EXERCISE SESSION 2

 $Probability_5: \text{Let } A:= \mathbb{k} \leq x_1, -, x_n \geq 0.$ a) Show Hilb $(A,t) = \frac{1}{1-nt}$ ^b Explain why ^A is Koszul c) what is $A^!$ here, and $Hilb(A; A)$

Problem 6: Recall that the Birman-Ko-Lee dualpresentation of the braid group Bru uses the generators $\left\{ \sigma_{ij}^{\frac{q}{2}} \mid \left| \sum_{i=1}^{M-j+1} \prod_{j=n}^{j-n} \right| : \text{Eisj}^{\frac{2}{3}n} \right\}$

Explain why σ_{13} σ_{24} \neq σ_{24} σ_{13} in σ_{4} and hence why their presentation only includes commutation relations grape = 5ke on for i.j,k, 4 distinct when the arcs ij, kt 900066 are noncrossing on the circle que de la fin de la j

Problem7 The goal here is to illustrate ^a bit of the subtlety of quadratic algebras, Koszulityand Gröbner bases, even when working with principal ideals, but over exterior algebras

Consider the exterior and polynomialalgebras

$$
\bigwedge := \bigwedge_{i \in \{x_1, x_2, x_3, x_4\}} \dots
$$
\n
$$
S := [k [x_1, x_2, x_3, x_4].
$$

(a) Show
$$
Hilb(S,t) = \frac{1}{(1-t)^4}
$$

and $Hilb(\Lambda,t) = Hilb(S/(x_1^2, x_3^2, x_4^2), t)$
 $= (1+t)^4 = 1+4t+6t^2+4t^3+t^4$

Define these quadratically generated ideals:
\n
$$
J_{1} = (x_{1}x_{2}) \subset \Lambda
$$
\n
$$
J_{2} = (x_{1}x_{1}x_{2}x_{4}) \subset \Lambda
$$
\n
$$
J_{3} = (x_{1}x_{2}x_{3}x_{4}) \subset \Lambda
$$
\n
$$
J_{2} = (x_{1}x_{2}x_{3}x_{4}) \subset \Lambda
$$
\n
$$
J_{3} = (x_{1}x_{2}x_{3}x_{4}) \subset S
$$
\n
$$
J_{4} = (x_{1}x_{2}x_{3}x_{4}) \subset S
$$

 (b) Show Hilb $(S/T_1,t)$ = Hilb $(\wedge/\tau_1,t)$ = 1+4+ st^2+2t^3 $Hilb(S/T_{2},t)$ = Hilb $(\sqrt{J_{2}},t)$ = 1+4t+st² $Hilb(S/T_{3},t) = Hilb(S/T_{4},t) = \frac{1-t^{2}}{(1-t)^{4}}$ Hint for the last part: can you show, for any homogeneous polynomial f(x) of degree d'in lk[x1,-,x1], that Hild (k[x1,-xn]/(f), t) = $\frac{1-t^{q}}{1+t^{q}}$?

 $I_i = (x_1x_2, x_1^2, x_2^2, x_3^2, x_4^2) \subset S$ $J_1=(x_1x_2)$ c Λ $I_2 = (x_1x_2 + x_3x_1, x_1^2, x_2^2, x_3^2, x_4^2)$ c S $J_2 = (x_1x_1+x_3x_4)$ $\subset \bigwedge$ \mathcal{I}_{3} := (x_1x_2) c S $\mathcal{T}_{4} = \begin{pmatrix} x_1 x_2 + x_3 x_4 \\ 0 \end{pmatrix} cS$ (c) Show that the listed generators for I, I3, I4, J, ave (guadratic) Gröbner bases for those ideals, and hence $S/T_{1,}$ $S/T_{3,}$ $S/T_{4,}$, NJ , are all Korzul.

(d) Show that, regardless of the choice of
monomial ender \prec on S or Λ , the ideals I2, J2 have no guadratic Gröbner bases.

(e) Check (e.g. m Wolfram Alpha) that $\frac{1}{1-4t+5t^2}$ = 1+4 t+11 t+24 t+41 t+41 t+41 t=29 tb and explain why this shows S/T_2 , $\sqrt{J_2}$ are not Kaszul.

Problem 8:	Recall the reflection arrangements	
TypeAn-1	\n $\begin{bmatrix}\n \frac{1}{11} & 1 \leq i < j \leq n \\ \frac{1}{11} & 1 \leq i < j \leq n\n \end{bmatrix}$ \n	\n where $\frac{H_{ij}^2 = \{x_i = +x_j\}}{\{x_i = -x_j\}}$ \n
Type Bn: $\{H_{ij}^+, H_{ij}^-, 1 \leq i < j \leq n\}$ \n	\n $\begin{bmatrix}\n \frac{1}{11} & 1 & \frac{1}{11} & \$	

(b) Show
$$
B_n
$$
 is supersolved with decreasing
\n $\{H_{11}^2\} \cup \{H_{12}^2\} \cup \{H_{13}^2\}$
\n $\{H_{11}^2\} \cup \{H_{12}^2\} \cup \{H_{23}^3\}$
\n $\{H_{13}^3\}$
\n $\{H_{11}^4 \}$
\n $\{H_{11}^5 \}$
\n $\{H_{12}^6 \}$
\n $\{H_{13}^7 \}$
\n $\{H_{11}^7 \}$
\n $\{H_{11}^7 \}$
\n $\{H_{11}^7 \}$
\n $\{H_{11}^7 \}$

Problem 9:

Ca) Giren a chain complex C. (of abelian groups) $\ldots \xrightarrow{d} C_{i+1} \xrightarrow{d} C_i \xrightarrow{d} C_{i-1} \xrightarrow{d} \ldots$ so d^2 =0, that is, $m(d_{i+1})$ c ter (d_i) , Show that if one has backward maps $\therefore \stackrel{D}{\leftarrow} C_{i+1} \stackrel{D}{\leftarrow} C_i \stackrel{D}{\leftarrow} C_{i-1} \stackrel{D}{\leftarrow} \cdots$ satisfying $dD + Dd = 1_{C_i}$ (called a chain contraction or contracting homotopy), then C_{o} is exact, i.e. $im(d_{iri}) = ker(d_{i}).$

(b) For a graded lk-algebra A = $\bigoplus_{d=0}^{\infty} A d$,
recall the bar complex 13. resolving lk is

ASAWA, LAOA, LAOA, LA LA F_1 F_2 $\frac{1}{2}$

with
$$
F_i = A \otimes A_f \otimes A_f \otimes ... \otimes A_f
$$

ifactors

and
$$
d: F: \longrightarrow F:_{-1}
$$
 defined A -linearly via
d $[a_{1}[a_{2}]\cdots|a_{i}]:= a_{1}[a_{2}]\cdots|a_{i}]$
 $+ \sum_{J=1}^{i}(-1)^{j}[a_{1}]\cdots|a_{J-1}|a_{J-1}|a_{J-1}|a_{i}]$

Show that the background maps
$$
D: F: \rightarrow F_{i+1}
$$

defined [k-linearly (but not A-linearly) by
 $D(a_{0}[a_{1}|a_{2}|...|a_{i}])$:= $\int [a_{0}|a_{1}|a_{2}|...|a_{i}] \text{ if } a_{0} \in A_{+}$
 $\int a_{0} \in I_{+}A_{0}$

and hence the bar complex B is exact.

satisfy $dD + Dd = 1_{F_i}$,