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I. Introduction

Let Λ be a finitely generated submonoid ofN
d andk[Λ] its monoid algebra over

a field k. If A = {α1, . . . , αn} is the minimal generating set ofΛ, then

k[Λ] ∼= k[x1, . . . , xn]/IΛ,

whereIΛ is thetoric ideal generated by all binomialsxi1 · · · xir − xj1 · · · xjs corre-
sponding to additive relationsαi1 +. . .+αir = αj1 +. . .+αjs . This ideal is the kernel
of the mapk[x1, . . . , xn] → k[z1, . . . , zd] sendingxi to zαi = zαi 1

1 zαi 2
2 · · · zαid

d .
We are interested in the homology of the residue fieldk as a module over

k[Λ]. It can be computed by the minimal free resolution ofk which is graded
by the monoidΛ. The generating function of the homology is themultigraded
Poincaŕe series

(1.1) Pk[Λ]
k (t , z) =

∑
λ∈Λ

∑
i

dimk

(
Tork[Λ]

i (k, k)λ
)

t i zλ.

In [An] Anick constructed a local noetherian ring with transcendental Poincaré
series. It is an open question whetherPk[Λ]

k (t , z) is rational for a monoid algebra
k[Λ].

Computing the Betti numbers of a finite minimal free resolution by simplicial
complexes has a long tradition. For infinite resolutions this idea has been explored
very little: Laudal and Sletsjoe [LS, 1.3] expressed theBetti numbersover k[Λ]
as

(1.2)
dimk Tork[Λ]

i (k, k)λ = dimk H̃i −2(∆(λ); k)
for all λ ∈ Λ and i = 0, 1, 2, . . .
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Here∆(λ) denotes the simplicial complex of chains in the open interval (0, λ) in
the partial order onΛ defined byα ≤Λ β if β−α ∈ Λ. The simplicial complexes
∆(λ) are generally not pure, unlessA happens to lie on an affine hyperplane in
R

d.
In this paper we introduce two ideas for computing the homology ofk:

– We write the commutative ringk[Λ] as a quotient of the free associative
algebrak〈y1, . . . , yn〉 on n indeterminates. Let

k[Λ] ∼= k〈y1, . . . , yn〉/JΛ
∼= k[x1, . . . , xn]/IΛ ,

whereJΛ is the kernel of the mapk〈y1, . . . , yn〉 → k[z1, . . . , zd] sendingyi to
zαi . The set of all monomials ink〈y1, . . . , yn〉 which are mapped ontozλ is
called thenon-commutative fiber ofλ. The monomials in the non-commutative
fiber of λ are in one-to-one correspondence with the facets (= maximal faces)
in ∆(λ).

– In Theorem 3.5 we relatenon-commutative Gröbner basis(see [Mo]) to a
non-pure shellingfor all complexes∆(λ). By [BW] the existence of such a
shelling implies that∆(λ) is homotopy equivalent to a wedge of spheres of
various dimensions.

Theorem 3.5 gives ashelling of the monoid, that is a uniform rule for simul-
taneously shelling all finite intervals ofΛ which satisfies the following natural
condition:

if F ′ is a facet precedingF in the shelling of∆(λ) then yi F ′ comes
beforeyi F and F ′yi comes beforeFyi in the shelling of∆(λ + αi ).

Say thatΛ supports a posetif there is a term order≺ on k[x1, . . . , xn] and a
partial orderP on {x1, . . . , xn} such that the initial idealin≺(IΛ) is the Stanley-
Reisner ideal ofP. This means thatin≺(IΛ) is generated by the productsxi xj ,
wherexi , xj are incomparable inP. The resulting reduced Gröbner basis ofIΛ
consists of elements of the formxi xj − xν1xν2 · · · xνr . It is shown in Sect. 4
that many monoids arising in geometry do support a poset. For instance, all
affine normal toric surfaces and many projective toric surfaces have this prop-
erty. Higher-dimensional monoid algebras supporting posets include Veronese
rings, Segre rings, and toric algebras with straightening law. WhenΛ supports a
poset we obtain a quadratic non-commutative Gröbner bases forJΛ, which via
Theorem 3.5 shells the monoid. This leads to a rational formula forPk[Λ]

k (t , z)
in terms of a Hilbert function. The formula is well known to hold in the special
case whenk[Λ] is graded in the sense of Proposition 2.1. The rationality of the
Poincaŕe series for normal toric surfaces was first proved in [LS]; our shellings
give explicit formulas.

II. The bar complex and normal toric surfaces

Our point of departure in this project was to understand the articles of Laudal
[Lau] and Laudal-Sletsjoe [LS], in which the formula (1.2) was derived and used
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to prove rationality of the Poincaré series for normal affine toric surfaces. We
start out by giving a short proof of the formula (1.2):

Consider thebar resolutionB of k over k[Λ]; see [Ma, Ch. 10,§ 2]. This
is an infinite resolution which is far from being minimal. Thei -term Bi in B is
the freek[Λ]-module with basis (Λ+)i , the set of orderedi -tuples of non-zero
elements ofΛ. We compute the Betti numbers dimk Tork[Λ]

∗ (k, k)λ by tensoring
the bar complexB with k and then taking homology. The tensored bar complex
looks like

(2.1) B ⊗ k : . . . −→ Bi ⊗ k
di ⊗k−→ Bi −1 ⊗ k −→ . . . −→ B0 ⊗ k = k

whereBi ⊗ k is thek-vector space with basis (Λ+)i . Write the basis elements in
the form [λ1|λ2| · · · |λi −1|λi ] with λj ∈ Λ+. The differential acts by the rule

(2.2) (di ⊗ k)[λ1| · · · |λi ] =
∑

1≤j ≤i −1
(−1)j · [λ1| · · · |λj + λj +1| · · · |λi ].

If i = 1 then this means (d1 ⊗ k)[λ] = 0 for any λ ∈ Λ+. The differential
(2.2) preserves the sumλ = λ1 + · · · + λi of the entries in each bracket, that is,
the complex (2.1) is the direct sum of its finite-dimensional graded components
(B ⊗ k)λ. If we identify [λ1|λ2| · · · |λi ] with the chainλ1 ≤ λ1 + λ2 ≤ · · · ≤
λ1 + · · ·+λi −1 in the open interval (0, λ) of Λ, then the differential (2.2) becomes
precisely the boundary map in the simplicial complex∆(λ) of chains in (0, λ).
We conclude that the reduced homology of∆(λ) in dimensioni − 2 equals the
i -th homology of (B ⊗ k)λ. The latter is thek-vector space Tork[Λ]

i (k, k)λ. This
completes our proof of (1.2). ut

The following class of monoids corresponds to projective toric varieties.

Proposition 2.1. For a submonoidΛ of N
d the following conditions are equiva-

lent:

(1) The ideal IΛ is homogeneous with respect to the usual grading deg(xi ) = 1.
(2) The monoid algebra k[Λ] can be graded by setting deg(xi ) = 1.
(3) The minimal generators ofΛ lie on a common affine hyperplane inRd.
(4) The simplicial complex∆(λ) is pure (= all facets have the same dimension)

for all λ ∈ Λ.

We call a monoid algebragraded if it satisfies the equivalent conditions in
Proposition 2.1. An interesting class of graded monoid algebras are those for
which the residue field has a linear resolution, that is, all the entries in the maps
of the minimal free resolution are linear. Such an algebra is called aKoszul
algebra.

Corollary 2.2. A graded monoid algebra k[Λ] is Koszul if and only if the sim-
plicial complex∆(λ) is Cohen-Macaulay for everyλ ∈ Λ.

Proof. Being Koszul means Tork[Λ]
i (k, k)λ = 0 unlessi equals the degree ofλ.

By (1.2), k[Λ] is Koszul if and only if H̃i (∆λ, k) = 0 for i 6= deg(λ) − 2 for
everyλ ∈ Λ.
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On the other hand: A finite graded posetP is Cohen-Macaulay overk ex-
actly when for each open interval (µ1, µ2) in P the homologyH̃i (∆((µ1, µ2)), k)
vanishes except in the top degree. Now consider the poset (0, λ) in Λ: any open
subinterval (µ1, µ2) can be written asµ1 + (0, µ2 − µ1), which is topologically
the same as (0, µ2 − µ1). Therefore, (0, λ) is Cohen-Macaulay for everyλ ∈ Λ
if and only if H̃i (∆(λ), k) = 0 for i 6= deg(λ) − 2 for everyλ ∈ Λ. ut

All the graded monoids appearing in Sect. 4 have shellable complexes∆(λ)
and are hence Koszul since pure shellable complexes are Cohen-Macaulay (see
e.g. [BW, Cor 12.6]). However, the results in this paper are not restricted to the
graded case. They are even more interesting for non-graded monoids.

Example 2.3.If IΛ has a quadratic Gröbner basis thenk[Λ] is Koszul. So far,
there is a single example known when the idealIΛ is generated by quadratic
forms, but has no quadratic Gröbner basis: We constructed the ideal

IΛ = 〈 i 2 − ah, hi − ag, h2 − gi , fi − bg, f 2 − eg, eh− cg,
ef − dg, e2 − df , ci − ae, ch − ei, cf − dh, c2 − bd,
bh − af , bf − ei, be− di , bc − ad, b2 − ac〉 .

This is the defining ideal for the monoidΛ ∈ N3 generated by

{ (3, 0, 0), (2, 1, 0), (1, 2, 0), (0, 3, 0), (0, 2, 1), (0, 1, 2), (0, 0, 3), (1, 0, 2), (2, 0, 1) } .

This is a very hard example to be studied despite that it looks so similar to
the cubic Veronese; the monoid for the cubic Veronese isΛ ∪ (1, 1, 1) ∪ (2, 2, 2)
which is Koszul. The idealIΛ has no quadratic Gröbner basis; we verified this by
computer using MACAULAY and a program written by Alyson Reeves which
screens all possible Gröbner bases. The first eleven steps in the minimal free
resolution ofk are linear; this was verified by computer by Jan-Erik Roos, who
computed the Hilbert function of the non-commutative cohomology algebra using
the program BERGMAN written by J. Backelin. We remark that since the Betti
numbers grow exponentially, we could not compute by MACAULAY more than
eight steps of the minimal free resolution ofk. It is an open question whether
k[Λ] is Koszul.

We close this section with a preview for the case of a 2-dimensional normal
submonoidΛ of N

2, studied in [LS]. Order the unique set of minimal generators
α1, . . . , αn of Λ counter-clockwise so that

(2.3) det(αi , αi +1) = 1 for i = 1, 2, . . . , n − 1.

Let ≺ be the purely lexicographic term order onk[x1, . . . , xn]. Then the reduced
Gröbner basis ofIΛ with respect to≺ consists of

(n−1
2

)
binomials xi xj − xir

r xir +1
r +1

where 1≤ i < r < j < n. The initial ideal defined by this term order equals

(2.4) in≺(IΛ) = 〈 xi xj : 1 ≤ i < j − 1 ≤ n − 1〉.
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The key observation is thatin≺(IΛ) is the Stanley-Reisner ideal for a posetP
on {x1, x2, . . . , xn}. Namely,P is the “zig-zag poset” having covering relations
xi <P xi +1 if i is odd andxi >P xi +1 if i is even.

Consider the non-commutative polynomial ringk〈y1, . . . , yn〉, and reorder its
variables according to any linear extension ofP, say,

(2.5) y1 < y3 < y5 < · · · < y2 < y4 < y6 < · · · .
Let < denote the lexicographic order on monomials ink〈y1, . . . , yn〉 induced by
(2.5). Define a term order<· on k〈y1, . . . , yn〉 by setting yi1 · · · yir <·yj1 · · · yjs if
xi1 · · · xir ≺ xj1 · · · xjs or if (xi1 · · · xir = xj1 · · · xjs) and (yi1 · · · yir < yj1 · · · yjs).
This defines a linear ordering on the facets of∆(λ) for each λ ∈ Λ. We
shall see that this ordering defines a (non-pure) shelling of∆(λ) and hence
determines the homology of∆(λ) in the most explicit manner. The algebraic
property responsible for our shelling is that (2.4) lifts to a quadratic initial
ideal of the non-commutative idealJΛ. More precisely,in<·(JΛ) is generated
by { yi yj : |i − j | ≥ 2 or j odd }.

Example 2.4.In Theorems 3.8 and 5.1 we shall derive formulas for the Poincaré
series ofk[Λ]. These results are well-known whenΛ is graded, since in this case
k[Λ] is a Koszul algebra and the complexes∆(λ) are Cohen-Macaulay. How-
ever even for affine toric surfaces the complexes∆(λ) generally have homology
in more than one dimension. (The appearance of homology in more than one
dimension is an obstacle to using the Euler characteristic of the minimal free
resolution in order to compute the Poincaré series; see also Remark 3.10).

We present an example: Letn = 4 and Λ the monoid generated by
(1, 0), (1, 1), (2, 3), (5, 8). The non-commutative Gröbner basis forJΛ constructed
above equals

(2.6)
y1y3 → y2y2y2, y3y1 → y2y2y2, y1y4 → y3y3y2y2, y4y1 → y3y3y2y2,
y2y4 → y3y3y3, y4y2 → y3y3y3, y2y1 → y1y2, y2y3 → y3y2, y4y3 → y3y4.

The smallest fiber with homology in two different dimensions appears forλ =
(8, 9). Here∆(λ) has 89 facets of dimensions ranging from 6 to 3. Starting with
the unique standard monomial, the 89 facets are ordered by the term order<· as
follows:

y3y2y2y2y2y2y2, y2y3y2y2y2y2y2, y2y2y3y2y2y2y2, . . . , y2y2y2y2y2y2y3,
y1y3y3y2y2y2, y1y3y2y3y2y2, y1y3y2y2y3y2, . . . , y2y2y2y3y3y1,
y1y1y3y3y3, y1y3y1y3y3, . . . , y3y1y3y1y3, . . . , y3y3y3y1y1,

y1y1y2y4, y1y2y1y4, . . . , y1y4y2y1, . . . , y2y1y4y1, . . . , y4y1y2y1, y4y2y1y1.

Every monomial in this list (except the first one) can be reduced to an earlier
monomial via (2.6) by replacing a quadratic factor. Such an ordering is a shelling.
Precisely three monomials in this list have the property that all their quadratic
factors lie in in<·(JΛ). They are the three underlined monomials. Corollary 3.7
implies that∆(λ) is homotopy equivalent to the wedge of spheresS

3 ∨ S
2 ∨ S

2.
Theorem 3.8 gives the following formula for the Poincaré series ofΛ:
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Pk[Λ]
k (t , z1, z2) =

(1 + tz1)(1 + tz1z2)(1 + tz2
1 z3

2 )(1 + tz5
1 z8

2 )

1 − t2z3
1 z3

2 − t2z6
1 z8

2 − t2z6
1 z9

2 − t3z8
1 z11

2 − t3z7
1 z9

2

The coefficient ofzλ1
1 zλ2

2 in this series equalst2 times the Poincaré polynomial
of the simplicial complex∆(λ). In particular, the coefficient ofz8

1 z9
2 is 2t4 + t5.

III. Non-commutative Gr öbner bases and non-pure shellings

A monomial idealM ⊂ k[x1, . . . , xn] is said to bequasi-posetif M is generated
by quadrics and the following condition holds: Ifxi xj ∈ M and i < l < j , then
xl xi ∈ M or xl xj ∈ M . This choice of nomenclature is natural:

Lemma 3.1.A simplicial complex is the chain complex of a poset if and only if its
Stanley-Reisner ideal is quasi-poset, after relabeling the variables if necessary.

Proof. For any square-free quadratic monomial idealM we can define a binary
relation P on {x1, . . . , xn} by settingxi <P xj wheneveri < j and xi xj 6∈ M .
The relationP is transitive if and only ifM is quasi-poset. Moreover, ifM is the
Stanley-Reisner ideal of a posetQ andx1 < x2 < . . . < xn is a linear extension
of Q thenP = Q. �

We conclude that a quasi-poset monomial ideal is poset if and only if it is
square-free. Naturally, there are many quasi-poset ideals which are not square-
free. For instance, every quadratically generated Borel-fixed ideal is quasi-poset.

Let Λ be a submonoid ofNd with n minimal generators. We say thatΛ is
quasi-posetif there exists a term order≺ on k[x1, . . . , xn] such that the initial
ideal in≺(IΛ) is quasi-poset. Assuming that this holds, we extend the term order
≺ to a term order<· on the non-commutative polynomial ringk〈y1, . . . , yn〉 as
follows:

yi1yi2 · · · yir <·yj1yj2 · · · yjs : ⇐⇒ xi1xi2 · · · xir ≺ xj1xj2 · · · xjs

or (xi1 · · · xir = xj1 · · · xjs andyi1 · · · yir is beforeyj1 · · · yjr lexicographically).

We shall prove that the non-commutative idealJΛ has a quadratic Gröbner basis.

Theorem 3.2.LetΛ be a quasi-poset monoid and≺ a term order such that in≺(IΛ)
is quasi-poset. If<· is the induced non-commutative term order, then

in<·(JΛ) = 〈 { yi yj | j < i } ∪ { yi yj | i ≤ j and xi xj ∈ in≺(IΛ)} 〉.

Proof. The isomorphismk〈y1, . . . , yn〉/JΛ
∼= k[x1, . . . , xn]/IΛ and our choice of

term order<· imply that a monomialyi1yi2 · · · yir is not in in<·(JΛ) if and only if

(3.1) i1 ≤ i2 ≤ · · · ≤ ir andxi1xi2 · · · xir 6∈ in≺(IΛ).

Sincein≺(IΛ) is quasi-poset, the condition (3.1) is equivalent to
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(3.2) i1 ≤ i2 ≤ · · · ≤ ir and{xi1xi2, xi2xi3, . . . , xir −1xir } ∩ in≺(IΛ) = ∅.

The condition (3.2) means thatyi1yi2 · · · yir is not in the ideal on the right hand
side of the equation asserted in Theorem 3.2.�

Remark 3.3.Gröbner bases in non-commutative rings are usually infinite sets, and
Theorem 3.2 is more delicate than it may appear. Consider the monoid generated
by α1 = (2, 0), α2 = (1, 1), α3 = (0, 2) ∈ N

2. Its toric ideal isIΛ = 〈x1x3 − x2
2 〉.

Let ≺ be any term order within≺(IΛ) = 〈x1x3〉, and let<· be the induced term
order onk〈y1, y2, y3〉. Then in<·(JΛ) is minimally generated by the infinite set
{y3y1, y2y1, y3y2} ∪ {y1ym

2 y3 : m ≥ 0}. Thus, even in this trivial example we
get an infinite Gr̈obner basis forJΛ unless we order the variables in a special
way. ut

Our main goal in this section is to produce a shelling for the finite intervals
∆(λ) of a quasi-poset monoidΛ. We recall the definition ofnon-pure shellingdue
to Björner and Wachs [BW]: A linear ordering< on the facets of any simplicial
complex∆ is a shelling orderif the following property holds:

For any two facetsF ′ < F there exists a third facetG < F such that
F ′ ∩ F ⊆ G ∩ F and G ∩ F has codimension 1 inF .

The topological significance of this condition is that∆ can be “built up” from
its facets in the order< while maintaining tight control of the homotopy type at
each stage. A facetF of ∆ is calledfully attachedif every boundary face ofF
(or equivalently every codimension 1 boundary face) is contained in some earlier
facet.

Theorem 3.4 [BW, Theorems 3.4 and 4.1]. Let < be a shelling order on the
facets of a simplicial complex∆. Then∆ is homotopy equivalent to a wedge of
spheres ∨

F

S
dim(F )

where F runs over all fully attached facets of∆.

We now return to our algebraic discussion regarding integer monoidsΛ.

Theorem 3.5.LetΛ be a submonoid ofNd with n generators and let<· be any term
order on the free associative algebra k〈y1, . . . , yn〉. The following are equivalent:

(1) The initial ideal in<·(JΛ) is generated by quadratic monomials.
(2) For everyλ ∈ Λ the order<· on the non-commutative fiber ofλ (starting with

the standard monomial) gives a shelling order on the facets of∆(λ).

Proof. We identify the facets of∆(λ) with the monomials in the non-commutative
fiber of λ ∈ Λ. Two facetsF andG intersect in a codimension 1 subface ofF if
and only if there exist two monomialsE, H and a binomialyi yj −ys1 · · · ysr ∈ JΛ
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such thatF = Eyi yj H andG = Eys1 · · · ysr H . The facetG comes beforeF in the
proposed shelling order if and only ifyi yj is the<·-initial term of yi yj −ys1 · · · ysr .

(2) implies (1): Let F be a non-standard monomial. Pick any earlier monomial
F ′<·F in the same fiber. In the given shelling there exists a monomialG<·F such
thatG ∩F is a codimension 1 subface ofF . As discussed above, this means that
F is divided by some quadratic monomialyi yj in in<·(JΛ).

(1) implies (2): Let F ′<·F be any two facets of∆(λ). Factor these monomials

F ′ = F ′
1F ′

2 · · · F ′
l andF = F1F2 · · · Fl

whereFi = F ′
i moduloJΛ. SinceF<·F ′, there must be somei for which Fi <·F ′

i .
Hence it suffices to assumeF = Fi , F ′ = F ′

i and to prove the following:

If F ′, F are two facets of∆(λ) with no partial products equalandF ′<·F ,
then there existsG<·F with G ∩ F a codimension 1 subface ofF .

If F ′<·F then F ∈ in<·(JΛ). Sincein<·(JΛ) is quadratic, some generatoryi yj of
in<·(JΛ) dividesF . Write F = Eyi yj H and choose a binomialyi yj −ys1 · · · ysr ∈ JΛ

with initial term yi yj . The facetG = Eys1 · · · ysr H satisfies the requirement. �

Combining Theorems 3.2, 3.4 and 3.5 we get the following result.

Corollary 3.6. Let Λ be a quasi-poset monoid. Then, for allλ ∈ Λ, the simplicial
complex∆(λ) is shellable. In particular, the Betti numbers of k over the monoid
algebra k[Λ] do not depend on the characteristic of k .

We next compute the Poincaré series ofk[Λ]. Consider a non-commutative
monomialm = yi1yi2 · · · yir of length r and degree λ = αi1 + αi2 + · · · + αir . It
corresponds to an (r − 2)-dimensional facet in∆(λ). This facet is fully attached
in the shelling order specified in Theorem 3.5 if and only ifyij yij +1 ∈ in<·(IΛ)
for j = 1, 2 . . . , r − 1. We therefore call a monomialm in k〈y1, . . . , yn〉 fully
attachedif each quadratic factor ofm lies in in<·(JΛ). Theorems 3.4 and 3.5
imply the following result.

Corollary 3.7. LetΛ be a quasi-poset monoid andλ ∈ Λ. Then∆(λ) is homotopy
equivalent to the wedge of spheres

∨
m

S
length(m)−2

where m runs over all fully attached non-commutative monomials of degreeλ.

Theorem 3.8.TheΛ-graded Poincaŕe series (1.1) of k over a quasi-poset monoid
algebra k[Λ] ∼= k[x1, . . . , xn]/IΛ coincides with theΛ-graded Poincaŕe series of
k over k[x1, . . . , xn]/in≺(IΛ), and equals the inverted Hilbert series

(3.3)
1[

Hilb(k[x1, . . . , xn]/in≺(IΛ); x)
]

xi 7→−tzαi

.
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Proof. The algebraR = k[x1, . . . , xn]/in≺(IΛ) is a Koszul algebra because
in≺(IΛ) is generated by quadratic monomials. Using Corollary 2.2 and Remark
3.10 below, this implies that the Poincaré series ofR equals the inverted Hilbert
series (3.3).

On the other hand, Fröberg [Fr] has shown that the non-commutative algebra

(3.4) R〈y1, . . . , yn〉/〈y2
l , yi yj + yj yi 〉x2

l ,xi xj 6∈in≺(IΛ)

carries the structure of a multigraded minimal free resolution ofk over R, where
a monomialm = yi1 · · · yir has homological degreer . The quadratic generators of
the presentation ideal in (3.4) form a Gröbner basis with respect to the term order
<·. To see this, form critical pairs and note that they are trivial by the quasi-poset
hypothesis. We conclude that (3.4) is isomorphic as a multigradedR-module to

(3.5) R〈y1, . . . , yn〉/〈y2
l , yi yj 〉y2

l ,yi yj 6∈in<·(JΛ)

The set of fully attached monomials is a free basis for (3.5) as a multigraded
R-module, and therefore the Poincaré series ofk over R equals

∑
m fully attached

zdeg(m) · t length(m).

This series equals the Poincaré series ofk over k[Λ] by Corollary 3.7 and (1.2).
�

As an application we compute the total Betti numbers for normal toric sur-
faces; this is an improvement of Corollary 2.20 in [LS]

Theorem 3.9.Let Λ be a normal2-dimensional monoid with n generators. Then

dimk Tork[Λ]
i (k, k) = (n − 2)i −2 · (n − 1)2 for i ≥ 2.

Proof. By Theorem 3.8, the (ungraded) Poincaré series ofk[Λ] equals

(3.6)
∞∑
i =0

(
dimk Tork[Λ]

i (k, k)
)

· t i =
1[

Hilb(k[x1, . . ., xn]/in≺(IΛ); x)
]

xi 7→−t
.

Using the fact thatin≺(IΛ) is the Stanley-Reisner ideal of a shellable 1-
dimensional ball withn − 1 facets, we evaluate the right hand side of (3.6)
as follows:

(1 + t)2

1 − (n − 2) · t
= 1 + n · t +

∞∑
i =2

(n − 2)i −2 · (n − 1)2 · t i . �
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Theorem 3.8 gives a rational formula for the Poincaré series (1.1) of a quasi-
poset monoidΛ. It remains an open problem whether (1.1) is rational for all
monoidsΛ. The following weaker result shows that the difficulty lies in control-
ling cancellations.

Remark 3.10.For any submonoidΛ of N
d we have

(3.7)
∑
λ∈Λ

χ̃(Tork[Λ]
∗ (k, k)λ) zλ =

1
Hilb(k[Λ]; z)

=
1∑

λ∈Λ zλ

whereχ̃(Tork[Λ]
∗ (k, k)λ) is the (reduced) Euler characteristic

(3.8)
∑

i ≥−1

(−1)i dimk

(
Tork[Λ]

i (k, k)λ
)

.

Proof. The coefficient ofzλ in the right hand side of (3.7) equals the alternat-
ing sum of the face numbers of∆(λ). This number coincides with the Euler
characteristic of∆(λ), and, by (1.2), it is equal to the alternating sum (3.8).�

IV. The ubiquity of poset monoids

In this section we study graded monoids which possess a poset initial ideal.

Example 4.1.Suppose that the monoid algebrak[Λ] is analgebra with straighten-
ing law (abbreviatedASL) over a posetP. The axioms of an ASL (see e.g. Section
7.1 in [BH]) stipulate that the toric idealIΛ is generated bystraightening relations

xi xj − (terms, each of which is divisible by a variable<P thanxi andxj ),

where{xi , xj } runs over incomparable pairs inP. If � is the reverse lexicographic
term order induced by any linear extension of<P thenin≺(IΛ) equals the Stanley-
Reisner ideal ofP. The prototype of a toric ASL arises from the following
construction (see [Hi]): LetP = J (R) be any distributive lattice, consisting of
the order ideals of a posetR, and letΛ be the monoid of order preserving maps
from R into the non-negative integers. ThenIΛ is generated by the relations
xi · xj − (xi ∨ xj ) · (xi ∧ xj ), where∧,∨ are the lattice operations. These ASL’s
include as special cases the coordinate rings of 2-by-2 determinantal varieties,
and the toric deformations of flag varietiesG/P and their Schubert subvarieties
[Lak]. ut

Throughout this sectionA denotes a configuration inNd which is graded
in the sense of Proposition 2.1. LetΛ be the monoid spanned byA and write
IA := IΛ andk[A] := k[Λ]. We say thatA supports a posetif IA has an initial
ideal which is the Stanley-Reisner ideal of a poset. IfA1 ⊂ N

d andA2 ⊂ N
e

then theirdirect sumis the configurationA1 ⊕ A2 := { (a, b) ∈ N
d+e : a ∈

A1, b ∈ A2 }. The monoid algebrak[A1⊕A2] is theSegre productof k[A1]
andk[A2].

Theorem 4.2.Let A, A1, A2 be graded configurations.
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(1) If A supports a poset and d is a positive integer, then dA supports a poset.
(2) If A1 andA2 support posets then so does their direct sumA1 ⊕ A2.

Proof. Let (P,≤) be any poset. We define itsd-th symmetric power(P(d),�) as
follows. The elements ofP(d) are stringsx1x2x3 · · · xd of d elements inP which
form a chainx1 ≤ x2 ≤ · · · ≤ xd. The partial order� on P(d) is defined by
setting x1x2x3 · · · xd ≤ y1y2y3 · · · yd if xi ≤P yi for all odd i and yi ≤P xi for
all eveni . This relation is indeed transitive. A sequence of elements inP(d) is a
chain

(4.1) x1x2x3 · · · xd � y1y2y3 · · · yd � · · · � z1z2z3 · · · zd

if and only if the entries are sorted in the following “snake-like” pattern:

(4.2)
x1 ≤ y1 ≤ · · · ≤ z1 ≤ z2 ≤ · · · ≤ y2 ≤ x2 ≤ x3 ≤ y3 ≤ · · ·

≤ z3 ≤ z4 ≤ · · · · · ·
Suppose that the Stanley-Reisner ideal ofP is an initial ideal ofIA. We shall

prove that the Stanley-Reisner ideal ofP(d) is an initial ideal ofIdA. We identify
the elements ofP with the elements inA. This induces a bijection between the
elementsx1x2x3 · · · xd of P(d) and the elementsx1 + x2 + x3 + · · · + xd of dA.
We introduce a variableTx1x2···xd for each such element and we regardIdA as
an ideal in the polynomial ring in these variables. We claim that any monomial

(4.3) Tx1x2x3···xd Ty1y2y3···yd · · · Tz1z2z3···zd ,

can be rewritten uniquely moduloIdA as a monomial satisfying (4.2). This is
accomplished by the following algorithm: Suppose the monomial (4.3) does not
satisfy (4.2). Along the inequality chain (4.2) there exists a pair which is ei-
ther in the wrong order or incomparable. In the first case we switch the order
and in the second case we replace the incomparable pair by the correspond-
ing standard monomial moduloIA. That standard monomial is again quadratic
(sinceA is graded), hence the resulting string is a new monomial of the form
(4.3). That process will eventually terminate because in the first case the num-
ber of inversions along (4.2) decreases, and in the second case the monomial
x1x2 · · · xdy1y2 · · · ydz1z2 · · · zd decreases in the given term order forIA.

For any incomparable pairx1x2x3 · · · xd, y1y2y3 · · · yd of elements inP(d) the
above algorithm returns two comparable elementsu1u2u3 · · · ud andv1v2v3 · · · vd.
The corresponding quadratic binomial

(4.4) Tx1x2x3···xd Ty1y2y3···yd − Tu1u2u3···ud Tv1v2v3···vd

is marked to have the first term as the “leading term”. These marked quadratic
binomials generate the idealIdA, and the reduction relation modulo these marked
binomials is Noetherian. By the result of [RS] there exists a term order≺ on
the polynomial ring in the variablesTx1x2···xd which induces this marking, i.e.,
the left term of (4.4) is≺-leading for any two incomparable pairs inP(d). Hence



390 I. Peeva et al.

in≺(IdA) equals the Stanley-Reisner ideal of thed-th symmetric power poset
P(d).

We now prove part (2) of the theorem. LetP1, P2 be posets and≺1,≺2 be term
orders such thatin≺i (IAi ) is the Stanley-Reisner ideal ofPi for i = 1, 2. Consider
the direct product of posetsP = P1 × P2. The elements (a, b) of P are identified
with variablesyab for the Segre idealIA1⊕A2. Any monomial ya1b1ya2b2 · · · yanbn

can be rewritten uniquely moduloIA1⊕A2 as ya′
1b′

1
ya′

2b′
2
· · · ya′

nb′
n

where a′
1 ≤

a′
2 ≤ · · · ≤ a′

n in P1 and b′
1 ≤ b′

2 ≤ · · · ≤ b′
n in P2. Here xa′

1
xa′

2
· · · xa′

n
is

the ≺1-normal form ofxa1xa2 · · · xan , andxb′
1
xb′

2
· · · xb′

n
is the≺2-normal form of

xb1xb2 · · · xbn . Moreover, this rewriting can be done by a sequence of quadratic
moves (n = 2). By the same argument as above, there exists a term order≺ such
that in≺(IA1⊕A2) equals the Stanley Reisner ideal ofP1 × P2. �

Corollary 4.3. All Veronese varieties and all Segre varieties support posets.

Proof. The vertex set of a regularr -simplex supports the (r + 1)-chain. The
configurations obtained from these trivial examples by iterating the constructions
of Theorem 4.2 are precisely the Veronese varieties and the Segre varieties.�

There is a big difference between parts (1) and (2) of Theorem 4.2 as far
as lifting of term orders is concerned. In part (2) one simply takes≺ as a
lexicographic product of≺1 and ≺2. This generalizes the familiar “staircase
Gröbner basis” for the ideal of 2× 2-minors of a matrix of indeterminates. On
the other hand, in part (1) there seems to be no explicit construction of the
required term order fordA from the given term order forA. Even in the
Veronese case (whereIA is the zero ideal) the Gröbner basis resulting from
Theorem 4.2 (1) is generally not lexicographic, not even in the generalized sense
of [St1]. The smallest example where the lexicographic property fails is the cubic
Veronese embedding ofP4 (d = 3, r = 4, P = a 5-chain).

The construction of thed-th symmetric powerP(d) of a posetP specializes
to the well-known construction of the interval posetInt(P) when d = 2. The
interval poset Int(P) is the set of all non-empty intervals [x, y] in P ordered
by inclusion. HenceP(2) is the order dual ofInt(P). In [Wal, Theorem 4.1] it
is shown that the order complex ofInt(P) is homeomorphic to (and in fact a
subdivision of) the order complex ofP. The subdivision is induced by the map
on the vertices of the order complex ofInt(P) defined by [x, y] 7→ 1

2(x + y) for
any x ≤ y in P. Similarly, the proof of Theorem 4.2 can be extended to give a
proof that the order complex ofP(d) is a subdivision of the order complex ofP,
for any posetP and any positive integerd. The subdivision is induced by the
map on the vertices of the order complex ofP(d) defined by

x1 ≤ x2 ≤ · · · ≤ xd 7→ 1
d

∑
i

xi .

Remark 4.4.Theorem 4.2 is false for non-graded configurations. Consider the
configurationA = {(5, 1), (2, 1), (1, 2), (1, 5)} with toric ideal IA = 〈x1x3 −
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x3
2 , x1x4−x2

2 x2
3 , x2x4−x3

3 〉. It supports a poset via the underlined initial terms. But
neither 2A norA⊕A support a poset because their idealsI2A andIA⊕A have
no quadratic initial ideals at all. Similarly,I2A has a minimal generator in degree
(10, 11). There are three monomials of that degree:y13y2

33, y2
22y34, y22y23x34. Each

initial ideal of I2A has one of these three cubic monomials as a minimal generator.
For instance,IA⊕A has a minimal generator of degree (5, 19, 9, 9). There are four
monomials of that degree:y2

42y44y2
32, y3

42y34y32, y3
43y33y31, y41y2

43y2
33. Each initial

ideal of IA⊕A has one of these quintic monomials as a minimal generator.ut
If A spans a graded monoid of rankd then Q = conv(A) is a (d −

1)-dimensional polytope. The results in Chapter 8 of [St2] give the following
reformulation.

Remark 4.5.A graded configurationA ⊂ N
d supports a poset if and only if the

polytopeQ = conv(A) has a unimodular regular triangulation∆ with vertices
in A such that∆ is the chain complex of a poset. In this caseA = Q ∩ N

d.

In the remainder of this section we study the special cased = 3. We thus
assume thatQ is a planar lattice polygon andA the set of all lattice points in
Q.

Proposition 4.6.A lattice polygon Q supports a poset if and only if there exists
a triangulation∆ of Q having the following properties:

(1) ∆ is a regular triangulation which uses all lattice points in Q.
(2) The vertices of∆ can be properly 3-colored, i.e. so that no two vertices

connected by an edge have the same color.
(3) In the proper 3-coloring of∆, one of the colors only appears on internal

vertices having degree 4 and on boundary vertices of degree 2 or 3.

Proof. Suppose thatin≺(IA) is the Stanley-Reisner ideal of a posetP. Then
the term order≺ gives rise to a regular triangulation∆ = ∆≺(IA) of A, and
the square-freeness ofin≺(IA) implies that∆ is unimodular (Corollary 8.9 in
[St2]). Since∆ is pure 2-dimensional, the posetP is graded of rank 2, and
the labeling of vertices by their rank inP gives a proper 3-coloring of∆. This
explains (1) and (2). To see (3) use the transitivity of the partial orderP: the
vertices in the middle rank ofP cannot have edges to two elements of different
rank, unless those other two elements also share an edge. This means that a
vertex in the middle rank ofP cannot be an internal vertex of degree 5 or more
(think about the coloring of its neighbors) nor can it be a boundary vertex with
degree 4 or more. Since an internal vertex of degree 2 or smaller is impossible
in a triangulation, and also degree 3 is impossible because of 3-colorability, we
deduce (3).

Conversely, suppose such a triangulation∆ satisfying (1),(2), and (3) exists. It
corresponds to a term order≺, and, since∆ is unimodular,in≺(IA) is generated
by the monomials which do not lie on a face of∆. We construct a posetP on
{x1, . . . , xn} as follows. Let the three colors in (2) be red, blue, and yellow, with
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blue the color specified in (3). These are the three ranks ofP. We setx1 < x2 in
P if x1, x2 are connected by an edge of∆ and either

– x1 is red,x2 is blue, or
– x1 is red,x2 is yellow, or
– x1 is blue,x2 is yellow.

Property (3) ensures that no other order relations will be implied by transitivity.
�

Using the previous proposition, we can derive sufficient conditions for a
lattice polygon to support a poset. Thinking ofA as lying in the integer lattice
Z

2 of the x, y-plane, say thatA is integrally framedif for every integeri , the
horizontal liney = i intersects the convex hull ofA in a line segment having
integral endpoints.

Proposition 4.7.If A is integrally framed then it supports a poset.

Proof. By Proposition 4.6, it suffices to construct a triangulation∆ having prop-
erties (1)-(3) whenA is integrally framed. Suppose the orthogonal projection
of A onto they-axis has points 0, 1, 2, . . . , s. The construction of∆ begins by
drawing in all of the edges between adjacent vertices on the boundary of the con-
vex hull of A. Then add in all edges between vertices ofA whose difference
vector is horizontal. Lastly add in the “zig-zag” of edges of∆ which connect
the following vertices in sequence: the rightmost point ofA lying on the line
y = 0, the leftmost lying ony = 1, the rightmost lying ony = 2, the leftmost
lying on y = 3, etc...

There is a unique way to complete this to a unimodular triangulation ofA:
within each triangle of the picture so far connect the apex to all points along
the base. This triangulation is easily seen to be regular, and it is unimodular by
construction. It is 3-colorable by the following scheme: Color the vertices on
the zig-zag alternately yellow, red, yellow, red etc. Then color the rest of the
vertices along any horizontal liney = i alternating red and blue ifi is even, or
alternating yellow and blue ifi is odd. This gives a proper 3-coloring. The blue
vertices always have degree 4 when they are internal and degree at most 3 when
they lie on the boundary. �

An example of a configurationA which is not integrally framed is

(4.5) A =

(1, 3)
(1, 2) (2, 2) (3, 2)

(0, 1) (1, 1) (2, 1)
(2, 0)

This configuration does not support a poset. Define thewidth of P = conv(A)
to be the minimum cardinality ofφ(A) for any linear functionalφ : Z

2 → Z.
The configuration in (4.5) has width 4. This is smallest possible by the next
proposition.
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Proposition 4.8.Let P be a lattice polygon with at least4 points on the boundary
of its convex hull and width at most3. Then P supports a poset.

We omit the proof of Proposition 4.8; it is an explicit elementary construction.
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