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HYPERPLANE ARRANGEMENTS AND
LINEAR STRANDS IN RESOLUTIONS

IRENA PEEVA

Abstract. The cohomology ring of the complement of a central complex hy-
perplane arrangement is the well-studied Orlik-Solomon algebra. The homo-
topy group of the complement is interesting, complicated, and few results are
known about it. We study the ranks for the lower central series of such a ho-
motopy group via the linear strand of the minimal free resolution of the field
C over the Orlik-Solomon algebra.

1. Introduction

In this paper, A stands for a central hyperplane arrangement of hyperplanes
H1, . . . , Hn in Cl. The complement X = Cl\

⋃n
i=1Hi has a complicated fundamen-

tal group π1(X). Let Z = Z1 = π1(X), Z2, . . . , Zi+1 = [Zi, Z], . . . be the lower
central series and set ϕi = rank(Zi/Zi+1). Our goal is to obtain information (for-
mulas, bounds, computational algorithms) about the ranks ϕi in terms of some
invariants of the algebra H∗(X ; C); this relates the homotopy and cohomology of
X . The ranks ϕi are studied through the generating function

(1.1)
∏∞

j=1
(1− tj) ϕj .

Results of Kohno [Ko] lead to Theorem 2.6. It translates the problem of comput-
ing (1.1) from Algebraic Topology into the entirely algebraic problem of describing
the linear strand of the minimal free resolution of C over a certain algebra (which
is a special type of a quotient of an exterior algebra and is related to the Orlik-
Solomon algebra H∗(X ; C)). It also opens up the possibility to compute some
numbers ϕj by the computer algebra package MACAULAY 2 by D. Grayson and
M. Stillman.

Theorem 2.7 provides a coefficientwise upper bound for (1.1).
For the arrangement D1

3, the numbers ϕ1, ϕ2, ϕ3 were computed in [FR]; fur-
thermore, Björner and Ziegler [BZ, 4.1(1)] constructed a rooting for defining the
ideal of the Orlik-Solomon algebra. In Theorem 3.10, we show for this arrangement
that (1.1) is not equal to the Hilbert series of any standard graded algebra.

The main result obtained by Falk and Randell in [FR], which was reproved in
[SY, Theorem 5.6], is that the Lower Central Series formula (3.1) holds for any
supersolvable arrangement. In Section 4 we present a short proof, which makes
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use of the Gröbner basis theory. The effect of having a quadratic Gröbner basis is
explained in Lemma 3.6.

It was asked whether the Lower Central Series formula (3.1) can hold for a
nonsupersolvable arrangement. Further, it was expected by Shelton and Yuzvinsky
in [SY, 6.4] that the formula holds for the nonsupersolvable arrangement of the
affine plane of order 3. In Example 4.5 we disprove this. The referee noticed that
Example 4.5 resolves the remark after Corollary 3.5 in [Fa], since Example 4.5
provides a 2-determined arrangement that is not K(π, 1).

It was first noted in [SY] that Koszul algebras are useful in the study of (1.1). We
go further and introduce a new formula (3.4), which is a natural generalization of
the Lower Central Series formula. In Section 5 we give examples when (3.4) holds.
In this section we study subarrangements of Al−1. By a result of Edelman and
Reiner [ER, 3.3], a subarrangement of Al−1 is free if and only if it is supersolvable.
Using (3.4) we compute (1.1) for some nonfree subarrangements of Al−1.

In view of (3.4), it is natural to ask whether (1.1) is always equal to the Hilbert
function of some standard graded algebra. Theorem 3.10 shows that the answer is
negative.

Examples 3.9 and 4.5 are computed using the computer algebra program LIEDIM
by C. Löfwall.

2. Linear strands in resolutions

We first recall three constructions, which will be related by Theorem 2.4, proved
by Kohno. This theorem shows that the ranks in the lower central series of π1(X)
can be expressed in terms of the generating function of the holonomy algebra; on the
other hand, the holonomy algebra is nicely related to the Orlik-Solomon algebra:

Construction 2.1 (Holonomy algebra). The holonomy Lie algebra G is the
quotient of the universal Lie algebra T ′ on H1(X,C) over the ideal generated by the
image of the comultiplication H2(X,C)→ H1(X,C) ⊗H1(X,C). The enveloping
algebra U of G is called the holonomy algebra of A.

Construction 2.2 (Orlik-Solomon algebra). A set S ⊂ {1, . . . , n} is called
dependent if rank(

⋂
i∈S Hi) < |S|, where the rank is taken in the intersection lattice

LA of the arrangement. Furthermore, S is a circuit if it is dependent and has
minimal support among the dependent sets, and S is a broken circuit if there is
an Hi such that S ∪ i is a circuit and i > max(S). Let E be the exterior algebra
over C on n generators x1, . . . , xn; this is a differential algebra with differential
d acting as d(xi1 ∧ · · · ∧ xis ) =

∑s
j=1 (−1)j+1xi1 ∧ · · · ∧ x̂ij ∧ · · · ∧ xis , (here x̂ij

means that this variable is not present in the product). Let I be the ideal in
E generated by {d(circuit)}. Then A = E/I is called the Orlik-Solomon algebra
of A. It is isomorphic to H∗(X,C); cf. [OT]. The generating function P (t) =∑

dim(Hi(X,C)) ti is the Poincaré polynomial of A.
In this paper, we will also consider the algebra Q = E/〈I2〉, where I2 is the

quadratic part of the ideal I. Thus, 〈I2〉 is generated by {d(3-circuit)} and we call
Q the 3-circuit Orlik-Solomon algebra (here by a 3-circuit we mean a circuit with
three elements in its support). Then A is a quotient of Q. Another algebra, which
we will use, is Ā = A/(x1, . . . , xn)3 = E/〈 I2 + (x1, . . . , xn)3 〉 = C +A1 +A2 ; this
is an Artinian algebra of height 2.
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Construction 2.3. [cf. [Ei, 17.22]] Let T be the tensor algebra on the vector
space V = A1 = H1(X,C) generated by the variables x1, . . . , xn. Identify (V ⊗V )∗

with V ∗ ⊗ V ∗ by the rule (a⊗ b)(v ⊗ w) = a(v)b(w) for a, b ∈ V ∗, v, w ∈ V. For a
subspace P ⊂ V ⊗V , define the perpendicular space P⊥ = {a, | a ∈ V ∗⊗V ∗, a(q) =
0 for any q ∈ P }. If J is the ideal generated by P , then we denote by J⊥ the ideal
in T (V ∗) generated by P⊥. If R = T (V )/J , then we set R⊥ = T (V ∗)/J⊥.

With the above notation, let J be the ideal generated by quadrics, such that
Q = T (V )/J ; i.e.,

J = 〈 x2
i , xixj + xjxi, I2 | 1 ≤ i, j ≤ n 〉 .

It was observed in [SY, Lemma 5.1] that U = Q⊥, where U is the holonomy algebra.
For a finitely generated graded C-algebra R, we denote by HilbR(t) the gener-

ating Hilbert function
∑

i dim(Ri)ti.

Theorem 2.4 [Ko, 2.19, 2.21].∏∞

j=1
(1− tj)−ϕj =

∑
s

dim(Us) ts = HilbU (t),

where U = Q⊥ is the holonomy algebra.

Construction 2.5. Let R = E/M for some homogeneous ideal M in E and let

F : . . . Fi+1 → Fi → . . . → F1 → F0 → C

be the minimal free resolution of C overR. Furthermore, the resolution is graded by
the total monomial degree; so Fi =

⊕
j≥i Fi,j (here the first grading is homological

and the second one is monomial). The ranks bi,j = rank(Fi,j) = dim(TorRi (C,C)j)
= dim(ExtiR(C,C)j) are called the Betti numbers of C over R, and bi,i are called
linear Betti numbers. The last name comes from the fact that the complex . . . →
Fi+1,i+1 → Fi,i → . . . is indeed the linear part of the resolution F, that is,
the entries in the maps of the differential are linear forms. This linear part of F is
called the linear strand.

The generating function PRC(t, u) =
∑

s bs,p t
sup is called the Poincaré series of

C over R, and linPRC(t) =
∑

s bs,s t
s is called the linear Poincaré series of C over

R.
Applying the above construction, we get that Theorem 2.4 leads to:

Theorem 2.6.∏∞

j=1
(1− tj)−ϕj

= linPQC(t) = linPAC(t) = linPĀC(t)

=
tPĀC(t)
1 + t

+
1

1 + (1− n)t+ (dim(A2)− n)t2 + dim(A2)t3
.

The theorem allows us to study the numbers ϕj via either the linear Poincaré
series over the Orlik-Solomon algebra A (or over Q), or by the total Poincaré series
over the short Artinian algebra Ā. In the case I2 = ∅, the formula is simple:∏∞

j=1
(1− tj)ϕj =

1
1 + nt

.
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Proof. By [Ei, 17.22], the algebra Q⊥ is the subalgebra of Ext∗Q(C,C) generated by
Ext1

Q(C,C), i.e., this is
⊕

ExtiQ(C,C)i. Thus, dim(Q⊥i ) = bi,i. By Theorem 2.4,
it follows that

∏∞
j=1(1− tj)−ϕj =

∑
s bs,s t

s .
The linear strand is not affected by adding or removing generators of degree

≥ 3 from the ideal that we mod out. Thus, the linear strand is the same when we
resolve over A, or over Q, or over Ā.

For the algebra Ā, we have dim(Ā0) = 1, dim(Ā1) = n, dim(Ā2) = dim(A2),
and dim(Āi) = 0 for i ≥ 3. The fact that the Euler characteristic of F vanishes is
expressed in the formula(

1− nt+ dim(Ā2)t2
)(

linPĀC(t) − t( PĀC(t) − linPĀC(t) )
)

= 1 .

This leads to

linPĀC(t) =
tPĀC(t)
1 + t

+
1

1 + (1 − n)t+ (dim(A2)− n)t2 + dim(A2)t3
.

�

An important application of Theorem 2.6 is that it opens up the possibility to
compute ϕj ’s in concrete examples by computer. The Betti numbers bs,s could be
computed by the computer algebra package MACAULAY 2 by D. Grayson and M.
Stillman.

Theorem 2.7. Let B be the ideal in E generated by the quadratic broken circuits.
Then ∏∞

j=1
(1− tj)−ϕj � 1

HilbE/B(−t) ,

where � means coefficientwise inequality of power series.

We briefly explain the relation between B and 〈I2〉. Let G be the initial ideal
of 〈I2〉 with respect to the lexicographic order. Then there exists a flat family
connecting E/G and Q = E/〈I2〉; in particular, the two algebras have the same
Hilbert function. On the other hand, the ideal B generated by the quadratic broken
circuits equals 〈G2〉; so we have a surjection E/B → E/G. Thus, the Hilbert
function of E/B majorates the one of Q.

Proof. Let G be the initial ideal of 〈I2〉 with respect to the lexicographic order. We
will show that the following relations hold:∏∞

j=1
(1 − tj)−ϕj = linPQk (t)

� linPE/GC (t) = linPE/〈G2〉
C (t) = linPE/BC (t) =

1
HilbE/B(−t) .

The first equality is from Theorem 2.6. The second inequality follows from the
Gröbner basis theory (by a standard deformation argument; cf. [Ei, Theorem
15.17]). The third equality holds because the linear strand in the minimal free
resolution of C does not change if we remove the nonquadratic generators of G.
The fourth equality comes from the fact that the ideal B generated by the quadratic
broken circuits is 〈G2〉. The last equality holds because B is a monomial quadratic
ideal and E/B is Koszul by [Fr]. �
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3. Lower Central Series formulas

The Lower Central Series formula (or LCS formula for short) is a special formula,
which has received a lot of attention in [FR], [Ko], [SY]. It states that

(3.1)
∏∞

j=1
(1− tj)ϕj = HilbA(−t) .

It was first noted by Shelton and Yuzvinsky in [SY] (see also Theorem 2.6) that the
formula holds if and only if the algebra A is Koszul. Koszulness means that there
are only linear entries in the matrices of the maps in the minimal free resolution of C
overA, i.e., bij = 0 for i 6= j. The fact that the Euler characteristic of this resolution

vanishes shows that Koszulness is equivalent to linPAC(t) = PAC(t, 1) =
1

HilbA(−t) .

This raises the question:

Question 3.2. When is A Koszul?

Note that a necessary condition for A being Koszul is that I is generated by
quadrics. One simple sufficient condition for this to hold is the following:

Lemma 3.3. The ideal I is generated by quadrics if every circuit S with |S| ≥ 4
satisfies the following condition: there exists a number jS and S = S1∪S2, so that
S1 ∪ {jS} and S2 ∪ {jS} are circuits and S1 ∩ S2 = ∅.

Proof. Set f1 =
∧
i∈S1

xi and f2 =
∧
i∈S2

xi. Then d(f1 ∧ xjs) = d(f1) ∧ xjs −
(−1)|S1|f1 and d(xjs ∧f2) = xjs ∧d(f2)−f2. Multiplying the first equality by d(f2)
and the second by −d(f1) we get

d(f1 ∧ xjs) ∧ d(f2) = d(f1) ∧ xjs ∧ d(f2)− (−1)|S1|f1 ∧ d(f2),

−d(f1) ∧ d(xjs ∧ f2) = −d(f1) ∧ xjs ∧ d(f2) + d(f1) ∧ f2 .

Adding the above equalities, we obtain

d(f1) ∧ f2 − (−1)|S1|f1 ∧ d(f2) = d(f1 ∧ xjs) ∧ d(f2)− d(f1) ∧ d(xjs ∧ f2) ,

where the left-hand side equals d(f1 ∧ f2). Since S1 ∪ {jS} and S2 ∪ {jS} are
circuits, we conclude that the relation d(f1 ∧ f2) is generated by relations of lower
degrees. �

If I 6= 〈I2〉, then it is natural to study Q. If Q is Koszul, then a formula similar
to the LCS holds:

(3.4)
∏∞

j=1
(1 − tj)ϕj = HilbQ(−t).

We call this a Generalized Lower Central Series formula (or GLCS formula for
short). This formula holds if and only if the algebra Q is Koszul (see Theorem 2.6).
Thus, a natural generalization of the above question is:

Question 3.5. When is Q Koszul?

The most efficient technique in commutative algebra for answering questions
such as 3.2 and 3.5 is to show that the algebra possesses a quadratic Gröbner basis.
Gröbner basis theory works over exterior algebras [AHH]. We exploit the well-
known property that a quadratic Gröbner basis implies Koszulness. This property
can be proved by a standard deformation argument; cf. [Ei, Ch.15]. In our case,
the property implies that:
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Lemma 3.6. If I has a quadratic Gröbner basis, then the Lower Central Series
formula (3.1) holds. If 〈I2〉 has a quadratic Gröbner basis, then the formula (3.4)
holds.

Next we give a simple example, which clearly demonstrates that s-circuits for
s ≥ 4 are irrelevant to our goals and that formula (3.4) and Lemma 3.6 could be
very useful:

Example 3.7. Consider the graphic arrangement x = y, y = z, z = u, u = v, z =
v, u = x . The only 3-circuit is {3, 4, 5}. Thus, in this case, 〈I2〉 is generated by the
quadric x3x4 − x3x5 + x4x5. Surely, this quadric is a Gröbner basis. Therefore, by
Lemma 3.6, we have that the formula (3.4) holds:∏∞

j=1
(1− tj)ϕj = HilbQ(−t) = 1− 6t+ 14t2 − 16t3 + 9t4 − 2t5.

Theorem 4.3 shows when I has a quadratic Gröbner basis. The next question is
open:

Question 3.8. When does Q have a quadratic Gröbner basis?

We remark that the behavior of the linear strand could be very complex and
formulas of the type (3.1) and (3.4) (even if we change the algebra appearing in
the formula) are not sufficient to express the possible linear Poincaré series. This
is illustrated next.

Example 3.9. Consider the arrangement z = 0, z = x, z = −x, y = z, y = −z, x =
y, x = −y in C3 which is free. This is D1

3 (non-Fano matroid). The Poincaré
polynomial of A is (1+t)(1+3t)2. In this case also [BZ, 4.1(1)] provides a quadratic
rooting for I. However, the ideal I is not generated by quadratic forms. In this
case, the behavior of the linear strand is quite complex. The 3-circuits are

{1, 2, 3}, {1, 4, 5}, {2, 4, 6}, {2, 5, 7}, {3, 5, 6}, {3, 4, 7}.
Computing by the computer algebra program LIEDIM, we find the first Betti num-
bers bs,s for 0 ≤ s ≤ 5: they are 1, 7, 34, 143, 560, 2108, 7753. By Theorem 2.6,∏∞

j=1
(1− tj)−ϕj = 1 + 7t+ 34t2 + 143t3 + 560t4 + 2108t5 + 7753t6 +O(t7);

so we can compute the first numbers ϕj . We remark that ϕ1, ϕ2, ϕ3 are computed
in [FR].

Theorem 3.10. For D1
3 there does not exist a standard graded algebra N such that∏∞

j=1
(1− tj)ϕj = HilbN (−t) .

Proof. Assume the opposite. Write

HilbN (−t) = 1− 7t+ αt2 − βt3 + γt4 − µt5 + ηt6 + f,

where α, β, γ, µ, η are nonnegative integers and f ∈ t7(N[[t]]). Using the first six
Betti numbers from Example 3.9, we obtain the relation

1 + 7t+ 34t2 + 143t3 + 560t4 + 2108t5 + 7753t6 +O(t7)

=
1

1− 7t+ αt2 − βt3 + γt4 − µt5 + ηt6 − f(−t) ,

which implies α = 15, β = 10, γ = 1, µ = 0 and η = −1. This is a contradiction. �
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4. Supersolvable hyperplane arrangements

Theorem 4.1 (cf. [Bj]). The broken circuits generate the initial ideal of I with
respect to the lexicographic order x1 � x2 � · · · � xn.

Proposition 4.2. Let ≺ be any monomial order with x1 � x2 � · · · � xn and let
≺lex be the lexicographic order, which orders the variables in the same way. Then
in≺(I) = in≺lex(I).

Proof. Let p be a circuit. Then any two terms in d(p) have the forms q∧xi and q∧xj .
Therefore, q∧xi ≺ q∧xj exactly when q∧xi≺lex q∧xj . Hence in≺(p) = in≺lex(p).
But by Theorem 4.1, the set {d(circuit)} is a Gröbner basis with respect to the
lexicographic order; so we can apply [Ei, 15.16]. �

Theorem 4.3. There exists a quadratic Gröbner basis for I if and only if A is
supersolvable.

Proof. By Proposition 4.2, the ideal I possesses a quadratic Gröbner basis exactly
when there exists a quadratic set of minimal broken circuits. By [BZ] this is equiv-
alent to A being supersolvable. �

Corollary 4.4. If A is supersolvable, then the LCS formula (3.1) holds.

Proof. Apply Lemma 3.6 and Theorem 4.3. �

It is an open question whether the LCS formula (3.1) can hold for a nonsuper-
solvable arrangement. The following example is from [Zi]; it was expected in [SY,
Example 6.4] that (3.1) holds in this case.

Example 4.5. The Lower Central Series formula (3.1) does not hold for the non-
supersolvable arrangement corresponding to the affine plane of order 3.

Proof. The 3-circuits are

{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {1, 4, 7}, {2, 5, 8}, {3, 6, 9},

{1, 5, 9}, {2, 6, 7}, {3, 4, 8}, {1, 6, 8}, {2, 4, 9}, {3, 5, 7}.
The ideal I is generated by quadratic forms (see [SY, Example 6.4]). The matroid
is very symmetric, but not supersolvable. Therefore, by Theorem 4.3, there exists
no quadratic Gröbner basis of I. Björner and Ziegler constructed in [BZ, 4.1.(4)] a
quadratic rooting for I. Equivalently, they constructed the monomial ideal

M = 〈x1x3, x1x7, x1x9, x2x4, x2x6, x2x8, x3x7, x3x9, x4x6, x4x8, x7x9, x6x8〉,
for which the Hilbert function of E/M is the same as for A. However, the ideal
M does not come as an initial ideal and no deformation can be applied using it.
Computing by LIEDIM we obtain the Betti numbers b1,1 = 9, b2,2 = 57, b3,3 =
313, b4,4 = 1593, which is as if it were Koszul; but then b4,5 = 3. Thus, A is not
Koszul, and equivalently, the LCS formula (3.1) does not hold. �

5. Quadratic Gröbner basis and graphic arrangements

Next we present a technical local condition, which guarantees that there exists
a quadratic Gröbner basis. After that we will apply this condition to graphic
arrangements.
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Construction 5.1. Let x1, . . . , x6 be variables in E corresponding to hyperplanes
in A. Let (i, j, p, q, r, s) be a permutation of (1, 2, 3, 4, 5, 6); we denote by ≺ijpqrs a
lexicographic order in E for which the variables x1, . . . , x6 are ordered so that x1 is
ith, x2 is jth, etc.; for example, ≺315426 means that x2 � x5 � x1 � x4 � x3 � x6.
We say that a lexicographic order is 135, 234-quadratic if either

(1) {1, 3, 5} or {2, 3, 4} is not a circuit; or
(2) x3 is smaller than x1 and x5; or
(3) x3 is smaller than x2 and x4,

or else there exists a hyperplane H6, such that {1, 2, 6} and {4, 5, 6} are
circuits and one of the following conditions is satisfied:

(4) the variables x1, x2, x3 are bigger than the variables x4, x5, x6;
(5) the order is ≺412356;
(6) the order is ≺412365;
(7) the order is ≺124563;
(8) the order is ≺124653;
(9) the order is ≺241536;

(10) the order is ≺241635;
(11) the order is ≺315462.

Lemma 5.2. Let ≺ be a lexicographic order on E such that it is ipr, jpq-quadratic
for any choice of different indices i, j, p, q, r. Then Q has a quadratic Gröbner basis.

Proof. We want to show that the elements {d(3-circuit)} form a Gröbner basis.
Consider two elements of this form which form a Gröbner pair, i.e., whose initial
terms have a common variable. After renumbering, we may assume that these
elements are d(x1x3x5) and d(x2x3x4). In cases (1), (2), and (3) in Construc-
tion 5.1, we do not get a Gröbner pair. In the rest of the cases, direct compu-
tation using Buchberger’s criterion (or computing by MACAULAY 2) shows that
d(x1x3x5), d(x2x3x4), d(x1x2x6), and d(x4x5x6) form a quadratic Gröbner basis
for the ideal that they generate. �

Next, we will apply Lemma 5.2 to graphic arrangements. We assume that all
graphs are simple, that is, there could be only a single edge between any two vertices
and there are no loops. Recall that a graph G defines a graphic arrangement AG
in the following way: Let the vertices of the graph be labeled by 1, . . . , l. Denote
by u1, . . . , ul the coordinates in Cl. Then the hyperplane ui = uj is in AG exactly
when there is an edge between i and j in G. Graphic arrangements are exactly the
subarrangements of Al−1.

Theorem 5.3. Let AG be the graphic arrangement corresponding to a graph G. Let
the vertices of G admit a labeling with {1, . . . , l} for which the following condition
is satisfied: If {i, j} is a common edge of two triangles {i, j, p} and {i, j, q}, and
{i, j} contains the biggest vertex for each of the triangles, then G also contains the
edge {p, q}. Then formula (3.4) holds.

Proof. If {i, j} is an edge in G, then denote by xij the variable in E corresponding
to the hyperplane ui = uj. Then we define a lexicographic order on E by

xij ≺ xpq if {p, q} ≺lex {i, j},
where we compare the two sets {i, j}, {p, q} lexicographically. For example, x24 �
x15. This order is well known and exploited. We will apply Lemma 5.2. Consider
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an edge {i, j}. Three cases are possible: If {i, j} is not shared by two triangles,
then case (1) from Construction 5.1 holds. Let {i, j} be the common edge of two
triangles. If {i, j} does not contain the biggest vertex from each triangle, then case
(2) or (3) from Construction 5.1 holds. Let i be the biggest vertex in each of the
triangles. Then {p, q} is an edge by assumption. Also, the variables xij , xip, xiq
are bigger than the variables xpq, xpj , xqj . Thus, case (4) from Construction 5.1
holds. By Lemma 5.2, we have that Q has a quadratic Gröbner basis. Now apply
Lemma 3.6. �

Note that the above criterion involves only the triangles in the graph, while the
other circuits are irrelevant. Also, if I is generated by quadratic elements and the
condition in Theorem 5.3 is satisfied, then I has a quadratic Gröbner basis; so the
arrangement is supersolvable.

Example 5.4. By Theorem 5.3, it follows that formula (3.4) holds for the graphic
arrangement of the graph with seven vertices and edges

{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}, {3, 5},
{3, 6}, {3, 7}, {4, 5}, {5, 6}, {5, 7}, {6, 7}.

Thus, we get∏∞

j=1
(1− tj)ϕj = HilbQ(−t) = 1− 12t+ 59t2 − 152t3 + 216t4 − 160t5 + 48t6.

Note that by [ER, Theorem 3.3], this arrangement is not free since it is not super-
solvable.
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