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I. Introduction

Let A be a finitely generated submonoiddf andk[A] its monoid algebra over
a fieldk. If .2 ={a,...,an} is the minimal generating set of, then

K[A] = K[xq, ..., %0]/1 4,

wherel , is thetoric ideal generated by all binomials, - - - x;, — X, - - - X;; corre-
sponding to additive relations, +. . .+, = oy, +...+,. This ideal is the kernel
of the mapk[xy,...,X,] = K[z,...,z] sendingx toz* =z*z2...z8".

We are interested in the homology of the residue flelds a module over
k[A]. It can be computed by the minimal free resolutionkofvhich is graded
by the monoidA. The generating function of the homology is timiltigraded
Poincaté series

(1.1) P2 =S dimg (Torik[Al(k, k)A) tiz>.

AeA

In [An] Anick constructed a local noetherian ring with transcendental Pagncar
series. It is an open question Whetlﬁéﬁ[/‘] (t,2) is rational for a monoid algebra
K[ A].

Computing the Betti numbers of a finite minimal free resolution by simplicial
complexes has a long tradition. For infinite resolutions this idea has been explored
very little: Laudal and Sletsjoe [LS, 1.3] expressed Badti numbersover k[ A]
as

dimy Tor M (k, k) = dimy Hi _2(A); k)

(2.2) forall A\ e Aandi =0,1,2,...
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Here A()\) denotes the simplicial complex of chains in the open interval)th
the partial order oml defined bya <, g if 5—a € A. The simplicial complexes
A()) are generally not pure, unles® happens to lie on an affine hyperplane in
RY.

In this paper we introduce two ideas for computing the homologl: of

— We write the commutative ring[A] as a quotient of the free associative
algebrak(ys, ...,yn) onn indeterminates. Let

k[A] E k<Y1,-..,yn>/JA = k[Xj_,...,Xn]/|A,

whered, is the kernel of the maR(ys, ..., ¥n) — K[z, ..., zg] sendingy; to

z%. The set of all monomials ik(ys, . ..,Yyn) Which are mapped ont" is
called thenon-commutative fiber of. The monomials in the non-commutative
fiber of \ are in one-to-one correspondence with the facets (= maximal faces)
in A(N).

— In Theorem 3.5 we relateaon-commutative Gbner basis(see [M0]) to a
non-pure shellingor all complexesA()). By [BW] the existence of such a
shelling implies thatA()\) is homotopy equivalent to a wedge of spheres of
various dimensions.

Theorem 3.5 gives ahelling of the monoidthat is a uniform rule for simul-
taneously shelling all finite intervals of which satisfies the following natural
condition:

if F’ is a facet precedingr in the shelling of A()\) then y;F’ comes
beforey,F and F'y; comes beford=y; in the shelling ofA(\ + o).

Say thatA supports a poséf there is a term ordex onk[xy,...,xs] and a
partial orderP on {x,...,%,} such that the initial ideah.(l ) is the Stanley-
Reisner ideal oP. This means thain.(l 1) is generated by the producksx;,
wherex;,x are incomparable . The resulting reduced Gbner basis of 4
consists of elements of the formx — X,,%, ---%,. It is shown in Sect. 4
that many monoids arising in geometry do support a poset. For instance, all
affine normal toric surfaces and many projective toric surfaces have this prop-
erty. Higher-dimensional monoid algebras supporting posets include Veronese
rings, Segre rings, and toric algebras with straightening law. Whsapports a
poset we obtain a quadratic nhon-commutativéléer bases fod,, which via
Theorem 3.5 shells the monoid. This leads to a rational formuIzPIfEﬁ” (t,2)
in terms of a Hilbert function. The formula is well known to hold in the special
case wherk[A] is graded in the sense of Proposition 2.1. The rationality of the
Poincaé series for normal toric surfaces was first proved in [LS]; our shellings
give explicit formulas.

II. The bar complex and normal toric surfaces

Our point of departure in this project was to understand the articles of Laudal
[Lau] and Laudal-Sletsjoe [LS], in which the formula (1.2) was derived and used
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to prove rationality of the Poincarseries for normal affine toric surfaces. We
start out by giving a short proof of the formula (1.2):

Consider thebar resolutionB of k over k[A]; see [Ma, Ch. 10§ 2]. This
is an infinite resolution which is far from being minimal. ThéermB; in B is
the freek[A]-module with basis {.)', the set of ordered-tuples of non-zero
elements ofA. We compute the Betti numbers diffior{l(k, k), by tensoring
the bar complex8 with k and then taking homology. The tensored bar complex
looks like

21 Bok:...—BokiB 19k —... B ok=k

whereB; ® k is thek-vector space with basisi¢)'. Write the basis elements in
the form P\1|Az| - - - |Ai—1|Ai] with ) € A4, The differential acts by the rule

(22) @@kl A1 = Y0 LDl A+ ] ]

If i = 1 then this meansd{ ® k)[A\] = 0 for any A € A.. The differential
(2.2) preserves the sum= \; +---+ ) of the entries in each bracket, that is,
the complex (2.1) is the direct sum of its finite-dimensional graded components
(B @ k). If we identify [A1|Az]- - |Ai] with the chainA; < A1 +X < -+ <
A1+ -+ i1 in the open interval (Q\) of A, then the differential (2.2) becomes
precisely the boundary map in the simplicial complaf\) of chains in (Q\).
We conclude that the reduced homology4f)) in dimensioni — 2 equals the
i-th homology of B @ k). The latter is thek-vector space T{SPA](k, k). This
completes our proof of (1.2). O

The following class of monoids corresponds to projective toric varieties.

Proposition 2.1. For a submonoid! of N¢ the following conditions are equiva-
lent:

(1) The ideal |y is homogeneous with respect to the usual grading(xj¢ = 1.

(2) The monoid algebra[kl] can be graded by setting déx) = 1.

(3) The minimal generators of lie on a common affine hyperplaneRf.

(4) The simplicial complexA(}) is pure (= all facets have the same dimension)
forall A € A.

We call a monoid algebrgradedif it satisfies the equivalent conditions in
Proposition 2.1. An interesting class of graded monoid algebras are those for
which the residue field has a linear resolution, that is, all the entries in the maps
of the minimal free resolution are linear. Such an algebra is callé&bszul
algebra

Corollary 2.2. A graded monoid algebra[kl] is Koszul if and only if the sim-
plicial complexA()) is Cohen-Macaulay for every € A.

Proof. Being Koszul means T{ﬁ[r‘”(k?k)A~ = 0 unlessi equals the degree of.
By (1.2), k[A] is Koszul if and only ifH;i(Ax,k) = 0 for i # deg@) — 2 for
every\ € A.
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On the other hand: A finite graded podgetis Cohen-Macaulay ovek ex-
actly when for each open interval, i) in P the homologqui(A((ul,pz)), k)
vanishes except in the top degree. Now consider the posg} {i® A: any open
subinterval fu1, 12) can be written agiy + (0, u2 — p1), which is topologically
the same as (i, — p1). Therefore, (0A) is Cohen-Macaulay for every € A
if and only if H; (A()\), k) = 0 fori # degQ) — 2 for everyA € A. O

All the graded monoids appearing in Sect. 4 have shellable complégs
and are hence Koszul since pure shellable complexes are Cohen-Macaulay (see
e.g. [BW, Cor 12.6]). However, the results in this paper are not restricted to the
graded case. They are even more interesting for non-graded monoids.

Example 2.3.If 1, has a quadratic Gbner basis thek[A] is Koszul. So far,
there is a single example known when the idealis generated by quadratic
forms, but has no quadratic &wner basis: We constructed the ideal

I, = ( i2—ah, hi —ag, h?— gi, fi — bg, {2 — eg, eh— cg,
ef —dg, €2 —df, ci —ae, ch—ei, cf —dh, ¢? — bd,
bh — af, bf — ei, be —di, bc — ad, b?> — ac).

This is the defining ideal for the monoidl € N® generated by
{(3,0,0),(2,1,0),(1,2,0),(0,3,0),(0,2,1),(0,1,2),(0,0,3),(1,0,2),(2,0,1) } .

This is a very hard example to be studied despite that it looks so similar to
the cubic Veronese; the monoid for the cubic Veronesélis(1,1,1)U (2, 2,2)
which is Koszul. The idedl, has no quadratic @bner basis; we verified this by
computer using MACAULAY and a program written by Alyson Reeves which
screens all possible Gbner bases. The first eleven steps in the minimal free
resolution ofk are linear; this was verified by computer by Jan-Erik Roos, who
computed the Hilbert function of the non-commutative cohomology algebra using
the program BERGMAN written by J. Backelin. We remark that since the Betti
numbers grow exponentially, we could not compute by MACAULAY more than
eight steps of the minimal free resolution lof It is an open question whether
k[A] is Koszul.

We close this section with a preview for the case of a 2-dimensional normal
submonoidA of N2, studied in [LS]. Order the unique set of minimal generators
a1, ..., an of A counter-clockwise so that

(2.3) det(ci,aq+41) =1fori =1,2,...,n—1.
Let < be the purely lexicographic term order &fxy, ..., X,]. Then the reduced
Grobner basis of 4 with respect to< consists of(",*) binomials XX — X/ x';1

where 1<i <r <j < n. The initial ideal defined by this term order equals

(2.4) ing(la) = (xx :1<i<j—-1<n-1).
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The key observation is tham(l4) is the Stanley-Reisner ideal for a poset
on {X1, Xz, ..., % }. Namely,P is the “zig-zag poset” having covering relations
X <p Xi+1 If i is odd andx; >p X+ if i is even.

Consider the non-commutative polynomial rikgy, . .., yn), and reorder its
variables according to any linear extensionRofsay,

(2.5) Y1<Y3<Ys<: - <Y2<Ysa<Ye< .

Let < denote the lexicographic order on monomialkiyi, .. .,y») induced by
(2.5). Define a term ordes on K(y1,...,yn) by settingy, - - -yi, <¥j, - - - ¥ if

Xig =X, = X, -+ X, Or if (Xil..'Xiy = )(j1"'st) and Glill..yir < yjlyjs)
This defines a linear ordering on the facets Af\) for each A € A. We
shall see that this ordering defines a (non-pure) shellingAfX) and hence
determines the homology of\()\) in the most explicit manner. The algebraic
property responsible for our shelling is that (2.4) lifts to a quadratic initial
ideal of the non-commutative idedl,. More precisely,in<(J,) is generated
by {yiyj : [i —j|=2orj odd}.

Example 2.4.In Theorems 3.8 and 5.1 we shall derive formulas for the Poincar
series ofk[A]. These results are well-known whehis graded, since in this case
k[A] is a Koszul algebra and the complexé¢)\) are Cohen-Macaulay. How-
ever even for affine toric surfaces the complexHs) generally have homology
in more than one dimension. (The appearance of homology in more than one
dimension is an obstacle to using the Euler characteristic of the minimal free
resolution in order to compute the Poingaeries; see also Remark 3.10).

We present an example: Let = 4 and A the monoid generated by
(1,0),(1,1), (2,3), (5,8). The non-commutative @bner basis fod, constructed
above equals

(2.6) Y1¥Y3 — Y2Y2Y2, Y3Y1 — Ya2¥2Y2, YiYa — Y3Y3Y2Y2, Yay1 — Y3YysY2Y2,
YoYa — Y3Y3Y3; YaY2 — Y3Y3Y3; Y2Y1 — Y1V, Y2Y3 — YaY2, YaY3 — YaYa.

The smallest fiber with homology in two different dimensions appears\ fer
(8,9). Here A(\) has 89 facets of dimensions ranging from 6 to 3. Starting with
the unique standard monomial, the 89 facets are ordered by the term<osder
follows:

Y3Y2Y2Y2Y2YaY2, Y2Y3Y2Y2Y2Yy2Y2, Ya2YaY3YaYyaYaY2, - . ., Y2Y2Y2YaYyaYy2ys,
Y1Y3Y3Y2Y2Y2, Y1Y3Y2YsY2Y2, Y1YaY2YyaYsY2, . . ., Y2Y2Y2Y3YsYa,
Y1Y1Y3Y3Y3; Y1Y3Y1Y3Ys, - - ., Y3Y1Y3Y1Y3, . . ., Y3Y3Yy3yiY1,

Y1Y1Y2Ya, Y1¥Y2Y1Ya, - .., Y1YaY2Y1, ..., Y2Y1YaY1, - .., YaY1Y2Y1, Yay2yi1ya.

Every monomial in this list (except the first one) can be reduced to an earlier

monomial via (2.6) by replacing a quadratic factor. Such an ordering is a shelling.

Precisely three monomials in this list have the property that all their quadratic

factors lie inin<(J4). They are the three underlined monomials. Corollary 3.7

implies thatA()\) is homotopy equivalent to the wedge of sphef8s/ S? v S2.
Theorem 3.8 gives the following formula for the Poineaeries ofA:
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(1 +tz)(1 +tz12) (1 +12223)(1 +127ZB)
T ] ] — e 4
The coefficient ofz)''z, in this series equali® times the Poincér polynomial
of the simplicial complexA()). In particular, the coefficient af®zy is 2t4 +t5.

P, 21,20) =

[ll. Non-commutative Gr dbner bases and non-pure shellings

A monomial idealM C K[Xy,...,Xy] is said to bequasi-posetf M is generated
by gquadrics and the following condition holds:®fx, € M andi < | < j, then
X% € M orxx € M. This choice of nomenclature is natural:

Lemma 3.1.A simplicial complex is the chain complex of a poset if and only if its
Stanley-Reisner ideal is quasi-poset, after relabeling the variables if necessary.

Proof. For any square-free quadratic monomial id®alwe can define a binary
relation P on {xi,...,%} by settingx; <p X, wheneveri < j andxx ¢ M.
The relationP is transitive if and only ifM is quasi-poset. Moreover, Ml is the
Stanley-Reisner ideal of a posBtandx; < X; < ... < X, is a linear extension
of Q thenP =Q. O

We conclude that a quasi-poset monomial ideal is poset if and only if it is
square-free. Naturally, there are many quasi-poset ideals which are not square-
free. For instance, every quadratically generated Borel-fixed ideal is quasi-poset.

Let A be a submonoid oR® with n minimal generators. We say thatis
guasi-poseif there exists a term order on K[Xy, ..., X,] such that the initial
idealinL (1 1) is quasi-poset. Assuming that this holds, we extend the term order
< to a term orderc on the non-commutative polynomial ridgys,...,yn) as
follows:

YisYio o Yie YidYieYis = XiXip o X = XX, 0 X
or (%, ---X, =X, ---%, andy;, ---V; is beforey, - --y;, lexicographically)

We shall prove that the non-commutative idéalhas a quadratic ®@bner basis.

Theorem 3.2.Let A be a quasi-poset monoid arda term order such that in(l 1)
is quasi-poset. Ik is the induced non-commutative term order, then

iNn<@a) = (v i <i} u{wy|i<jandxx €inz(l4)}).

Proof. The isomorphisnk(yi,...,¥n)/Ja = K[Xs,...,X]/l 4 and our choice of
term order< imply that a monomials, yi, - - - vi, is not in in<(J,) if and only if

(3.1) ip <ip <. <l andxi X, - - X, € in<(la).

SinceinZ(l ) is quasi-poset, the condition (3.1) is equivalent to
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(B2) i1 <izx< - <ip and{Xi X, XipXigs - -, X X, } N ing(lx) = 0.

The condition (3.2) means thgtyi, - - -y, is not in the ideal on the right hand
side of the equation asserted in Theorem 3.2]

Remark 3.3Grobner bases in non-commutative rings are usually infinite sets, and
Theorem 3.2 is more delicate than it may appear. Consider the monoid generated
by a1 = (2,0), a2 = (1,1), a3 = (0,2) € N2. Its toric ideal isl 4 = (X;x3 — X2).

Let < be any term order withinL(14) = (Xix3), and let< be the induced term
order onk(yi, y2,ys). Thenin«(J4) is minimally generated by the infinite set
{Yay1, Yoy1, ¥ay2} U {y1y3'ys : m > O}. Thus, even in this trivial example we

get an infinite Gobner basis fod, unless we order the variables in a special
way. O

Our main goal in this section is to produce a shelling for the finite intervals
A()) of a quasi-poset monoid. We recall the definition ofion-pure shellinglue
to Bjorner and Wachs [BW]: A linear ordering on the facets of any simplicial
complex A is ashelling orderif the following property holds:

For any two facetd’ < F there exists a third facéd < F such that
F'NF CGNF and G NF has codimension 1 ifr.

The topological significance of this condition is thAtcan be “built up” from

its facets in the orde while maintaining tight control of the homotopy type at
each stage. A facdt of A is calledfully attachedif every boundary face of

(or equivalently every codimension 1 boundary face) is contained in some earlier
facet.

Theorem 3.4 [BW, Theorems 3.4 and 4.1l et < be a shelling order on the
facets of a simplicial compled. ThenA is homotopy equivalent to a wedge of

spheres
\/ gdim(F)
F
where F runs over all fully attached facets Af

We now return to our algebraic discussion regarding integer montids

Theorem 3.5.Let A be a submonoid df with n generators and let be any term
order on the free associative algebray, . . ., y,). The following are equivalent:

(1) The initial ideal in<(J,) is generated by quadratic monomials.
(2) For every\ € A the order< on the non-commutative fiber af(starting with
the standard monomial) gives a shelling order on the facetd (o).

Proof. We identify the facets afA\(\) with the monomials in the non-commutative
fiber of A € A. Two facetsF andG intersect in a codimension 1 subfacefoff
and only if there exist two monomials,H and a binomialy;y; —ys, - --Ys € Ja
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such thatr = EyyjH andG = Eys, - - - ys H. The facetG comes beforé in the
proposed shelling order if and onlyyfy; is the <-initial term of y;y; —ys, - - - Vs, .

(2) implies (1): LetF be a non-standard monomial. Pick any earlier monomial
F’<F in the same fiber. In the given shelling there exists a mono@aF such
thatG NF is a codimension 1 subface Bf As discussed above, this means that
F is divided by some quadratic monomigl; in in<(J).

(1) implies (2): Let F’<F be any two facets af\()\). Factor these monomials

F'=F{F}---F/ andF = F1F,---F

whereF; = F/ moduloJ,. SinceF <F’, there must be somiefor which F; <F/.
Hence it suffices to assunke=F;,F’ = F/ and to prove the following:

If F/,F are two facets ofA()\) with no partial products equadndF’<F,
then there exist& <F with G N F a codimension 1 subface 6f.

If F'<F thenF € in<(J4). Sincein<(J4) is quadratic, some generatgty; of
in<(J4) dividesF. Write F = Ey,yjH and choose a binomigily; —ys, - - - Y5 € Ja
with initial termy;y;. The facetG = Eys, - - - y5 H satisfies the requirement. [

Combining Theorems 3.2, 3.4 and 3.5 we get the following result.

Corollary 3.6. Let A be a quasi-poset monoid. Then, for alE A, the simplicial
complexA(}) is shellable. In particular, the Betti numbers of k over the monoid
algebra H A] do not depend on the characteristic of k.

We next compute the Poindaseries ok[A]. Consider a non-commutative
monomialm = vy, Y, - - - i, of length r anddegree A = «j, + o, +--- + ¢, . It
corresponds to arr ( 2)-dimensional facet irA(\). This facet is fully attached
in the shelling order specified in Theorem 3.5 if and onlyyify;,,, € in<(l4)
forj =1,2...,r — 1. We therefore call a monomiah in k(yi,...,y,) fully
attachedif each quadratic factor oim lies in in<(J4). Theorems 3.4 and 3.5
imply the following result.

Corollary 3.7. Let A be a quasi-poset monoid ande A. ThenA(\) is homotopy
equivalent to the wedge of spheres

\/ Slengthm)—z
m

where m runs over all fully attached non-commutative monomials of degree

Theorem 3.8.TheA-graded Poincag series (1.1) of k over a quasi-poset monoid
algebra KA] = K[x,...,X,]/14 coincides with thel-graded Poincag series of
k over Hxq,...,%)]/in<(l14), and equals the inverted Hilbert series

1

(3.3) [Hilb(K[Xa, - . ., Xn] /iIN<(1.4); X)] 5 —tzei
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Proof. The algebraR = K[xi,...,%]/in<(l14) is a Koszul algebra because
in~(l4) is generated by quadratic monomials. Using Corollary 2.2 and Remark
3.10 below, this implies that the Poinéaseries oR equals the inverted Hilbert
series (3.3).

On the other hand, Bberg [Fr] has shown that the non-commutative algebra

(3.4) ROy« ) /Y W Yi TYpYi >x12,xixj gin~(11)

carries the structure of a multigraded minimal free resolutiok ofer R, where

a monomialm =y;, - - -y;, has homological degree The quadratic generators of
the presentation ideal in (3.4) form ad@hner basis with respect to the term order
<. To see this, form critical pairs and note that they are trivial by the quasi-poset
hypothesis. We conclude that (3.4) is isomorphic as a multigr&ietbdule to

(3.5) R(YL - - ) /O WYy >y|2,yiyj ¢in - (34)

The set of fully attached monomials is a free basis for (3.5) as a multigraded
R-module, and therefore the Poinéaseries ok over R equals

Zdeg(n) . tlength(n).

m fully attached

This series equals the Poinéaseries ok overk[A] by Corollary 3.7 and (1.2).
O

As an application we compute the total Betti numbers for normal toric sur-
faces; this is an improvement of Corollary 2.20 in [LS]

Theorem 3.9.Let A be a normal2-dimensional monoid with n generators. Then

dimy TorM(k, k) = (n —2) 2. (n — 12 fori > 2.

Proof. By Theorem 3.8, the (ungraded) Poineaeries ok[A] equals

(o (4] = =
(3.6) iZ:;(dlkaorf (k,K)) -t e /T e

Using the fact thatin,(l4) is the Stanley-Reisner ideal of a shellable 1-
dimensional ball withn — 1 facets, we evaluate the right hand side of (3.6)
as follows:

(1+t)?

i=2
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Theorem 3.8 gives a rational formula for the Poircaeries (1.1) of a quasi-
poset monoidA. It remains an open problem whether (1.1) is rational for all
monoidsA. The following weaker result shows that the difficulty lies in control-
ling cancellations.

Remark 3.10For any submonoidl of N4 we have

~ [4] _ 1 _ 1
(37) gX(Tort (k7 k)/\) ZA - HIlb(k[A], Z) - Z)\E/l z)
where{Torl(k, k),) is the (reduced) Euler characteristic
(3.8) 3 (1) dimy (Tor{‘“l(k, k)A) .

i>—1

Proof. The coefficient ofz* in the right hand side of (3.7) equals the alternat-
ing sum of the face numbers ah()\). This number coincides with the Euler
characteristic ofA()), and, by (1.2), it is equal to the alternating sum (3.8)]

IV. The ubiquity of poset monoids

In this section we study graded monoids which possess a poset initial ideal.

Example 4.1Suppose that the monoid algelifal] is analgebra with straighten-
ing law (abbreviated\SL) over a poseP. The axioms of an ASL (see e.g. Section
7.1in [BH]) stipulate that the toric ided&) is generated bgtraightening relations

XX — (terms, each of which is divisible by a variabte thanx andx;),

where{x;, X; } runs over incomparable pairskh If > is the reverse lexicographic
term order induced by any linear extensiorgf thenin.(l 4) equals the Stanley-
Reisner ideal ofP. The prototype of a toric ASL arises from the following
construction (see [Hi]): LeP = J(R) be any distributive lattice, consisting of

the order ideals of a pos&, and letA be the monoid of order preserving maps
from R into the non-negative integers. Thdn is generated by the relations

Xi X — (% VX)- (% AX), wherea, Vv are the lattice operations. These ASL’s
include as special cases the coordinate rings of 2-by-2 determinantal varieties,
and the toric deformations of flag varieti&/P and their Schubert subvarieties
[Lak]. O

Throughout this section4 denotes a configuration iN® which is graded
in the sense of Proposition 2.1. Ldtbe the monoid spanned by and write
I, =1, andk[. 2] := k[A]. We say that 4 supports a posédft |_, has an initial
ideal which is the Stanley-Reisner ideal of a poset.4f ¢ N and. 4, c N¢
then theirdirect sumis the configuration 4; & .4, = {(a,b) € N¥*¢ : a ¢
.A41,b € .2, }. The monoid algebr&[. 41 ®. ;] is the Segre productf k[. 4]
andk[.2,].

Theorem 4.2.Let. #,.44,.-¢, be graded configurations.
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(1) If . supports a poset and d is a positive integer, the dupports a poset.
(2) If .2, and. 2, support posets then so does their direct suta & . 2,.

Proof. Let (P, <) be any poset. We define itsth symmetric powefP(@, <) as
follows. The elements oP(@ are stringsx;xoxs - - - X4 of d elements irP which

form a chainx; < %, < --- < Xq. The partial order< on P is defined by
setting x1XoXz - -+ Xg < Yiyoys---Yq if X <py; for all oddi andy; <p x for

all eveni. This relation is indeed transitive. A sequence of elemen®fhis a
chain

(4.1) XiXoX3 - Xd X YiYaY3-oYa X o0 X DL Z
if and only if the entries are sorted in the following “snake-like” pattern:

X1 Sy < << <K<K Sxg<lyz<-ee

(42) g 3 S Z g ......

Suppose that the Stanley-Reisner idedPa$ an initial ideal ofl_,. We shall
prove that the Stanley-Reisner idealR$f) is an initial ideal ofly,_,. We identify
the elements oP with the elements in-. This induces a bijection between the
elementsx;Xoxs - - - Xg of P@ and the elements; + X, + X3 + - - - + X4 of d. 4.
We introduce a variabldlyy,...x, for each such element and we reg#gd, as
an ideal in the polynomial ring in these variables. We claim that any monomial

(4'3) TX1X2X3"'Xd TYleY3"')’d T Tlezls"'Zdv

can be rewritten uniquely modulg, , as a monomial satisfying (4.2). This is
accomplished by the following algorithm: Suppose the monomial (4.3) does not
satisfy (4.2). Along the inequality chain (4.2) there exists a pair which is ei-
ther in the wrong order or incomparable. In the first case we switch the order
and in the second case we replace the incomparable pair by the correspond-
ing standard monomial modulo,. That standard monomial is again quadratic
(since.+ is graded), hence the resulting string is a new monomial of the form
(4.3). That process will eventually terminate because in the first case the num-
ber of inversions along (4.2) decreases, and in the second case the monomial
X1Xo -+ XgY1Ye - - - YdZ12Zo - - - Zg decreases in the given term order foy.

For any incomparable paiixoXs - - - X4, YiYaYs - - - Vg of elements inP@ the
above algorithm returns two comparable elemertsus - - - ug andvyvevug - - - vg.
The corresponding quadratic binomial

(4'4) TX1X2X3~'-XdTy1YZY3"'Yd - TU1U2U3"'UdTU1U2U3""Ud

is marked to have the first term as the “leading term”. These marked quadratic
binomials generate the idéelal », and the reduction relation modulo these marked
binomials is Noetherian. By the result of [RS] there exists a term orden

the polynomial ring in the variable,,y,...x, Which induces this marking, i.e.,

the left term of (4.4) is<-leading for any two incomparable pairsi®. Hence
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in~(l4. «) equals the Stanley-Reisner ideal of ttheéh symmetric power poset
p@,

We now prove part (2) of the theorem. LEet, P, be posets and, <, be term
orders such thah, (1. ;) is the Stanley-Reisner ideal Bf for i = 1, 2. Consider
the direct product of pose® = P; x P,. The elementsa, b) of P are identified
with variablesyyy, for the Segre idedl ;. +,. ANy monomial Ya,p, Ya,b, - - - Yab,
can be rewritten uniquely modulb /,. 2, @S Yab;Yab; - -+ Yasn; Where a; <
a, < ---<a,inPandb; <b) <.-.-<b inP, Here Xa/Xa; -+ Xay is
the <;-normal form ofXg, Xa, - - - Xa,, andxb{xbé - Xp; is the <p-normal form of
Xo, X0, + - * Xo,- MOreover, this rewriting can be done by a sequence of quadratic
moves f = 2). By the same argument as above, there exists a term ardach
thatin<(l. 2,¢. «,) equals the Stanley Reisner ideal®f x P,. O

Corollary 4.3. All Veronese varieties and all Segre varieties support posets.

Proof. The vertex set of a regular-simplex supports ther (+ 1)-chain. The
configurations obtained from these trivial examples by iterating the constructions
of Theorem 4.2 are precisely the Veronese varieties and the Segre variefies.

There is a big difference between parts (1) and (2) of Theorem 4.2 as far
as lifting of term orders is concerned. In part (2) one simply takess a
lexicographic product of<; and <,. This generalizes the familiar “staircase
Grobner basis” for the ideal of  2-minors of a matrix of indeterminates. On
the other hand, in part (1) there seems to be no explicit construction of the
required term order fod. 2 from the given term order for-4. Even in the
Veronese case (whete, is the zero ideal) the ®bner basis resulting from
Theorem 4.2 (1) is generally not lexicographic, not even in the generalized sense
of [St1]. The smallest example where the lexicographic property fails is the cubic
Veronese embedding & (d = 3,r =4, P = a 5-chain).

The construction of thel-th symmetric poweP @ of a posetP specializes
to the well-known construction of the interval podat(P) whend = 2. The
interval poset In(P) is the set of all non-empty intervalx,[y] in P ordered
by inclusion. HenceP@ is the order dual ofnt(P). In [Wal, Theorem 4.1] it
is shown that the order complex tfit(P) is homeomorphic to (and in fact a
subdivision of) the order complex &f. The subdivision is induced by the map
on the vertices of the order complex loft(P) defined by k,y] — %(x +vy) for
anyx <y in P. Similarly, the proof of Theorem 4.2 can be extended to give a
proof that the order complex & is a subdivision of the order complex Bf,
for any posetP and any positive integed. The subdivision is induced by the
map on the vertices of the order complexR¥f) defined by

1
X <X < <X aizxi-

Remark 4.4Theorem 4.2 is false for non-graded configurations. Consider the
configuration. 4 = {(5,1),(2,1),(1,2),(1,5)} with toric ideall , = (Xix3 —
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X3, XiXa—X2X2, XoXa—X3). It supports a poset via the underlined initial terms. But
neither 2- nor. 4. ¢ support a poset because their iddals andl_,q_» have

no quadratic initial ideals at all. Similarly; , has a minimal generator in degree
(10,11). There are three monomials of that degrya_@y%s, y222y34, Ya2Y23X34. Each
initial ideal ofl, , has one of these three cubic monomials as a minimal generator.
For instancel_,q, » has a minimal generator of degree 18, 9, 9). There are four
monomials of that degrea2,yasys,, ViYaays2, VisYasys1, Ya1Yasyas. Each initial

ideal ofl_,q, » has one of these quintic monomials as a minimal generator.

If .4 spans a graded monoid of ramk then Q = comu(.4) is a d —
1)-dimensional polytope. The results in Chapter 8 of [St2] give the following
reformulation.

Remark 4.5A graded configuration4 c NY supports a poset if and only if the
polytope Q = conu(.-4) has a unimodular regular triangulatiah with vertices
in . 4 such thatA is the chain complex of a poset. In this casé = Q N N¢,

In the remainder of this section we study the special achse3. We thus
assume tha® is a planar lattice polygon and# the set of all lattice points in

Q.

Proposition 4.6.A lattice polygon Q supports a poset if and only if there exists
a triangulation A of Q having the following properties:

(1) A is aregular triangulation which uses all lattice points in Q.

(2) The vertices ofA can be properly 3-colored, i.e. so that no two vertices
connected by an edge have the same color.

(3) In the proper 3-coloring ofA, one of the colors only appears on internal
vertices having degree 4 and on boundary vertices of degree 2 or 3.

Proof. Suppose thain,(l ;) is the Stanley-Reisner ideal of a poget Then
the term order< gives rise to a regular triangulationd = A.(l ;) of .24, and
the square-freeness of.(l. ;) implies thatA is unimodular (Corollary 8.9 in
[St2]). Since A is pure 2-dimensional, the posBt is graded of rank 2, and
the labeling of vertices by their rank i gives a proper 3-coloring of\. This
explains (1) and (2). To see (3) use the transitivity of the partial oRlethe
vertices in the middle rank d® cannot have edges to two elements of different
rank, unless those other two elements also share an edge. This means that a
vertex in the middle rank oP cannot be an internal vertex of degree 5 or more
(think about the coloring of its neighbors) nor can it be a boundary vertex with
degree 4 or more. Since an internal vertex of degree 2 or smaller is impossible
in a triangulation, and also degree 3 is impossible because of 3-colorability, we
deduce (3).

Conversely, suppose such a triangulatibsatisfying (1),(2), and (3) exists. It
corresponds to a term ordet, and, sinceA is unimodularin<(l ,) is generated
by the monomials which do not lie on a face 4Af We construct a posé? on
{X1,...,% } as follows. Let the three colors in (2) be red, blue, and yellow, with
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blue the color specified in (3). These are the three rank®. &fle setx; < X in
P if x;,%, are connected by an edge dfand either

— X1 Is red,Xs is blue, or
— Xq is red,x; is yellow, or
— X is blue,x; is yellow.

Property (3) ensures that no other order relations will be implied by transitivity.
O

Using the previous proposition, we can derive sufficient conditions for a
lattice polygon to support a poset. Thinking.of as lying in the integer lattice
7?2 of the x, y-plane, say that- is integrally framedif for every integeri, the
horizontal liney =i intersects the convex hull ok in a line segment having
integral endpoints.

Proposition 4.7.1f .4 is integrally framed then it supports a poset.

Proof. By Proposition 4.6, it suffices to construct a triangulatiéaving prop-
erties (1)-(3) when+# is integrally framed. Suppose the orthogonal projection
of . onto they-axis has points @, 2, ...,s. The construction ofA begins by
drawing in all of the edges between adjacent vertices on the boundary of the con-
vex hull of .. Then add in all edges between vertices @f whose difference
vector is horizontal. Lastly add in the “zig-zag” of edgesfwhich connect

the following vertices in sequence: the rightmost point @f lying on the line

y = 0, the leftmost lying ory = 1, the rightmost lying ory = 2, the leftmost

lying ony = 3, etc...

There is a unique way to complete this to a unimodular triangulationZof
within each triangle of the picture so far connect the apex to all points along
the base. This triangulation is easily seen to be regular, and it is unimodular by
construction. It is 3-colorable by the following scheme: Color the vertices on
the zig-zag alternately yellow, red, yellow, red etc. Then color the rest of the
vertices along any horizontal ling=i alternating red and blue if is even, or
alternating yellow and blue if is odd. This gives a proper 3-coloring. The blue
vertices always have degree 4 when they are internal and degree at most 3 when
they lie on the boundary. O

An example of a configuration which is not integrally framed is
(1,3)
1.2) (22) B2

61 11 21
(2,0)

(4.5) =

This configuration does not support a poset. Defineviftth of P = conu(.4)

to be the minimum cardinality of(. -4) for any linear functional : Z? — Z.

The configuration in (4.5) has width 4. This is smallest possible by the next
proposition.
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Proposition 4.8.Let P be a lattice polygon with at leadtpoints on the boundary
of its convex hull and width at mo8t Then P supports a poset.

We omit the proof of Proposition 4.8; it is an explicit elementary construction.
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