EXERCISE SESSION 1

Problem 1: The goal is to show that for
any digraph/binary relation
$$D \subseteq [n] \times [n]$$
,
and $A_D = lk < x_1, ..., x_n > (x_i x_j : i \rightarrow j \\ not in D > is
that $Hilb(A_D, t)$, $Hilb(A_D, t, q)$ are rational,
where $Hilb(A_D, t) := \sum_{i=1}^{n} t^{i}$
 $Hilb(A_D, t) := \sum_{i=1}^{n} t^{i}$
 $Hilb(A_D, t, q) := \sum_{i=1}^{n} t^{i} q_{i} q_{i}$
 $Hilb(A_D, t, q) := \sum_{i=1}^{n} t^{i} q_{i} q_{i}$
 $Hilb(A_D, t, q) := \sum_{i=1}^{n} t^{i} q_{i} q_{i}$
 $Marks = i q_{i} q_{i} q_{i}$$

 $(T_D)_{i,j} = \begin{cases} 1 & \text{if } i \rightarrow j \text{ in } D \\ 0 & \text{otherwise,} \end{cases}$ $(T_D(q)) := \int q_j & \text{if } i \rightarrow j \text{ in } D \\ i,j & 0 & \text{otherwise,} \end{cases}$

(a) Show
$$(T_{D}^{n-1})_{ij} = \# \{ walks \ i = i_{1} \rightarrow \dots \rightarrow i_{m} \neq j \ m \} \}$$

and $q_{i} (T_{D}^{n}q)_{ij}^{m-1} = \sum_{\substack{i = i_{1} \rightarrow \dots \rightarrow i_{m} \neq j \\ i = i_{1} \rightarrow \dots \rightarrow i_{m} \neq j}} q_{i_{1}} q_{i_{m}} q_{i_{m}$

Problem 2: (Euler-Poincaré)
(a) Explain why a short exact sequence of
(finite-dimensional) k-vector spaces

$$\delta \rightarrow V^2 \rightarrow V^1 \rightarrow V^0 \rightarrow 0$$

implies
 $\dim_{ik} V^0 - \dim_{ik} V^1 + \dim_{ik} V^2 = 0$
(b) Explain why more generally, any exact sequence
 $0 \rightarrow V^2 \rightarrow V^{n-1} \rightarrow \dots \rightarrow V^2 \rightarrow V \rightarrow 0 \rightarrow 0$
implies $\sum_{i=0}^{n} (-i)^i \dim_{ik} V^i = 0$
(c) Explain why an exact sequence of N-graded
vector spaces $V^1 = \bigoplus_{i=0}^{n} (V^i)_A$ and homogeneous
 $\prod_{i=0}^{n} V^2 \rightarrow V^1 \rightarrow 0 \rightarrow 0$ with $(V^i)_{i=0}$ for $j < i$
implies $\sum_{i=0}^{\infty} (-i)^i Hilb(V_2^i, t) = 0$
where $Hilb(V_2^i) := \sum_{d=0}^{\infty} \dim_{ik} (V_d) \cdot t^d$ as usual.

Problem 3: Let A be a Koszul algebra.
(a) Explain why exactness of Priddy's resolution
of 1k built on
$$A \otimes (A')^*$$

... $\rightarrow A \otimes (A'_2)^* \rightarrow A \otimes (A'_a)^* \rightarrow A \otimes (A'_a)^* \rightarrow 1 \ (A \rightarrow 0)^*$
implies $Hilb(A,t) \rightarrow Hilb(A'_3, -t) = 1$.
(b) Defining $a_d := dim_{Re}(A_d), a'_d := dim_{Re}(A'_d)$
show that $a_0 = a'_0 = 1$ and
 $a_1 = a'_1 = n$ (= # of $\pi_{3,-3}\pi_{3,-3} + \dots \pm a_d = 0$
that is, $\sum_{i=0}^{d} (-1)^i a_i \cdot a'_{d-i} = 0$
(c) Show $a'_2 = a'_1 - a_2 = det \begin{bmatrix} a_1 a_2 \\ 1 a_1 \end{bmatrix}$
and $a'_d = det \begin{bmatrix} a_1 a_2 \\ a_1 a_2 \\ a_2 \end{bmatrix} = det \begin{bmatrix} a_1 a_2 \\ a_1 a_2 \\ a_3 \end{bmatrix}$

Problem 4:
(a) Prove that
$$A = |k\langle x \rangle/(x^3)$$
 has no linear
graded free A-resolution of $|k$, but does have
this vice (nonlinear) periodic one:
 $A(x) \xrightarrow{[x^2]} A(x) \xrightarrow$