark that if A is hypersolvable, then A*(A) is quadratic iff A 
is fiber-type. Therefore for the hypersolvable arrangements, quadraticity of 
Aq(A) is equivalent to being fiber-type so is equivalent to being rational 
K[1r, l]. 
Question : Is quadraticity of Aq(A) sufficient for M(A) being rational 
K[1r, 1]? 

Example 2.3. A in C3 given by the following linear forms (x, y, z, x + 
y, x - z, y - z, x + y - 2z). A*(A) is quadratic (but A is not hypersolvable 
and therefore not fiber-type). P(A, t) = (1 + t)(l + 6t + 10t2). If A is ratio­
nal K[1r, 1], then A*(A) is Koszul and P(A, -t)- 1 = H(U(A), t), therefore 
(1 - 6t + 10t2 )- 1 as an infinite formal series has its coefficients integer and 
nonnegative which implies that 1-6t + 10t2 has a real root r E (0, 1] (inter­
esting exercise for undergraduate students following a course on Complex 
Analysis). Hence we obtain a contradiction. 
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