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KOSZUL RESOLUTIONS

BY

STEWART B. PRIDDYH

Abstract. Resolutions, which generalize the classical Koszul resolutions, are

constructed for a large class of augmented algebras including the Steenrod algebra

and the universal enveloping algebras. For each such algebra A, an explicit differen-

tial algebra K*(A) is described such that (1) K*(A) is a small quotient algebra of the

cobar complex and (2) the homology of K*(A) is the cohomology algebra H*(A). The

resolution of May for restricted Lie algebras in characteristic 2 is retrieved and a

simple derivation of the resolution of Kan et al. of the Steenrod algebra is given.

The purpose of this paper is to construct resolutions for a large class of algebras

which includes the Steenrod algebra and the universal enveloping algebras.

It is a basic problem of homological algebra to compute the cohomology

algebras of various augmented algebras. Unfortunately, the canonical tool for

attacking this problem—the bar resolution—is often intractable. In some instances,

however, one is able to find a simpler resolution. For example, a classical result

states that the cohomology algebra of a Lie algebra L may be computed using the

Koszul resolution = U(L) <g> E(L), with an appropriate differential, where U(L) is

the universal enveloping algebra of L and E(L) is the exterior algebra of L [2,

Chapter 8, §7]. This resolution is particularly nice because (1) it is a subcomplex

of the bar resolution, and (2) it is much smaller than the bar resolution (i.e., has

fewer generators). Our resolutions are conceptually analogous and so we call them

Koszul resolutions and the algebras for which they are defined Koszul algebras.

Our theory subsumes May's generalization of the classical Koszul resolution and

his resolution for a restricted Lie algebra in characteristic 2 [4]. In the (motivating)

case of the Steenrod algebra we also retrieve the resolution of Kan et al. [1].

The paper is divided into 10 sections, the first of which introduces notation and

terminology. In §2 we define the notion of a Koszul algebra. The principal examples

of the paper are given here along with an explicit determination of the cohomology

algebras of homogeneous Koszul algebras. §3 is devoted to constructing resolutions

for Koszul algebras. Dual complexes are studied in §4. In particular, given a set of

generators and relations for a Koszul algebra A we give a set of generators and

relations for a differential algebra whose homology algebra is H*A. §5 introduces
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the concept of a Poincaré-Birkhoff-Witt algebra and shows that any such algebra

is a Koszul algebra. In §§6 and 7 we retrieve the results of May and Kan et al.

mentioned above. The role of matric Massey products in the theory is briefly

examined in §8. For certain Koszul algebras A there is a natural identification of A

and H*H*A. §9 studies this duality and its relation to a dual Adams spectral

sequence. The last section is devoted to the proof of the main result of §3.

The principal results of this paper were announced in [9]. The author wishes to

thank D. M. Kan for several conversations and to especially thank J. P. May whose

suggestions have improved the definitional structure and organization of the paper.

Also, the author thanks A. F. Lawrence and M. E. Mahowald for fruitful dis-

cussions which prompted the analysis of 7.1(1).

Finally, while the results of this paper are intended for application to the graded

algebras arising from algebraic topology, it is also possible to obtain the classical

Koszul resolutions used by the algebraists; e.g., the resolution of a cyclic group [2]

and Tate's resolutions for noetherian and local rings [11]. We leave this for the

interested reader.

1. Preliminaries. The purpose of this section is to give a reasonably complete

account of the notions of homological algebra necessary for this paper—for more

complete details the reader is referred to MacLane [3] and May [4].

All modules M = {MP} are Z-graded (or multigraded) of finite type over a field F.

In addition all modules have a positive (or negative) gradation; i.e., Mp = 0 for

p< 0 (or Mp = 0 for p > 0). If M has a negative gradation we shall reindex M using

upper indices M" = M _„. The elements m e Mp are said to have degree p (deg m =p).

In case M is multigraded the degree is the total degree (e.g., if me Mp¡„ then

deg m=p+q). We shall adhere to the standard sign convention : if objects a and b

are permuted then the sign (— 1 )dega'deg" is introduced.

Let M* denote the graded F-dual of M given by M*p = Hom (Mp, F). Recall the

following identification isomorphisms:

(1.1) <p:M->M**
given by cp(m)(f) = (-l)aeefáeemf(m) and

(1.2) 6-.M* <g> N*^(M <g) N)*
given by 0(f®g)(m <g) n) = (- \)iee3áeemf(m)g(n).

By an algebra A we shall always mean a positively graded .F-algebra with unit

■q: F-^-A and augmentation e: A -> F. Let I(A) = ker e denote the augmentation

ideal.

ForL a left and R a right ^-module we shall need the following adjoint associativity

isomorphisms :

(1.3) a: (R <g>AL)*-> HornA(R,L*)

given by Hf)](r)(l)=f(r ® I).

(1.4) ß : (R <gu L)* -> Hom¿ (L, R*)
given by [ß(f)](l)(r) = (-l)iegrieglf(r <g> /).
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If M is a complex (differential module) with differential 8 then M* has differential

S given by

(1.5) 8(f)(m) = (- l)ieef + 1fd(m),fe M*, meM.

(1.6) We now summarize some familiar facts concerning the two sided bar

construction B(A, A). Recall that B(A, A) = A ig) T(I(A)) ® A, where Tdenotes the

tensor algebra. Hence B(A, A) is generated by elements of the form a ® a1 ® ■ ■ ■

(g> as <g> a' where a, a' e A and az e 1(A). Such elements are written simply as

a[öi| • • • \as]a' and are assigned bidegree (s, t) where s is the homological degree and

t is the internal degree. The total degree is s+1, i.e.

s

dega[ßi| • • • \as]a' = j + deg a+ 2 deg az + deg a'.
i = l

Let BS(A, A)z denote the submodule generated by elements of bidegree (s, t). A

differential for B(A, A) is given by

e>(a[ai| • ■ • \as]a') = (- Vfoaa^a^ ■ ■ ■ \as]a'
s-l

(1.7) + 2 (- OMßil • • • |«i«i + 1| • • • \as)a'
i = 1

-(-\y-iafa\- ■■\as^1]asa',

where e0 = deg a, e¡ = deg a[ax\ ■ ■ ■ \a,].

Let B(A) = F®A B(A, A) ®A F and for L a left and R a right /1-module let

B(R, A,L) = R ®A B(A, A) ®AL. Then B(R, A, A) is a resolution of R by free

right ^-modules and B(A, A, L) is a resolution of L by free left ^-modules. Hence

Tori (A, L) = H*(B(R, A, L)),

Ext* (R, L*) = //.(Horn, (B(R, A, A), L*)),

Extî (L, R*) = H*(HomA (B(A, A, L), R*)).

The homology and cohomology modules of A are

H ¿A) = Tor¿ (F, F),       H*(A) = Ext* (F, F).

By the adjunction isomorphisms a and ß of (1.3), (1.4)

Ext*. (R, L*) = H*(B(R, A, L)*),        Ext*. (L, R*) = H*(B(R, A, L)*).

Hence the cobar construction C(R, A, L) = B(R, A, L)* is a suitable complex for

computing ExLj. We shall need an explicit expression for C(F, A,L) = T(I(A)*) <g> L*.

Let fj.* : A*->A* (g) A* be dual to the multiplication map of A and let /u* : L*—> A* 0 L*

be dual to the structure map of L as a left A-modu\e. If ¿¿*/a) = 2r <4 <8> <4' and

ri?(A) = 2r «r ® ^ then by (1.5) the differential of C(F, A, L) dual to (1.7) with

R = Fi$ given by

s(M ■ • • K]A) = -  2 (- l*M«il • • • K'Krl • • • k]A
(1.8) 1SiSn:r

_(_i)e„+1>r 2 [«il • • • |an|<x;]A;
r

where e¡,r = deg [«jI- ■ -|a,'ir] and en + 1>r = deg [a^-- -|an|a;]A;.
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The complex B(A) has the structure of a differential coalgebra with diagonal:

n

D : [oil • ' • Kl = 2 [Ail ' ■ ■ I0'] ® [fl- + il ' ' ' Ia"]-
i = 0

The dual complex C(A) = B(A)* is thus a differential algebra with (cup) product U:

K|...|afc]U[iS1|...|ft] = [a1\---\ak\ß1\---\ßk\.

Formula (1.8) shows C(F, A,L) to be a differential left C(A)-modu\e.

(1.9) If M is a module let sM denote a bigraded copy of M in which each

element is given an extra degree, the homological degree, of one; i.e., if xe Mn

then the bidegree of sx is (1, n).

2. Koszul algebras. In this section we define Koszul algebras, give various

examples, and explicitly compute the cohomology algebras of certain Koszul

algebras.

Let T{x,} denote the free associative or tensor algebra generated by the /-"-module

with basis {x¡} indexed over some totally ordered countable set I, usually thought

of as the positive integers. Then T{x{}=%Ji0 Tj{x¿ where T0{xt} = F and r;{x¡}

= (x);{x¡} fory>0; the augmentation of r{x¡} is given by the natural projection

e: 7"{x¡} -> T0{xt} = F. A presentation of an algebra A is an epimorphism of aug-

mented algebras a: T{x,} -> A. Let R = ker (a), then A^T{Xi}/R. Now A is said to

be a pre-Koszul algebra if it admits a presentation a such that R is the two sided

ideal generated by elements of the form ~Eifix¡ + '2.j¡kfj¡kxjxk where/ and/>fc are

in F. Let a(xi) = al and observe that a¡ 6 1(A). If {a,} are linearly independent then

{o¡} is called a pre-Koszul set of generators for A and a is called a pre-Koszul presenta-

tion. Note that A is defined by relations of the form

( 1 ) 2, /<fl¡+2, /í .fcfl/flfc = °-
i i,k

A pre-Koszul algebra is said to be homogeneous if each/= 0 in each relation (1).

Now the tensor algebra T{x¡} is filtered with FpT{x,} spanned by all monomials of

length Sp, with 1 assigned length 0. If a: 7{x¡} -> A is any presentation define

FpA=a(FpT{x¡}) and E°_aA=(F„A/Fp_1A)p + Q. If a is a pre-Koszul presentation

then EPQA is called the associated homogeneous pre-Koszul algebra of A. Note that

E°A is generated by images b¡ of a¡ in E°^A and is defined by the relations

~£.j,kfj,kbjbk = 0. Of course A is homogeneous if and only if E°A^A as algebras.

In this case A may be bigraded with the first degree the length.

Let A be a homogeneous pre-Koszul algebra with pre-Koszul generators {a¡}.

Since A is bigraded, H*A =Ext* (F, F) is trigraded. Furthermore, the generators

{a,} form a basis for the set of indecomposable elements of A and so H1,**A

= HU1,*A has a basis {a¡} where a¡ e HllqA corresponds to az e A1-q. We say that

A is a homogeneous Koszul algebra if H*A is generated, as an algebra, by the set

{a¡}. This is equivalent to the condition that Hs,p-*A = 0 unless s=p. To see this,
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observe that CV(A)V-* is generated by p-ïo\d products of elements of C1(A)1'*.

Finally we say that a pre-Koszul algebra A is a Koszul algebra if E°A is a homo-

geneous Koszul algebra.

The following proposition is useful in recognizing Koszul algebras.

Proposition 2.1. If A and A' are homogeneous Koszul algebras then A g A' is

also a homogeneous Koszul algebra.

Proof. Let {a,} and {a',} be Koszul generators for A and A' respectively. Then

{fl¡ 0 1} u {1 ® a',} generate A <g> A' subject to

(1 <g) afta, (g) 1) = (- \)*°*aiae*a¡(ai (g 1)(1 (g a',)

together with the relations induced by the relations of A and A'. Hence A (g A' is a

homogeneous pre-Koszul algebra. Furthermore, H*(A (g A') = H*A <g H*B and

so A 0 A' is a Koszul algebra.

2.2 Examples. (1) The tensor algebra T^} is a homogeneous pre-Koszul

algebra with generators {x¡} and zero relations. The elements {x¡} span the indécom-

posables of T{x¡} and (using the notation of (1.9)) H*T{xi} = N{sxi} where N{xz} is

the null (or trivial) algebra generated by {x¡}. Hence T{xz} is a homogeneous Koszul

algebra. Furthermore, H*N{xi} = T{sxi} and so N{xt} is also a homogeneous

Koszul algebra.

(2) The free commutative algebra A{xz} is a homogeneous pre-Koszul algebra

with generators {x¡} and defining relations x¡x, - ( - l)deB *<ieg xtx}xz = 0. If char F^ 2

then A{x,} = F[xt+] (g istxr] where {x?}, {x,~}<^{xi} are the elements of even and

odd internal degree respectively and F[x + ] (E[x~]) is the polynomial (exterior)

algebra. If char F=2 set {^i+} = {xi} and {x¡~}= 0. It is classical that

H*F[x,+ ] = E[sxf]    and    H*E[xr] = F[sxf].

Hence F[x¡+] and £[xf] are homogeneous Koszul algebras.  Proposition 2.1

implies that A{x,} is also a homogeneous Koszul algebra.

(3) If L is a graded Lie algebra then the universal enveloping algebra U(L) is a

Koszul algebra and any basis {a,} of L is a Koszul set of generators. The defining re-

lations are «(%-(- l)áee "•deg "«W- K «,] = 0, and £°í/(L) = F[e¡+] g) £[¿>f ] is the

associated homogeneous Koszul algebra.

(4) If L is a graded restricted Lie algebra and charF=2, then the universal

enveloping algebra V(L) is a Koszul algebra and any basis {a¡} of L is a Koszul

set of generators. The defining relations are those of (3) and af + C(az) = 0, where f

is the restriction; E°V(L) = E[b¡] is the associated homogeneous Koszul algebra.

(5) The mod/? Steenrod algebra A [10] has Koszul generators {P'} u {ßP>}, i>0,

7^0 (if/? = 2, Pj = Sq> and ßP', ß omitted) and relations

1. P°=l,
2. ß-Pl=ßPl,

3. /32 = 0,

and the Adem relations
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4. lïa<pb

pa.pb   = ly   f_^a + t(<<P~ï>>(b~t^~l\pa + b-t.pt!

tÚ \        a-pt        )
5. if afípb then

pa,opb _  V (_\Y + t( \ßpa + b~t P1

i = o \     a-pt     )

+ [YVir<- >((p-lxi-')-1)i-- *i*
î = o \      a-pt-l      )

where the binomial coefficients are taken mod/? and [x] is the largest integer ^x.

Since P°= 1, A is not homogeneous. The next example shows that A is actually a

Koszul algebra.

(6) The mod p Steenrod algebra AL for simplicial restricted Lie algebras (see

[4, 7.1, 8.8] for the case/? = 2) is a homogeneous Koszul algebra (the proof of this

is given in 5.3). In fact AL has the same generators and relations as (5) except

P° = 0. Therefore AL is isomorphic to the associated E°A of (5) and hence A is a

Koszul algebra.

(7) Let A be the Z2-aIgebra generated by 4 letters {a, b, c, d} with defining

relations ac = cd=0 and bc = cb. Then [o6|c|í/] e B(A) is a nonbounding 3-cycle of

length 4. Hence A is an example of a homogeneous pre-Koszul algebra which is

not Koszul.

2.3. We shall now show that the cohomology algebra of a homogeneous Koszul

algebra admits a very explicit description.

Suppose {a¡}¡e; is a Koszul set of generators for an algebra A. Let B be an

F-module basis for A consisting of 1, a¡, and certain monomials aH- ■ -ain, atf e {a,}.

A set

n = l

is called a labeling set for B if for each a e B — {1} there is a unique (iu..., in) e S

such that a = aZl- ■ -ain. The pair (5, S) is called a labeled basis for ,4. Clearly such

bases exist. Suppose further that A is a homogeneous Koszul algebra. Then each

monomial aka¡ of A has a unique expression of the form

(2.4) akat 2 /(, ' !W;
(i,j)eS     V, 7/

where the summation is taken over all i,j such that (/,/) e S. We shall call (2.4) the

admissible relations for A (with respect to (B, S)). Let B* = {\, a(i), a(iu ..., /„)}

denote the dual basis, i.e., if (t\,..., in)e S—{1} and ae A then

<a(i!,..., in), a} = 1    if a = a

= 0   otherwise.

•l "¡n>
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In keeping with our previous notation a¡ will denote the cohomology class of the

cocycle KO] e C\A)U*.

Theorem 2.5. Let A be a homogeneous Koszul algebra with Koszul generators

{ai}te/> labeled basis (B, S), and admissible relations (2.4). Then the cohomology

algebra H*A is generated by {a¡}ie7 subject to: if (i,j) e S then

(-\yulaiaj+ 2  (-ly^/t.'!W«. = o
(k.i)EU-s \t, J/

where iy,, = deg <xu + (deg au- l)(deg av- 1).

Proof. By hypothesis H*A is generated (as an algebra) by {a¡}. To determine the

relations among these classes observe that CF~1(A)P is spanned by elements of the

form [a(i'i)| • • • \a(ih ij + 1)\ ■ ■ ■ \cc(ip)] where exactly one factor has length 2 and the

remaining factors are cycles of length 1. Thus the relations of H*(A) are defined by

S[a(/,y')] = 0 for a(i,j) e B*. Applying (2.4) and (1.8) we have

%(U)] = (-i)M«(/)W/>]+   2    (-1)M^!W)K0]-
<.k,l)eU-S V> J/

The signs are introduced by the map 6 of (1.2).

3. Koszul complexes and resolutions. Let A be a Koszul algebra with a fixed

Koszul set of generators {a¡}, i e I. Let R and L be right and left /i-modules respec-

tively. The main purpose of this section is to define the Koszul complex K*(R, A, L),

a small subcomplex of the bar construction B*(R, A, L), whose homology is

Tor* (R, L). This is done in (3.7). In case R = F=L, K*(F, A, F) is shown to be a

differential subcoalgebra of B*(F, A, F) = B*(A).

The splitting 1 — r¡ o e: A °> 1(A) induces a natural injection i: E^A c> 1(A) which

extends to a natural injection

(3.1) i:Bp(E°A)p^Bp(A).

Each element of HPiP(E°A) may be represented by a cycle of BP(E°A)P of the form

2¿/[^iil • ' ' l^ip] where bx.eE\A and i(bit) e {az}. This representation is unique

because there exist no nonzero (p+ l)-chains of length/? (a (p+ l)-chain has length

at least p+1). Hence there is a natural injection

(3.2) j: HP,P(E°A) c* BP(E°A)P.

Finally the composition i ° j induces a natural injection of modules

(3.3) t:R<8>Hp P(E°A) ®L^ BP(R, A, L)

given explicitly by

'(r ® fSmA ■ ■ ■ \bip]\ ® l\ = r (g) 2/KI • • • |flj ® /•

We shall presently define the Koszul complex to be the module R (g> Hifif(E0A) ® L
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with a differential such that (3.3) is a map of complexes. First we need to analyze

the nonbounding cycles of B(E°A) more carefully. For each integer k>0, let

/* = ix x . • • x 4,       h = I,

where / is the indexing set for {az}.

Lemma 3.2. For b = Jiif[bh\ ■ ■ ■ \bip] to be a cycle of BP(E°A)P it is necessary and

sufficient that, for each j (1 Ikjlkp— 1) and each (klt.. .,fc/_i) el''1, (kj + 2,.. ., kp)

el"'''1, the following condition holds

2(-i)e"/AA+1 = o
i

where efj = deg [è(l| • • • \bz¡\ and where the summation is taken over all i such that

(h,..., ii-1) = (k1,..., kj-J and(ij+1,..., ip) = (kj + 1,. ..,kp).

Proof. Since E°A is bigraded, B(E°A) = Bs(E°A)p_q is trigraded (see 1.6). Hence

^ = 22(-i)e"Äi---M(J---iy
i    1 = 1

where

[bil\---\bibil+1\.--\bh]eBp_1(E0A)p

= EiAj. ®---®E%Ai-i 0 E°A 0 E°Ai 0- • ■ 0 EUp-í-i,

(each AZ = A).  Hence 8b = 0 if and only if for each j (\újúp—F) and each

(*!,...,fc,_i)6P~\ we have

i

where the summation is taken over all /suchthat(iu ..., ii-1) = (k1,..., kj-j) and

(ij+2, • ■ -, ip) = (kj+2,..., kp). But this is equivalent to

2(-i)<WiJ+1 = °:

summed over the same values of /'.

Corollary 3.3. Ifc=2tMbtl\- ■ \bh] is a cycle of BP(E° A)p, k=(kx,.. .,km)elm,

and k' = (km+1,..., kp) e Ip~m then

(i) ck=      2     fi\.K+i\---\K}
*!(¡1.>m) = fc

_

is a cycle of Bp_m(E°A)p-m and

(2) cv= 2 ÄI---K1

is a cycle of Bm(E°A)m.
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Proof. Let et =deg [bh\ ■ ■ ■ \bt)]. Then

m-l

^•=2     2     (-iy"Mbil\--\bubil+i\--\bij
Í-1     <Wl.lp) = fc'

m-l r |

; = 1   (¡i.¡i-Oell-1 L i
<I> + 2.lm)6/"'-J-i

where the innermost summation is taken over all i such that (ilt..., if-i)=

(llt..., Ij-i), (iJ + 2,..., im, im +!,..., tp) —(Ij + 2,..., lm, km + 1,..., kp). Since oc = 0,

Lemma 3.2 implies that each of the summations over i is zero. Hence 8ck- =0. A

similar argument shows 8ck = 0. This completes the proof.

Suppose x e HPP(E°A) is represented by ~Ztft[btl\ ■ ■ ■ \bip\. Since

p-i

(lMbh\-Kíj=0

in B(E°A) it follows that in B(A)

3(2/[fltJ • • ■ Kl) = 22' (- Oe"/.[fl.J ■ • • k/vJ • • • W

(3.4)

= 22 2 a*ki-•>.,*!■ •■■«.,,]
i      j = 1     fc

for certain/ e Fand aijk e {a¡}. Now define a differential d for i? <g> H*_%(E°A) ® L

by

</(r (8) x ® /) = 2 (- l)äegrram <SJ> ( £   [bi2\ ■ ■ ■ \bip]\ ® /

(3-5) +(- 1)«"V s {"2 2/^1 • • • l\*l ■ ■ • K]\ ® /

_2 (_ l)^r + ep_lr g,   f   2     [¿J . . . \bipA ® flj.
m (í,ip = m J

It follows from Lemma 3.1 and Corollary 3.3 that each of the bracketed expressions

in this formula is a cycle of B(E°A). It is clear from (3.1), (3.4), (3.5) and (1.7) that

8 o / = / o d. Hence d2 = 0.

3.6. Example. To illustrate (3.5) let A be the mod 2 Steenrod algebra (see (2.2)

Example 5) and let R=Z2=L. Then the cycle

x = {[Sq2\Sq2\Sq3] + [Sq2\Sq*\Sqi] + [SqS\Sqi\Sqi]}

of B3(E°A)3A represents an element of H3_3A(E°A). Using the Adem relations

Sq2Sq2 = 0, Sq2Sq3 = Sq5 + SqiSq\ Sq2Sqi = Sq6 +Sq5Sq\ formula (3.5) yields

dx^ilSq^Sq^ + ÍSq^Sq1]}, a cycle of B2(E°A)2,5.

3.7. The Koszul complex K^R, A, L) is the complex with module KP(R, A, L)

= R® HPiP(E°A) <g) L and with differential dp given by (3.5). The following is the

main theorem of our theory.



48 S. B. PRIDDY [November

Theorem 3.8. If A is a Koszul algebra then Tor*,* (R, L) is the homology of the

Koszul complex K*(R, A, L).

The proof is given in §10.

Since Tor-4 (A, L)=L the complex K%(A, A, L) is a resolution of L by free left

/4-modules. We call K*(A, A,L) the Koszul resolution of L. Similarly K*(R, A, A)

is the Koszul resolution of R (by free right ,4-modules).

Using (3.7) we may restate (3.1) as

Proposition 3.9. There is a canonical injection of complexes

l:K*(R,A,L)^>B*(R,A,L)

given by

'(r ® {2 AI • • • Kî\ ® ') = r ® 2/<KI • ■ • K] ® /.

Following the notational convention B%(A) = B*(F, A, F) let K*(A) denote

K*(F, A, F). The complex K*(A) inherits the structure of a differential coalgebra

from B*(A) via the following commutative diagram

Hp,p(E°A) = Z(BP(E°A)P) BP(E°A)p

\d

BP(A)

D

It 2   BT(E°A)r 0 BS(E°A)S\ c* 2   Br(E°A)r 0 2f,(EM), ̂    2   5rW 0 5,04)
\r + s = p / r + s = p r + s = p

2   HTJ(A)®Hs,ÀA)
r + s = p

where Z() denotes the submodule of cycles and A denotes the external homology

product which is an isomorphism by the Künneth theorem. Let A = h~1°D, then

KP(A)

A

"> BP(A)

2   *¿4) 0 KS(A) ^^   2   Br(A)®Bs(A)
r+s=p r+s=p

commutes and since i is an injection it follows that K*(Á) is a differential coalgebra.

Hence we may state

Proposition 3.10. The map i\ K^(A) -*■ B*(A) of Proposition 3.9 is an injection

of differential coalgebras.

4. Co-Koszul complexes.    In this section we obtain complexes for computing

cohomology algebras and modules for Koszul algebras. Formally, these complexes
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are dual to those studied in §3 ; however, they seem to be more tractable. Again let

A be a Koszul algebra with a fixed Koszul set of generators {a¡}, i e I, and let R and L

be right and left ,4-modules respectively.

The co-Koszul complex K*(R, A, L) is defined to be the graded F-dual of

K*(R, A, L). Since A is assumed to be locally finite over a field F, K*(R, A, L) is a

complex for computing Ext* (L, R*) = Tor£ (R, L)*. We shall first describe the

general structure of this complex and delay an explicit description until 4.4.

In case R = F=L let K*(A) denote K*(F, A, F) = H*(E°A), the graded F-dual of

Kíf(A) = Kíe(F, A, F) = H*(E°A). Now C(E°A) is generated as an algebra by the

elements of C1(E°A)1 = (E?A)*—each of which is a cycle—and so it follows that

there is a natural projection P: CP(E°A)P -> Cp(E°A)pIImop = Hp-p(E°A). Further-

more, the isomorphism 6 of (1.2) induces an isomorphism 6': HP,P(E°A)^-

HP¡P(E°A)* such that the following diagram of algebra morphisms commutes

Cp(E°A)p- ~->(BP(E°A)P)*

j*

H"-P(E°A) = CP(E°A)P/Im8»     ^   > Z(BP(E°A)„)* = HPtP(E°A)*

where j* is dual toy of (3.2). Hence the algebra structure of K*(A) inherited from

H*'*(E°A) is dual to the coalgebra structure of K*(A). Thus the differential S of

K*(A) is determined by its action on K1(A) = C1(E°A)1. Let fiA be the composition

(EU)* —-—> 1(A)* —ííd—► 1(A)* ® 1(A)* ' > (E°A)* (8) (EfA)*

where v. 1(A) -> E°A is an /-"-splitting of i obtained by choosing an F-basis for A

which extends {a,} and where ¡la is the multiplication map of A. Then using (3.5),

(1.2) and (1.5) we find that for ß e K\A)

(4.1) S(/3) = 2(-l)de^M
i

whercfc¿0)-2,jSÍ®#.
We shall now obtain the structure of K*(F, A, L), leaving to the reader the

obvious generalization to K*(R, A, L). Let fiL be the composition

„*                        /* (j?) r*

L* —'-^^ A* <g> L*-^—► (E?A)* <g> L*

where ¡jll is the structure map of L as a left ^4-module. Choose an F-basis for L and

thus a dual basis for L*. Now for A eL*, let

(4.2) AL(A) = 2(-l)deg^,®A;.
i

where i4(X) = J,1 ß, S A,- Dualizing (3.5) for K*(F, A, L) we see that K*(F, A, L)

= K*(A)®L* is a differential left ^*(^)-module and 8(1 <g> A)=AL(A). Sum-

marizing
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Theorem 4.3. Let A be a Koszul algebra then

(1) The cohomology algebra H*(A) is the homology of the co-Koszul complex

K*(A). As a differential algebra, K*(A) = H*(E°A) with differential 8 determined

by (4.1). IfL is a left A-module then

(2) The module Ext* (L, F) is the homology of the co-Koszul complex K*(F, A, L).

As a differential left K*(A)-module, K*(F, A, L)=^K*(A)®L* with differential 8
determined by (4.2).

Proof. Part (1) is implied by Theorems 3.8 and 3.9 and duality. Part (2) follows

from the preceding paragraph.

4.4. Applying Theorem 2.5 we see that the algebra structure of K*(A) = H*(E°A)

admits a very explicit description; using (4.1) we can extend this description to

include the differential algebra structure of K*(A). Let (BA, S) be a labeled basis

for A (see (2.3)). We can assume the relations for A are written in admissible form

with respect to (BA, S), i.e.,

(4.5) akai = 2f(k,l)a-»+ I   /(MW

where/(V) and/(*■]) are in F. Let 7J* denote the dual basis for A*. A basis BEoA for

E°A is formally obtained from BA by replacing the letter a with the letter b and

similarly B%oA from 7?* by replacing a with ß. Admissible relations for E°A with

respect to (BEoA, S) are

bA m   2 /(*' !Wy.

Let ft denote the cohomology class of [ß(i)] e C1(E°A)1-*.

Theorem 4.6. Let A be a Koszul algebra with Koszul generators {a¡}, i e I, labeled

basis (BA, S), and admissible relations (4.5). Then the co-Koszul complex K*(A) is

the differential algebra generated by {j9¡}, i e /, with

(1) a relation for each (i,j) e S

i-iyußfi+ 2   (-i^/MäA-o
Oc,l->eU-S V, JJ

where

vuv = ae%ßu + (aegßu-\)(aegßv-\)   and   U = (j /";
n = l

(2) differential

8ßm= 2 (-i)^/(*¿Vft-

Proof. Since E°A is by definition a homogeneous Koszul algebra, the algebra

structure (1) of K*(A) = H*(E°A) is given by Theorem 2.5. To evaluate the

differential apply (4.1) noting that

ßAßnd = 2 i" 1)»-'*-««*'.-»/^' V 0 Ä.
m \mj

The signs are introduced by 9 of (1.2).
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5. A sufficient condition. In order to apply the preceding theory one must have

effective means to determine whether a homogeneous pre-Koszul algebra is in fact

Koszul. The following sufficient condition is often easy to use since it is com-

pletely algebraic and requires no homological calculations.

Let A be a homogeneous pre-Koszul algebra with pre-Koszul generators {a,},

i e I. Let (B, S) be a labeled basis for A (see 2.3); if a e B, (iu . ..,/„) e S and

a = ah- ■ -ain then (iu ..., in) is called the (S-) label of a. The set t/=(J"=1 In is

ordered first by length and then by the lexicographical ordering derived from the

order of I. Since 5e U, S inherits an ordering.

5.1. We call (B, S) a Poincaré-Birkhoff-Witt (PBW) basis if

(1) (t\,..., ik) and (/,. ..,j¡)eS implies that (iu ..., ik,jx,.. .,j¡) e S or else

the label of each monomial appearing in the admissible expression (see 2.4) of

fl = fl.i' • -W • 'ah is strictly greater than (/,..., ik,ju ...,/),

(2) for k > 2, (iu ..., 4) e 5 if and only if for eachy'(l ûj<k) (ix,.. .,ij)s S ana

(ij + 1,...,ik)eS.

If A' has a PBW basis then A is called a Poincaré-Birkhoff-Witt (PBW) algebra.

5.2. Examples. The following algebras of (2.2) are PBW algebras

(1) 7"{x¡} with B = {1, all monomials xh <g> • ■ • <g> x¡J,

(2) F[x¡] with B = {1, monomials xfrxfTJi1- ■ -xf1; et = 0, 1, 2,...},

(3) F[x¿] with B = {1, monomials x%>x$L-¿ • • xf1; c¡ = 0, 1},

AL with B = {1, monomials (ßsoPsi)(ßHPs2). ■ ■ (jS£* - iPs*)ße* ;

St =  1,2,.. .,£¡ = 0, 1, Si ä /Wf + i + eJ

(if/? = 2 set », = 0).

Theorem 5.3. If A is a PBW algebra then A is a homogeneous Koszul algebra.

The proof of 5.3, which is a generalization ofthat given in [8, 8.4] for AL, is given

below. The idea is to filter the cobar construction CS,P = CS(A)P'* using the labels

of a fixed PBW basis (B, S) for A and to show that off the diagonals s=p the

quotients of this filtration have trivial homology. It then follows from a standard

argument that Hs'p(A) = 0 unless s=p. First, however, we indicate several changes

in [8, 8.4] necessary to account for signs and the fact that we are no longer using

the special basis of AL. Let B* = {\, a(i), a(iu ..., /„)} denote the basis for A* dual

to B (see 2.3).

If iis a label of lengthy then define F,CS,P = submodule generated by the elements

M>'i, ■ • •» /kJK'ki + i, • • -, ik2)\ • ■ ■ |«0fcs.1 + i» • • -, ip)]

where «(/,..., ikl),.. .,a(iks_1 + 1,..., ip) e B* and ItOn ■ ■ -, ip)- This defines a

complete increasing filtration of C*-* as a module. For each label lit is easy to see

(using condition (1) of 5.1) that F,C*¡* is a subcomplex. Let F/_1C=(J/</ F,C.

Then 8 induces a map

B:Fie/Fi-1G->Ej€Fi-iC
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which by 1.8 and (1) and (2) of 5.1 is given by (let k0 = 0, ks=p)

8[a(iu ..., ikl)\ ■ ■ ■ \a(iks_1 + 1,..., ip)]

= 2   2   (-iym-'Hh,---,i\L)\---Hikm.1+i,---,ij-i)
m = l   j' = fcm-i + 2

Hit, ■■■, ikj\ • ■ ■ |«(4s_1 + i, • •.. Q] (mod F/_iC)

where

Ym.i = deg [a(iu ..., ikl)\ ■ ■ ■ \a(ikm_l + 1, ..., i^y)]

+ deg a(ikm_v ..., /y.^-deg a(i„ ..., ikJ.

5.4. Proof of Theorem 5.2. Fix p>0 and let 1 ¿s^p. To each element

X = [a(/"i, . . ., ikl)\a(ikl + 1, . . ., ik2)\ ■ ■ ■ |a(/fcs_1 + 1, . . ., ip)]

of length p and homological degree s we assign an integer ai (x), called the admis-

sibility index, defined as follows: Let ai (x) be the smallest integer k¡, \íkjíks—\,

such that a(ik 1 + i,..., t'kj + i, ■ ■ -, ikl + 1) e B*. If no such integer exists then set

ai (x)=p. Now define a contracting homotopy

<D:FiC5'p/F/_1Cs'p^F/Cs-1-p/F/_1Cs-1,p

for 1 tis^p by the following formula:

If

X = [aih)\a(i2)\ ■ ■ ■ [«(/,) | a(ij + 1, . . ., ikj+1)\ ■ ■ ■ \a(iks_1 + 1, . .., /„)]

with ai (x)=j and k¡=j<p set

<D(X) = (- l)Mct(/i)K/2)| • • ■ l«0';-l)l«fe> 0 + 1» • • •> '"/cJ+1)l • • • |«0fcs_1 + l, ■ ■ -, ip)]

where

yx = deg [«(/,)! • • ■ |«(/;)] + deg a(k¡) deg a(/i + 1,..., ikj+l).

Otherwise set <I>(x) = 0.

A straightforward verification now shows that if 0<s<pandx e F,CS,P/F!-1CS,P

then S<D(x) + <PS(x) = x.

6. Applications to universal enveloping algebras. In this section we derive the

Koszul resolution K^F, U(L), U(L)) for a universal enveloping algebra U(L). The

resolution coincides with May's generalization of the classical Koszul resolution.

Comparisons are also given for L, a restricted Lie algebra over a field of charac-

teristic/7 =2.

6.1. Graded Lie algebras. Let L be a graded Lie algebra [6] (including, of course,

the classical case of L concentrated in degree zero). In 2.2, Example (3), the universal

enveloping algebra U(L) is defined and shown to be a Koszul algebra with asso-

ciated homogeneous Koszul algebra E°U(L) = E(L~) 0 A(L+) where E(L~) is

the exterior algebra on the elements L~<^L of odd order and A(L+) is the free
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commutative algebra on the elements L+<^L of even order. Recall that a typical

element <x1;..., xn> e E(L~) has bidegree (n, 2?=i degx¡ — n) and similarly a

typical element xy ■ xn e A(L+) has bidegree (n, 2f=i deg x¡ — n).

Using the notation (1.9), E(sL + ) is a trigraded F-algebra with a typical element

<ixl5..., ixn> e E(sL+) having tridegree (n, n, 2f=i deg x¡ —«). Similarly the

divided power algebra Y(sL~) is a trigraded F-algebra with a typical element

yri(sxi)- ■ -YrS-SX^ e Y(sL~) having tridegree (p,p,q) where /? = 2í1=ir¡ and

<7 = 2?=i rt degXj— p. We may consider Y(sL~) and E(sL + ) as commutative

differential F-algebras with zero differential and with the homological degree given

by the first gradation. The complexes B(E(L~)) and B(A(L+)) are also com-

mutative differential F-algebras under the shuffle product [3, Theorems 12.1-12.2]

and it is classical that the differential algebra maps

gl:Y(sL-)->B(E(L-))

defined by gi(yr(5x)) = [x| • • • |x] (r factors) and

g2:E(sL + )^B(A(L+))

defined by g2(sx}= [x] induce homology isomorphisms

ft.: Y(sL-) •£■* H*(E(L-)),       g2.: E(sL + ) ^ H*(A(L + )).

Now the shuffle product also induces a map [3, p. 313]

g3: B(E(L-)) <g> B(A(L+)) -£* B(E(L~) ® A(L + ))

given by

gs([xi\ ■ ■ ■ \xn] ® [y,\ • • ■ fj^D = (- lyixA ■ ■ ■ \xn] * [yA ■ ■ ■ \ym]

which yields a homology isomorphism

g3.: H*(E(L~)) <g> H*(A(L+)) -^* H*(E(L~) ® A(L + )).

By the definition 3.7

K,(F, U(L), U(L)) = i/*(F(L") ® A(L+)) ® £/(L).

Hence we have the following isomorphism of complexes

(6.2) g*: Y(sL-) ® £(íL + ) ® £/(£) -2+ tf„(F. t7(L), (7(L))

where g* = (g3. ® t/(L)) ° (gj.. ® g2» ® U(L)) and where the differential of the

left-hand side is dictated by the differential of K*(F, U(L), U(L)). Now (6.2) and

the embedding of Proposition 3.9 result in an embedding

Y(sL~) ® E(sL + ) ® U(L) -> B(F, U(L), U(L))

which coincides with that described by May [4, p. 143]. Hence (6.2) is an iso-

morphism between May's Y(L)=Y(sL~) ® E(sL + ) ® U(L) and the Koszul

resolution K*(F, U(L), U(L)).
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6.3. Graded restricted Lie algebras (char F=2). Let L be a graded restricted Lie

algebra [6] over a field of characteristic p = 2. In 2.2, Example (4), the universal

enveloping algebra V(L) is defined and shown to be a Koszul algebra with asso-

ciated homogeneous Koszul algebra E°V(L) = E(L). The Koszul resolution is

defined (3.7) and

K¿F, V(L), V(L)) = H*(E(L)) 0 V(L) = F(sL) 0 V(L).

The embedding of Proposition 3.9 again shows that K*(F, V(L), V(L)) agrees with

May's resolution X(L) [4, Remark 10, p. 140].

7. Application to the Steenrod algebra. Let A denote the mod/7 Steenrod

algebra (2.2, Example (5)). In this section we compute the co-Koszul complexes

K*(A) for Ext¿ (Zp, Zp) and K*(ZP, A, H*X) for ExtA (H*X, Zp) where X is a

simplicial spectrum [1] with finitely generated reduced cohomology groups H*X

with coefficients in Zp. These complexes provide a homological description of the

results of [1].

7.1. The prime 2. Let p = 2, then with respect to the generators {Sq1, Sq2, Sq3,...}

A is a Koszul algebra. This is immediate because the associated graded algebra

E°A (2.2, Example (6)) has a PBW basis B={Sqa«- ■ -Sq^: ai + 1^2a¡, k^l} (5.2,

Example (4)) and hence is a homogeneous Koszul algebra by Theorem 5.3.

The mod 2 Adem (defining) relations for A are

(b —1\ ta'21 lb — i—1\
\Sqa + b + 2 (     _-.  \Sqa + b-'Sqi

for 0 á a < 2b. If we also let Sq' denote the image of Sq1 in E°A then the relations

of E°A are
[a/2]W$ fi -j-\\

Let B* be the basis dual to B and let ct¡ denote the element [Sq**] e H1-1-i-\E°A)

where Sq{* 6 B* is dual to Sq'. Now Theorem 4.6 shows that as a differential

Z2-algebra K*(A) is generated by a,, i>0, subject to the relations: if a^2Z?>0

{S(.+5W3) /a-j-\\I2(a + b)l3}

with differential

(2Ä3> /a-j-l\™?> /a-j-l\

where {x} is the greatest integer less than x.

It is now easy to see that there is an anti-isomorphism of differential Z2-algebras

O: (K*(A), 8) ->- (ElS, d1S) extending the map of generators given by ff)tlh> A¡

(/ä0), where (E1S,d1S), known as the A algebra, is the (JS1,d1) term of the
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Adams spectral sequence (derived from the lower 2-central series filtration) for the

simplicial group sphere spectrum FS [1]. One merely checks that the relations and

differential given above carry over to those described by Wang [13, 1.5.4, 1.6.5]

A A - V i""7'"1^ AAiA2i + l+n   —   2    1 • lAi + n-;A2i + l+;>
ÍS0   \ J I

d>K = z (n~J~lY"-<-^-
/go \  i+1    /

More generally if L is a left ^-module (of finite type over Z2) then by Theorem

4.3, K*(Z2, A, L) is the differential left K*(A)-modu\e K*(A) ® L* with differential

determined by

8(1 ® A) = AL(X),        XeL*,

where àL is induced by the coproduct of L* as a left /i*-comodule (see 4.2). Now L*

has the structure of a right /f-module (transposed to the left ^-module structure of

L), using this structure

AL(X) = 2 <*, ® ^Sq\        X e L*.
¡>0

In particular if L = H*X for a simplicial spectrum X with finitely generated

cohomology groups we have an anti-isomorphism *F (extending <i>) of differential

left ^*(/<)-modules and differential right E1S=Q>(K*(A))-moàu\es

K*(Z2, A, H*X)-> E1X

to((D 0 H*X)
K*(A) ® H*X-> H*X ® E1S

where t: B (g> B' —> B' ® B is the twisting map for Z2-modules.

.Setting X=AS, the simplicial Eilenberg-MacLane K(Z2) spectrum, we see that

the co-Koszul resolution K*(Z2, A, A) corresponds to (E1AS, d1AS).

The relationship between K*(A) and the cobar complex C*(A) is given by

(1) t*:C*(A)^K*(A),

the surjective map of differential algebras which is dual to the injection r. K*(A)

—> Bjf(A) of Proposition 3.10. In order to explicitly describe i*, recall that

C*(A) = T(sI(A*)) with diagonal differential 8* and that according to Milnor

A*=Z2[Ç1, £2,...] where £¡ is dual to Sq2'~1Sq2i~2- ■ -Sq1 with respect to the basis

B. On the generators of C*(A), i* is given by

'*([*]) = °n   ifx = ñ, n>0,

= 0     otherwise.

Thmi*[ÉM---|ft']-^---afc.
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A simple calculation shows that for m>0, w^O,

f*8*r¿»£] = ,*[(ff 0 f»).(I 0 li + li 0 1)"]

=   2   ( • )a2m+iam + n-i  = 0

which under the anti-isomorphism <t> yields the original presentation of the defining

relations [1, §2.4(iii)]

2     I      •     Pi-l+rA-l+2m = 0.

Setting «3 = 0, one obtains the differential dxS [1, §2.4(iv)]

tPK-i =   2   Í1+J)K-i^-i       (n^2).

Hence the elements of C*(A) involving |¡, i>2, are not necessary for determining

the cohomology algebra H*(A) and the co-Koszul complex K*(A) is obtained by

factoring out (in the precise manner stated above) these superfluous elements.

7.2. The odd primes. Let p be an odd prime. Then A is a Koszul algebra with

generators {P¡} u {ßP>}, / >0, /£ 0(2.2, Examples (5), (6)). A PBW-basis /i for A is

described in (5.2, Example (4)). Let B* be the basis dual to B and let rrt denote the

element [P**] e H1-1-2i(p-1)-1(E°A) where Pl* e B* is dual to P\ Similarly let Pj

denote the element [ßPj*] e H1-1-2Kp-1)(E°A) where ßP1* e B* is dual to ßP3'.

The co-Koszul complex K*(A) is most easily described by analyzing the surjective

map of differential algebras t*: C*(A) -*■ K*(A) transposed to the inclusion of

Proposition 3.10. Since A*=ZP[ÇU |2,...] 0 E[t0, tu ...], i* is given on the

generators of C*(A) by

t*([x]) = 7TZ   ifx = fi, />0,

= p,    if X = T0${, j SO,

= 0    otherwise.

The classes nt, p¡ generate K*(A) and the relations are now obtained by evaluating

(*S* on the classes K^fí], [fiffl], mfcl.iifcti, and [r,£éfe], [*ifffll m£0,
n^O. (Here S* is the differential of C*(A).) For example,

s*(Kííñ])= 2 C+"/)'*([-fpm+ikoiï,+i]+[ir+%i^+i]) = o

2     I     •       Km + rPm + l-Ppm + i^m+i) = 0 («1 ̂  1, « ̂  0).
1 + J = 71    V       '       /

hence

(1)

The other relations are obtained similarly

(2) 2   ftVf+r».+.-i - 0       (w^1'»^°).
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(3) 2   (   •   l^m + y + iPm + i = 0       (m, n^O),

(4) 2   (l+j)pfm+i+i-pm+i -'-0       (iw.nèO).
i + y = 7i \   i   /

The differential of K*(A) is obtained by evaluating /*S* on £" and t0£ï

(5) 8nn=    2   i't^W«       (»>0).

(6) SPn=    2   ('^W-p^)       (n^O).

Results (l)-(6) correspond to those of [1, §2.4'] under the anti-isomorphism of

differential Zp-algebras <J>: (K*(A), 8) -> (F1^ tf^S) extending the map on genera-

tors given by 7r¡ +1h-> A¡, p¡ \-> — ¡j,z _ x (itO).

8. Matric Massey products. We now briefly examine the role of matric Massey

products in the preceding theory. Recall [12] that for an algebra A there is a 1-1

correspondence between any basis for HXA and a minimal set of generators for A

and between any basis for H2A and a minimal set of defining relations for A.

Hence it is clear that if A is a homogeneous pre-Koszul algebra then H1,PA =0 for

p>\ and H2-"A=0 for/>>2. Generally, however, matric Massey products may

appear (see 2.2, Example (7)) and a homogeneous pre-Koszul algebra need not be a

homogeneous Koszul algebra. A basic result of May's theory of matric Massey

products [5] states that every indecomposable element of H*A can be built up via

matric Massey products from the indecomposable elements of A. In this description

matric Massey products take values in the indecomposable elements of H*A and

so there is no indeterminacy. A trivial consequence of May's result is

Proposition 8.1. Let A be a homogeneous pre-Koszul algebra. In order for A to

be a homogeneous Koszul algebra it is necessary and sufficient that every matric

Massey product of H*A be zero.

9. Duality. For certain homogeneous Koszul algebras A the algebra H*H*A

may be naturally identified with A. In this section we examine this duality phenom-

enon and its relationship to the dual Adams spectral sequence for the sphere

spectrum for simplicial Lie algebras.

For any bigraded algebra A let Ds-qA=Hs-s-qA. We call D* the diagonal co-

homology functor; clearly D*A is a subalgebra of H*A. Note also that D*A is a

homogeneous pre-Koszul algebra.

Proposition 9.1. There is a natural map of bigraded algebras <I>: D*D*A -> A*

extending the natural isomorphism <p: Af* —^ A1<q. If A is a homogeneous pre-Koszul

algebra then O is an isomorphism.
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9.2. Examples. It follows from 2.2, Example (1), that D*D*T{xz} = T{Xi} and

D*D*N{x,} = N{xt}. Similarly in 2.2, Example (2), D*D*F[xt+] = F[xt+] and

D*D*E[xi+] = E[x,+ ].

If A is a homogeneous pre-Koszul algebra then A is Koszul provided H*

reduces to D* in the obvious sense. Thus with this abuse of notation:

Corollary 9.3. If A and H*A are homogeneous Koszul algebras then

3>: H*H*A -^U A.

Proof of Proposition 9.1. Since D*A is a homogeneous pre-Koszul algebra, it

suffices to show that the natural isomorphism <p: A*% -> AlyQ extends to a map of

algebras $s: Ds-qD*A -> As¡q for s= 1 and 2.

In degree 1 let

<¡>1=q>: D1-'D*A = A?*-^A1¡q.

Now consider the exact sequence

0 —► R —■> AltQ 0 A1<q -^ A2<2q

where /x is the multiplication map and R is the set of relations for A2,*. The dual

exact sequence shows that R* = D2-*A and /* is the Yoneda multiplication map

D1*A 0 DX-*A -+ D2-*A.

Thus the commutative diagram

(DU*A)* 0 (D^*A)*   =   A*%

(D2-*A)* = R*

à** ^i.* 0 A1¡lt

R

A2,q and henceshows that <p 0 9 induces a natural injective map 02: D2"D*A

the desired natural map of algebras <!>*: D*D*A ->■ A*.

If A is a homogeneous pre-Koszul algebra then $ is surjective since A is generated

by elements of A1-if. Furthermore <5 is injective since the relations of A are generated

by the relations of A2,*.

9.4. Example. Let AL be the mod 2 Steenrod algebra for simplicial Lie algebras

(see 2.2, Example (6)). A PBW basis for H*AL = ExtAL (Z2, Z2) is given in [8, 8.3];

hence by Corollary 9.3 H*H*AL f^ AL.

By [8, 9.1], Ext^ (Z2, Z2) \ -n^LAS, the stable stems for simplicial Lie algebras,

thus

Ext,j>LAs (Z2, Z2)-> AL.

Geometrically, the analogous situation for the stable stems n^S has been noted by

Moss [7, p. 192]: There is a dual Adams spectral sequence

E2 = Ext^s (Z2, Z2) => A

in which E2 # E& where A is the mod 2 Steenrod algebra.
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10. Proof of Theorem 3.8. The proof depends on a spectral sequence: For L a

left and R a right ^-module, the filtration of A induces a filtration of the bar

construction B(R, A, L) which results in a spectral sequence,

El,*(R, A,L) = Ä ® H^(E°A) ® L => Tor*.* (R, L),

the (F1, ci1) term of which is shown to coincide with the Koszul complex K*(R, A, L).

Since E°A is a homogeneous Koszul algebra (HSyP(E°A) = 0 for s^=p) the spectral

sequence collapses (E2 = Em) thus completing the proof.

The filtration of A is defined in terms of a fixed presentation a (see §2). Using this

filtration define an increasing filtration of the bar construction by

FpBT(R,A,L) = 0   for/><0,

FPB0(R, A,L) = R®L   for p ^ 0,

FvBr(R, A,L)=        2        R ® flj/O4) ® ■ • ■ ® ̂ 04) ® ̂     for/7 ̂  0, r > 0.

Clearly Fpß(i?, /Í, L)^B(R, A, L) is a subcomplex and {FPB(R, A, L)} is complete

and bounded below. Denote by {Er(R, A, L), dr} the spectral sequence associated

with this filtration. The E° term is

™pq(R,A,L)      (pr>B¿R>A>E)\
\Fp-iB,IR, A, L)/p + i

where s is the homological degree, p is the filtration degree and p+q is the degree

associated with the internal degrees of R, A, and L. As an F-module

E°_P,Q(R, A,L)=     2     Ri ® Ss(E°A)p¡j ® Z*.
i + Í + fc = <J

Examining the boundary c?BCBi/liL) of Ä(i?, /Í, L) of (1.7), it is easy to see that the

differential d° is given on a class r®x®/ei?(g> B(E°A) ® L by

«*°(r ® x ® /) = (- l)degrr ® SS(£oA)(x) ® /.

Hence

^.„(i?, ¿, L) =     2     R' ® H*.vÂE°A) ® ¿*
. + i + k = «

and so as F-modules F¿(/?, /f, L) =/^(i?, /f, L). Now ö"1 is the connecting homo-

morphism in homology of the short exact sequences

Fp.yB(R,A,L)        FPB(R, A, L) FPB(R, A, L)

~* FP^2B(R, A, L) ^ FV_2B(R, A, L) "* F, _!*(/{. ¿, L) "* U"

Using (3.3) and (1.7), d1 is seen to have the form of (3.5); hence E$.(R, A,L)

= Kst.(R, A, L) as complexes.

To show that E2 = Eco observe that

fls.p,«. ^s,p,«(^» A, L,) —> í.s_i_p_rq + r(iv, A, L)
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and that

ElPiQ(R, A, L) =     2    R> ® hs.pÀe°A) 0 Lk = 0
i -r- / + fc = g

unless s=p and so £?r = 0 for rS:2.
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