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Abstract

For a graded naturally labelled posetP, it is shown that theP-Eulerian polynomial

W(P, t) : =
∑

w∈L(P )

tdes(w)

counting linear extensions ofP by their number of descents has symmetric and unimodal coefficient
sequence, verifying the motivating consequence of the Neggers–Stanley conjecture on real zeroes for
W(P, t) in these cases. The result is deduced from McMullen’sg-Theorem, by exhibiting a simplicial
polytopal sphere whoseh-polynomial isW(P, t).

Whenever this simplicial sphere turns out to be flag, that is, its minimal non-faces all have cardinal-
ity two, it is shown that the Neggers–Stanley Conjecture would imply the Charney–Davis Conjecture
for this sphere. In particular, it is shown that the sphere is flag whenever the posetP has width at most
2. In this case, the sphere is shown to have a stronger geometric property (local convexity), which
then implies the Charney–Davis Conjecture in this case via a result from Leung and Reiner (Duke
Math. J. 111 (2002) 253).

It is speculated that the proper context in which to view both of these conjectures may be the theory
of Koszul algebras, and some evidence is presented.
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1. Introduction

This paper has several goals. The first is to show that, in the context of the Neggers–
Stanley Conjecture1.2, for every graded posetP there is a polytopal simplicial sphere
lurking in the background, which we will denote�eq(P ). This sphere is relevant for two
purposes:

• TheP-Eulerian polynomial (defined below) coincides with theh-polynomial of�eq(P ).
As a consequence, its coefficients satisfy McMullen’s conditions for theh-vector of a
simplicial polytope, and are in particular symmetric and unimodal. Thereby we verify
the motivating consequence of the Neggers–Stanley Conjecture for naturally labeled
graded posets (see discussion after the statement of Conjecture1.2).

• Whenever the simplicial sphere�eq(P ) is flag, the Neggers–Stanley Conjecture1.2for P
implies the Charney–Davis Conjecture for the sphere�eq(P ). Furthermore, whenP has
width at most 2, it is shown in Theorem3.23that�eq(P ) satisfies a stronger geometric
condition than flagness known aslocal convexity, which implies the Charney–Davis
Conjecture in this case by a result from Leung and Reiner[33].

The latter portion of the paper (Section4 onward) is aimed toward the thesis that both the
Charney–Davis and Neggers–Stanley Conjectures, along with some other combinatorial
conjectures and results, should be considered in the context of the following
question.

Question 1.1.For which Koszul algebras is the Hilbert function a Polya frequency se-
quence?

To give a more precise discussion, we start by recalling the Neggers–Stanley Conjecture.
For any partial orderP on [n] := {1,2, . . . , n}, letL(P ) denote its set of linear extensions,
that is the set ofw = (w1, . . . , wn) ∈ Sn for which i <P j impliesw−1(i) < w−1(j).
TheP-Eulerian polynomial

W(P, t) :=
∑

w∈L(P )

tdes(w)

is the generating function for the linear extensionsL(P ) counted according to cardinality
of theirdescent sets:

Des(w) := {i ∈ [n− 1] : wi > wi+1}
des(w) := #Des(w)
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Conjecture 1.2(Neggers–Stanley). For any labelled poset P on[n] the polynomial
W(P, t) has only real(non-positive) zeroes.

We are mainly interested in the case whereP is naturally labelled, that isi <P j implies
i < j . For the general case Brändén[8] has recently announced a counterexample.

Some history and context for the conjecture follows. For naturally labelled posets Con-
jecture1.2was made originally by Neggers[35], and generalized to the above statement by
Stanley in 1986. WhenP is an antichain ofn elements,W(P, t) is theEulerian polynomial
whose real-rootedness was shown by Harper[28] and served as an initial motivation for the
conjecture. For the case whenP is a naturally labelled disjoint union of chains the result is
due to Simion[40]. This result was extended to arbitrary labellings by Brenti[9], who also
verified the conjecture for Ferrers posets and Gaussian posets[9]. An important combinato-
rial implication of the real-rootedness of a polynomial with non-negative coefficients is the
unimodality of the coefficients (i.e. for the sequence of coefficientsa0, . . . , ar there is an
index j such thata0� · · · �aj � · · · �ar ). Gasharov[23] verified the unimodality conse-
quence of the conjecture for naturally labelled graded posets with at most 3 ranks. Corollary
3.15verifies this (and something stronger) more generally forall naturally labelled graded
posets.

Next, we recall the Charney–Davis Conjecture. Given an abstract simplicial complex�
triangulating a(d − 1)-dimensional (homology) sphere, one can collate the face numbers
fi , which count the number ofi-dimensional faces, into itsf-vectorandf-polynomial

f (�) := (f−1, f0, f1, . . . , fd−1)

f (�, t) :=
d∑

i=0

fi−1t
i .

Theh-polynomialandh-vectorare easily seen to encode the same information:

h(�) := (h0, h1, . . . , hd) where

h(�, t) =
d∑

i=0

hit
i satisfies

tdh(�, t−1) = [tdf (�, t−1)]t �→t−1.

(1.1)

Theh-polynomial turns out to be a more convenient and natural encoding in several ways,
closely related to commutative algebra, toric geometry, and shellability. For example, the
fact that homology spheres areCohen–Macaulayimplies non-negativity of thehi , and the
Dehn–Sommervilleequations for simplicial spheres assert thathi = hd−i for 0� i�d

(see[47, Section II.6]). Note that the latter implies that theh-polynomial issymmetric,
h(�, t) = tdh(�, t−1), and thath(�,−1) = 0 wheneverd is odd.

The Charney–Davis Conjecture[13, Conjecture D]concerns the sign of the quantity
h(�,−1) in the case whered is even and� is a simplicial homology(d − 1)-sphere which
happens to be aflag complex, that is the minimal subsets of vertices which donot span a
simplex all have cardinality two. For polytopal simplicial spheres�, this quantity is known
[33] to coincide with thesignatureor indexof the associated toric varietyX�.
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Conjecture 1.3(Charney–Davis, Conjecture D[13] ). If � is a flag simplicial homology
(d − 1)-sphere and d is even, then

(−1)
d
2h(�,−1)�0.

The first hint of a relation between these two conjectures comes from the following simple
observation (cf.[13, Lemma 7.5]).

Proposition 1.4. Let h(t) = hdt
d + · · · + h1t + h0 ∈ R[t] be a polynomial in t of even

degree d with non-negative coefficients. Ifh(t) is symmetric and has only real zeroes, then

(−1)
d
2h(−1)�0.

Proof. Sinceh(t) has degreed we havehd �= 0 and by symmetryh0 �= 0. Thush(t)
hasd zeroes which must then all be strictly negative sincehi �0 for 0� i�d. Factor
h(t) = hd

∏d
i=1(t − ri) according to its (real) zeroesri . Symmetry ofh(t) implies thatr is

a zero if and only if1
r

is a zero. Ifr �= −1, exactly one ofr, 1
r

is less than−1. Thus for a
zeror, eitherr = −1 is a zero, in which caseh(−1) = 0 and we are done, or elseexactly
half of the factors in the producth(−1) = hd

∏d
i=1(−1− ri) are negative, implying that

the product has sign(−1)
d
2 . �

The paper is structured as follows.
Section2 reviews some theory ofP-partitions, order polytopes, and their canonical tri-

angulations.
In Section3.1we show that whenP is agradedposet, that is every maximal chain inP

has the same number of elementsr, there exists a simplicial sphere�eq(P ) of dimension
#P − r − 1 such that

h(�eq(P ), t) = W(P, t).

Thus the Neggers–Stanley Conjecture forP implies the Charney–Davis Conjecture for
�eq(P ) (whenever it is flag) via Proposition1.4. Combinatorial interpretations for the (non-

negative) Charney–Davis quantity(−1)
#P−r

2 W(P,−1), for some cases of posets where the
Neggers–Stanley Conjecture is known, are explored in[39].

In Section3.2it is shown that the sphere�eq(P ) is the boundary complex of a simplicial
convex polytope. Therefore by McMullen’sg-Theorem characterizing the number of faces
of such polytopes[42], the coefficients(h0, h1, . . . , h#P−r ) are symmetric and unimodal.

Convexity has further relevance. In[33] it was shown via the Hirzebruch signature formula
that the Charney–Davis Conjecture holds for a simplicial polytope under a certain geometric
hypothesis (local convexity) stronger than being flag. We show in Section3.2 that this
hypothesis holds for�eq(P ) wheneverP haswidth (i.e. size of the largest antichain) at
most 2, thereby providing more evidence for the Neggers–Stanley Conjecture.

In Sections4 and5 we gather evidence for the thesis that both of these conjectures can
be fruitfully viewed within the context ofKoszul algebras. In particular, we point out ways
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in which Hilbert series of Koszul algebras interact well with the theory ofPolya frequency
seriesand polynomials with real zeroes.

After this paper was circulated, Athanasiadis[1] has shown that the unimodular triangu-
lation of the order polytope from Section3.1 is a member of a class of triangulations of
polytopes that decompose into a join of a simplex and a polytopal sphere. Most notably he
has exhibited such a triangulation for the Birkhoff polytope.

2. Review:P-partitions and order polytopes

In this section we review some of the theory ofP-partitions, distributive lattices and order
polytopes; see[29,31,30,41,43]for proofs and more details. Also see[21, Section 1.2]for
definitions and basic facts about polyhedral cones and fans.

Given a naturally labelled posetP on [n] ordered by�P , the vector space of functions
f = (f (1), . . . , f (n)) : P → R will be identified withRn. One says thatf is a P-
partition if f (i)�0 for all i andf (i)�f (j) for all i <P j . Denote byA(P ) the cone of
all P-partitions inRn. The convex polytope

O(P ) = A(P ) ∩ [0,1]n

is called theorder polytopeof P. An order ideal I in P is a subset ofP such thati ∈ I and
j <P i impliesj ∈ I . It is known thatO(P ) is the convex hull of the characteristic vectors
�I ∈ {0,1}n asI runs through all order idealsI in P.

A useful alternative way to viewO(P ) is provided by the fact that it is isometric to the
hyperplane slice atx0 = 1 of the coneA(P 0) ⊂ Rn+1, whereP 0 is the naturally labelled
poset on[0, n] := {0,1, . . . , n} obtained fromP by adjoining a new minimum element 0.
We call the coneA(P 0) thehomogenizationof the coneA(P ).

We recall a few basic definitions some of which were already mentioned in the introduc-
tion. The set of permutationsw = (w1, . . . , wn) ∈ Sn which extendP to a linear order is
called itsJordan–Hölder set

L(P ) :=
{
w = (w1, . . . , wn) ∈ Sn : i <P j impliesw−1(i) < w−1(j)

}
.

Thedescent setanddescent numberof w are defined by

Des(w) := {i ∈ [n− 1] : wi > wi+1}
des(w) := #Des(w).

Define a cone for eachw ∈ Sn

A(w) := { f ∈ Rn :
f (wi)�f (wi+1) for i ∈ [n− 1],
f (wi) > f (wi+1) if i ∈ Des(w)}

It is not hard to see that the closure ofA(w) (defined by removing the strict inequalities
above), is aunimodular(simplicial) cone, that is its extreme rays are spanned by a set of
vectors forming a lattice basis forZn. Similarly, the closure ofA(w)∩[0,1]n is a unimodular
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simplex. Now we are in position to formulate the basic fact from the theory ofP-partitions
which will be crucial for subsequent arguments.

Proposition 2.1.

(i) The cone of P-partitions decomposes into a disjoint union as follows:

A(P ) = �w∈L(P )A(w)

The closures of the conesA(w) for w ∈ L(P ) give a unimodular triangulation of
A(P ).

(ii) The unimodular triangulation ofA(P ) described in(i) restricts to a unimodular trian-
gulation of the order polytope

O(P ) = �w∈L(P )A(w) ∩ [0,1]n.

We call the triangulations ofA(P ) (into simplicial cones) andO(P ) (into simplices) from
Proposition2.1theircanonical triangulations. Note that via homogenization the canonical
triangulation ofO(P ) is easily seen to be the restriction of the canonical triangulation of
the homogenized coneA(P 0) to the hyperplanex0 = 1. This makes sense since there is an
obvious bijection between the linear extensionsL(P 0) andL(P ).

The combinatorics of these triangulations is closely related to thedistributive lattice
J (P ) of all order idealsI in P ordered by inclusion. Theorder complex�J (P ) is the
abstract simplicial complex having a vertex for each idealI in P and a simplex for each
chainI1 ⊂ · · · ⊂ It of nested ideals. Given a set of vectorsV ⊂ Rn, define theirpositive
spanto be the (relatively open) cone

pos(V ) :=
{∑
v∈V

cv · v : cv ∈ R, cv > 0

}
.

Proposition 2.2.

(i) Every non-zero P-partitionf ∈ AP can be uniquely expressed in the form

f =
t∑

i=1

ci�Ii

where theci are positive reals, and I1 ⊂ · · · ⊂ It is a chain of ideals in P. In other
words,

A(P ) =
⊔

ideals I1⊂···⊂It⊂P
pos

(
{�It }ti=1

)
.

(ii) The canonical triangulation of the order polytopeO(P ) is isomorphic(as an abstract
simplicial complex) to�J (P ), via an isomorphism sending an ideal I to its character-
istic vector�I .

(iii) The lexicographic order of permutations inL(P ) gives rise to a shelling order on
�J (P ).



V. Reiner, V. Welker / Journal of Combinatorial Theory, Series A 109 (2005) 247–280 253

(iv) In this shelling, for each w inL(P ), the minimal face of its corresponding simplex in
�J (P )which is not contained in a lexicographically earlier simplex is spanned by the
ideals{w1, w2, . . . , wi} wherei ∈ Des(w).

Using basic facts about shellings (see[4]), part (iv) of the preceding proposition implies
that one can re-interpret the polynomialW(P, t):

W(P, t) :=
∑

w∈L(P )

tdes(w) = h(�J (P ), t) (2.1)

This connection withJ (P ) also allows one to re-interpret these results in terms of Ehrhart
polynomials. Recall that for a convex polytopeQ in Rn having vertices inZn, the number
of lattice points contained in an integer dilationdQ grows as a polynomial in the dilation
factord ∈ N. This polynomial ind is called theEhrhart polynomial:

Ehrhart(O(Q), d) := #
(
dO(P ) ∩ Nn

)
.

WheneverQ has a unimodular triangulation abstractly isomorphic to a simplicial complex
�, there is the following relationship:∑

d�0

Ehrhart(O(Q), d) td = h(�, t)
(1− t)n+1 . (2.2)

3. The equatorial sphere for a graded poset

3.1. Definition and main properties

In this section we exhibit for every graded naturally labelled posetP on [n] having r
ranks an alternative triangulation of the order polytopeO(P ), which we call theequatorial
triangulation. This triangulation has several pleasant properties, proven in this and the next
subsection, which may be summarized as follows:

• It is a unimodular triangulation.
(See Proposition3.6)

• It is isomorphic, as an abstract simplicial complex, to the join of anr-simplex with a
simplicial (#P − r − 1)-sphere, which we will denote�eq(P ), and call theequatorial
sphere.
(See Corollary3.8)

• h(�eq(P ), t) = h(�J (P ), t) = W(P, t).

(See Corollary3.8)
• The equatorial sphere�eq(P ) is polytopal, and hence shellable and a PL-sphere.

(See Theorem3.14)
• WhenPhas width at most 2, the equatorial sphere�eq(P ) is realized by a locally convex

simplicial fan. Hence the equatorial sphere is a flag subcomplex of�J (P ), and a flag
sphere for which the Charney–Davis Conjecture holds.
(See Theorem3.23)
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Fig. 1. (a) A graded posetP. (b) The distributive lattice of order idealsJ (P ). (c) Part of the canonical triangulation
�J (P ) of its order polytopeO(P ). (d) The analogous part of the equatorial triangulation. (e) The equatorial
1-sphere�eq(P ).

Example 3.1. Let P be the graded naturally labelled poset on[4] with r = 2 ranks shown
in Fig. 1(a). LetJ (P ) be its associated (distributive) lattice of order ideals (see Fig.1(b)).

The 4-dimensional order polytopeO(P ), and its canonical triangulation by�J (P ), may
be “visualized” as follows. Start with the convex pentagon� which is the convex hull of

{�1, �2, �12, �13, �123, �124}
and triangulate� as shown in Fig.1(c). The canonical triangulation is obtained by taking
the simplicial join of this triangulation of� with the edge{�∅, �1234}.

The equatorial triangulation (see Proposition3.6) is obtained starting from the alter-
nate triangulation of� depicted in Fig.1(d) and taking the simplicial join with the edge
{�∅, �1234}. Equivalently, it is obtained from the equatorial 1-sphere�eq(P ) depicted in
Fig. 1(e) and taking the simplicial join with the triangle{�∅, �12, �1234}.

Fix a naturally labelled posetP on [n], and assume that it isgraded, with r rank sets
P1, . . . , Pr . The following are the key definitions.

Definition 3.2. A P-partitionf will be calledrank-constantif it is constant along ranks, i.e.
f (p) = f (q) wheneverp, q ∈ Pj for somej.

A P-partition f will be calledequatorial if minp∈P f (p) = 0 and for everyj ∈ [2, r]
there exists a covering relation between ranksj − 1, j in P along whichf is constant, i.e.
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there existpj−1 <P pj with

pj−1 ∈ Pj−1, pj ∈ Pj andf (pj−1) = f (pj ).

An order idealI in Pwill be calledrank-constant(resp.equatorial) if its characteristic vector
�I is rank-constant (resp. equatorial). More generally, a collection of ideals{I1, . . . , It }
forming a chainI1 ⊂ · · · ⊂ It will be calledrank-constant(resp.equatorial) if the sum
�I1
+· · ·+�It (or equivalently,anyvector in the cone pos({�Ij }tj=1)) is rank-constant (resp.

equatorial).
Note that the only rank-constant ideals are the ones in the chain

∅ = I rc
0 ⊂ I rc

1 ⊂ · · · ⊂ I rc
r = P

whereI rc
j := �i� jPi . Also note that the onlyP-partition which is both rank-constant and

equatorial is the zeroP-partition f (p) = 0. Thus the only rank-constant and equatorial
order ideal isI rc

0 = ∅.

Proposition 3.3. Every non-zero P-partition f can be uniquely expressed as

f = f rc+ f eq,

wheref rc, f eq are rank-constant and equatorial P-partitions, respectively.

Proof. To show existence, for 2�j�r − 1 define non-negative constants

cj :=min
{
f (pj−1)− f (pj ) : pj−1 ∈ Pj−1, pj ∈ Pj , pj−1 <P pj

}
cr :=min{f (pr) : pr ∈ Pr},

and set

f rc :=
r∑

j=1

cj�I rc
j

f eq := f − f rc.

Obviouslyf rc is a rank-constantP-partition. It is a straightforward verification, left to the
reader, thatf eq is aP-partition, and that it is equatorial by construction.

For uniqueness, assumef = grc + geq is an additive decomposition off into a rank-
constant and an equatorialP-partition. It is again straightforward to show that the equato-
riality of geq and rank-constancy ofgrc forcesgrc = ∑r

j=1 cj�I rc
j

, wherecj is defined as

above in terms off. �

We wish to deduce our equatorial triangulation ofA(P ) from Proposition3.3, and for this
we need to understand both rank-constant and equatorial chains of ideals better. Equatoriality
and rank-constancy of a chain of idealsI1 ⊂ · · · ⊂ It are intimately related with properties
of its jumps

Ji := Ii − Ii−1 for i = 1, . . . , t + 1

(where by conventionI0 := ∅, It+1 = P ).
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It is easy to see that the rank-constantP-partitions form anr-dimensional simplicial
subcone within then-dimensional coneA(P ), and that this subcone is the non-negative
span of the vectors{�I rc

j
}rj=1.

Proposition 3.4. The rank-constant subcone ofA(P ) is interior, that is, it does not lie in
the boundary subcomplex of the coneA(P ).

Proof. In a triangulation of a polyhedral cone, a subcone lies on the boundary if and only if
it is contained in a codimension one subcone that lies on the boundary. For codimension one
subcones, lying in the boundary is equivalent to being contained in a unique top dimensional
subcone. Specializing to the case of the canonical triangulation of the coneA(P ) from
Proposition2.1, one sees that this means a chain of idealsI1 ⊂ · · · ⊂ It corresponds to a
subcone on the boundary if and only if at least one of its jumpsJi contains a pair of elements
which are comparable inP. But for I rc

1 ⊂ · · · ⊂ I rc
r , since the jumpsJi = I rc

i − I rc
i−1 = Pi

are antichains, this property fails to hold.�

Proposition 3.5. A chain of non-empty idealsI1 ⊂ · · · ⊂ It , is equatorial if and only if its
jumpsJi have the following property: For everyj ∈ [2, r], there existpj−1 <P pj with
pj−1 ∈ Pj−1, pj ∈ Pj and a valuei ∈ [t + 1], such thatpj−1, pj ∈ Ji .

The chainI1 ⊂ · · · ⊂ It is maximal with respect to the equatorial property if and only if
its jumpsJi for i ∈ [t + 1] satisfy the following two conditions:

(i) TheJi are all maximal(saturated) chains in P, possibly singletons.
(ii) The non-singletonJi can be re-orderedJi1, Ji2, . . . , Jis so thatminJi1 has rank1,

maxJis has rank r, andmaxJik ,minJik+1 have the same rank in P fork ∈ [s − 1].
Consequently, t = n− r for any maximal equatorial chain of non-empty ideals.

Proof. Since the jumpsJi are the domains on which the associatedP-partition�I1
+· · ·+�It

is constant, the first assertion is direct from Definition3.2.
It is then easy to see that a chain of non-empty ideals having properties (i), (ii) will be

equatorial, and maximal with respect to refinement. Conversely, suppose one is given a
maximal equatorial chain of non-empty ideals. If there exists an incomparable pairp, p′ in
one of its jumpsJi , it is straightforward to check that one can refine the chain further while
preserving the equatorial property, e.g. by adding in the idealIi−1∪ {q ∈ Ji : q�p}. Thus
each jumpJi must be a maximal chain, proving (i). Furthermore, the pairs of adjacent ranks
{j − 1, j} spanned by two different jumpsJi, Ji′ must be disjoint, else one could refine the
chain equatorially by “breaking”Ji between two such ranks{j − 1, j} which they share.
The jumpsJi must then disjointly cover all possible adjacent rank pairs{j − 1, j}rj=2, so
they can be re-ordered as in (ii).�

Proposition 3.6. The collection of all cones

pos({�I : I ∈ R ∪ E}),
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whereR (resp. E) is a chain of non-empty rank-constant(resp. equatorial) ideals in P,
gives a unimodular triangulation of the cone of P-partitionsA(P ).

Proof. First we check that these polytopal cones indeed decomposeA(P ). Givenf ∈ A,
write f = f rc+ f eq as in Proposition3.3. Then use these easy facts:

• f rc lies in the cone of rank-constantP-partitions, which is the simplicial cone positively
spanned by the (non-empty) rank-constant ideals{I rc

j }rj=1,
• Whenf eq is expressed in the unique way as a positive combination of characteristic

vectors of a chain of ideals, as in Proposition2.2 part (i), this chain of ideals must be
equatorial sincef eq is.

It remains to check that all such cones are unimodular. Thus it suffices to show that whenever
R∪E is maximal under inclusion, then #R∪E = nand theZ-span of the set{�I : I ∈ R∪E}
additively generates insideRn is the full integer latticeZn. To see #R ∪ E = n, first note
that whenR ∪ E is maximal, one hasR = {I rc

j }rj=1, and then #E = n − r follows from
Proposition3.5. To show they additively generateZn, we show by induction on the rankr
of P that the subgroup they generate contains each standard basis vectorep for p ∈ P . The
base caser = 1 hasP an antichain, hence all idealsI�P are equatorial, so the cones in
question coincide with the cones in the canonical triangulation, which are unimodular by
Proposition2.1. In the inductive step, note that this subgroup generated by{�I : I ∈ R∪E}
has the alternate description as the subgroup generated by the characteristic vectors�Pj of
all of the ranks ofP along with the characteristic vectors�Ji of all of the jumps between
the equatorial ideals inE . Proposition3.5 shows that there will be exactly one elementq
of the top rankr in P which does not occur in a singleton jumpJi . Namely,q = maxJis
after the re-labelling as in Proposition3.6. Hence for everyp ∈ Pr − {q}, one hasep in the
subgroup, but then one also haseq in the subgroup, since the subgroup contains�Pr . Now
apply induction to the graded posetP − Pr of rankr − 1, replacing the ideals inR∪ E by
their intersections withP − Pr and removing multiple copies of the same ideal created by
the intersection process.�

The triangulation ofA(P ) given in Proposition3.6 induces a unimodular triangulation
of O(P ), which we will call theequatorial triangulationof O(P ).

Definition 3.7. Theequatorial complex�eq(P ) is defined to be the subcomplex of the order
complex�J (P ) whose faces are indexed by the equatorial chains of non-empty ideals.

For the formulation of the next corollary we need the concept of simplicial join. For two
simplicial complexes�1, �2 which are defined over disjoint vertex sets, thesimplicial join
�1∗�2 is the simplicial complex{�1∪�2 : �i ∈ �i , i = 1,2}. Note that we always assume
that the empty face∅ is a face of a simplicial complex.

Corollary 3.8. The equatorial triangulation of the order polytopeO(P ) is abstractly iso-
morphic to the simplicial join�r ∗ �eq(P ), where�r is the interior r-simplex spanned
by the chain of rank-constant ideals{I rc

j }rj=0. As a consequence of its unimodularity,
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one has

h(�eq(P ), t) = h(�J (P ), t) = W(P, t).

Proof. The first assertion follows directly from Proposition3.6, noting that�r is interior due
to Proposition3.4. For the second, note that both�r ∗�eq(P ) and�J (P ) index unimodular
triangulations of the order polytope, so (2.2) implies

h(�r ∗ �eq(P ), t) = h(�J (P ), t).

On the other hand, the defining Eq. (1.1) of theh-polynomial shows that

f (�1 ∗ �2, t)= f (�1, t) ∗ f (�2, t)

h(�1 ∗ �2, t)= h(�1, t) ∗ h(�2, t)

h(�r , t)= 1,

and henceh(�r ∗ �, t) = h(�, t). �

Remark 3.9. Corollary3.8 has the following consequence: for a graded posetP, the set
of linear extensionsL(P ) is equinumerous with the setLeq(P ) of all maximal equatorial
chains of ideals inP, as both coincide with[W(P, t)]t=1.

This begs for a bijection� : L(P ) → Leq(P ). The authors thank Dennis White[54]
for supplying one which is elegant, using the idea ofjeu-de-taquinon linear extensions
of P, thought of asP-shaped tableaux that use each entry 1,2, . . . , n exactly once. Given
such a linear extensionw, replace the highest labeln (at top rankr) by a jeu-de-taquin
hole, and slide it past other entries down to rank 1, duplicating the last entry that it slid
past in the hole’s resting position at rank 1. Then repeat this with the entryn − 1, sliding
it down to rank 2, and similarly with the entriesn − 2, n − 3, ..., n − r + 1. The result is
a P-shaped tableaux that can be interpreted as an equatorialP-partition, compatible with
a unique maximal equatorial chain of ideals�(w). It is not hard to check that this map
w �→ �(w) is a bijection.

3.2. Geometric and Convexity Properties of�eq(P )

In this section, we use convexity and the concrete geometric realization of�eq(P ) to
learn more about it.

Definition 3.10. The rank-constant subspaceV rc ⊂ Rn is theR-linear span of the set
{�I rc

j
}rj=1.

LetQbe a convex polytope, andV a linear subspace, both insideRn. Then there is a well
definedquotient polytope

Q/V := {q + V : q ∈ Q} ⊂ Rn/V .
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If � : Rn → Rn−dim V is any linear surjection with kernelV (such as an
orthogonal projection ontoV ⊥), then the polytopeQ/V can be identified with the im-
age�(Q). Also note that ifV is a rational subspace ofRn with respect to the integer lattice
Zn ⊂ Rn, the quotient latticeZn/(V ∩ Zn) is well-defined, and a full rank sublattice in
Rn/V .

Proposition 3.11. The collection of quotient cones

{CE = pos({�I : I ∈ E})+ V rc},
asE runs throughall equatorial chains of non-empty ideals inP, formsa complete simplicial
fan inRn/V rc.

(i) This simplicial fan is unimodular with respect to the quotient latticeZn/(V rc ∩ Zn).
(ii) The simplices(CE ∩ O(P )) + V rc form a unimodular triangulation of the quotient

polytopeOeq(P ) := O(P )/V rc.
(iii) This triangulation ofO(P )/V rc is isomorphic, as an abstract simplicial complex, to

the cone0 ∗ �eq(P ) with base�eq(P ) and apex at the interior point0= V rc.

Consequently, �eq(P ) triangulates the (n − r − 1)-dimensional boundary sphere
�Oeq(P ).

Proof. Apply the following general statement, Proposition3.12, about polytopes (and the
analogous statement about fans) with

Q=O(P ),

�= the equatorial triangulation,

�′ =�eq(P ),

V = V rc. �

Proposition 3.12. Let Q be an n-dimensional convex polytope inRn. Assume Q has a
triangulation abstractly isomorphic to a simplicial complex� of the form� ∼= �r ∗ �′,
where�r is an r-simplex not lying on the boundary of Q. Let V be the r-dimensional linear
subspace parallel to the affine span of the vertices of�r .

Then the quotient(n− r)-dimensional polytopeQ/V ⊂ Rn/V inherits a triangulation
abstractly isomorphic to�0 ∗ �′, where�0 is an interior point ofQ/V ⊂ Rn/V .

Furthermore, when V is rational with respect toZn ⊂ Rn and if the triangulation of Q is
unimodular with respect toZn, then the triangulation ofQ/V rc is unimodular with respect
to Zn/(V rc ∩ Zn).

The proof of Proposition3.12is straightforward. We leave it as an exercise.
Proposition3.11, shows that�eq(P ) corresponds to a complete unimodular fan. This

fact suffices to infer both that it is spherical, and that it corresponds to a smooth, complete
toric varietyX�eq(P ) (see[21, Section 2.1]). Our next goal will be to show that�eq(P )

corresponds to apolytopalfan, as this has multiple consequences; see Corollary3.15below.
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We prove polytopality of�eq(P ) by choosing for each equatorial idealI of P a point
on its ray pos(�I + V rc) so that the convex hull of all such points is a simplicial polytope
having�eq(P ) as its boundary complex. Here we employ the following strategy. We start
with the (usually) non-simplicial polytopeOeq(P ) and pull each of its vertices in a certain
order to produce a simplicial polytope with boundary complex�eq(P ).

Recall [34, Section 2.5]that if Q is a convex polytope, onepulls the vertexv in Q to
produce a new polytope pullv(Q) by taking the convex hull after movingv slightly outward
past the supporting hyperplanes of all facets that containv, but past no other facet-supporting
hyperplanes ofQ. Assuming thatQ contains the origin in its interior, this can clearly be
achieved by replacingv with (1+ �)v where� > 0 is sufficiently small.

We will require the following proposition describing the 1-skeleton resulting from pulling
all the vertices of a polytope:

Proposition 3.13. Let Q̂ be the polytope resulting from pulling all of the vertices of a
polytope Q in some orderv1, v2, . . ., and let̂vi denote the corresponding vertices in̂Q.

Then two verticeŝvj , v̂k will not form a boundary edge of̂Q if and only if the unique
smallest face F of Q containingvj , vk is either Q itself, or contains a vertexvi with i < j, k.

Proof. The basic fact about pulling[34, Theorem 2.5.23]is that the faces of pullv(Q)

correspond either to faces ofQ that do not containv, or faces which are cones of the form
v̂ ∗ F whereF is a facenotcontainingv inside a facet ofQ thatdoescontainv.

This implies the following two facts.

(a) If vj , vk do not lie on some common boundary face, the edge{vj , vk} will never be
introduced by pulling.

(b) When one pullsQ at a sequence of vertices that do not lie on a faceF of Q, then the
faceF will remain unsubdivided.

Thus ifF is the unique smallest face ofQ containingvj andvk, it will remain unsubdivided
until one pulls the first vertexvi in the sequence that lies onF. By replacingQ with
pullvi−1

(· · ·pullv1
(Q) · · ·), one may assume without loss of generality thati = 1. We may

also assume thatF is a boundary face ofQ.
If 1 �∈ {j, k}, then we claim thatvj , vk no longer lie in any common boundary facet of

pullv1
(Q) (and hence will never form an edge after any subsequent pullings). To see this,

assume there was such a facetG. If G does not containv1, then by fact (b) above,G is a
face ofQ. But since it contains bothvj , vk, it would also containv1 becausev1 ∈ F ⊂ G,
a contradiction. IfG containsv1, thenG = v1 ∗G′ for some faceG′ of Q not containing
v1. But thenG′ must contain bothvj andvk, sinceG does. Hence the same reasoning as
for G applies toG′ and thenG′ must containv1, again a contradiction.

If 1 ∈ {j, k}, sayvj = v1, then when one pullsvj one creates the edge{vj , vk}, asvk lies
on any facet ofQ containingF. Then this edge will persist during all subsequent pullings.
Thus in this case{̂vj , v̂k} will be an edge of̂Q. �

Theorem 3.14.The equatorial complex�eq(P ) can be realized as the boundary complex
of a polytope.
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Proof. We construct a polytopeQ such that�eq(P ) is its boundary complex by pulling the
vertices

{vI := �I + V rc, I an equatorial ideal inP },
of Oeq(P ) in any linear order which is compatible with the cardinality of the equatorial
idealsI, that is, in any order where smaller ideals come earlier.

We will show that whenever{vI1, . . . , vIk } spans a face ofQ, then{I1, . . . , Ik} is an
equatorial chain of ideals. This would suffice since it would imply that the simplicial sphere
� which is the boundary of the pulled polytopeQ is a subcomplex of�eq(P ). However,
both triangulate an(n− r − 1)-sphere, and hence one cannot be properly contained in the
other. Thus they must coincide.

We prove the contrapositive: given equatorial idealsI1, . . . , Ik such that the set{I1, . . . ,

Ik} is notequatorial, we will show that{vI1, . . . , vIk } doesnotspan a face ofQ. Denote by
F the unique smallest faceF of Oeq(P ) containing{vI1, . . . , vIk }. Pick a linear functional
f : Rn → R which supports the faceF of Oeq(P ). This means

• f is a linear functional onRn that descends to a linear functional on the quotientRn/V rc.
In other words,f restricts to 0 or equivalently,f (�Pj ) = 0 for any rankPj of P.

• f assumes its maximum valueM among all equatorial ideals at the vertices inF, i.e.

M := f (vI1) = · · · = f (vIk )�f (vI ) for all idealsI.

Note thatM > 0 wheneverF is a proper face ofOeq(P ), since we know from Proposition
3.11(iii) that the origin 0= V rc in Rn/V rc is actually an interior point ofOeq(P ).

There are then two cases for the non-equatorial set{I1, . . . , Ik}.
Case1: {I1, . . . , Ik} is not totally ordered by inclusion. In this case, there is some pair of

idealsJ,K among them which are not nested, and one has

f (vJ )+ f (vK) = f (vJ∩K)+ f (vJ∪K). (3.1)

Note thatJ ∩ K and J ∪ K are both ideals inP, and whether they are equatorial or
not, they satisfyf (vJ∩K), f (vJ∪K)�M. Sincef (vJ ) = f (vK) = M, Eq. (3.1) forces
f (vJ∩K) = f (vJ∪K) = M. This means that bothJ ∩K, J ∪K lie on the faceF. Thus we
can chooseI := J ∩K in this case, and #I < #J,#K. HencevI would have been pulled
beforevJ , vK . By Proposition3.13this showsvJ , vK do not span a face ofQ, and hence
neither does its superset{vI1, . . . , vIk }.

Case2: I1 ⊂ · · · ⊂ Ik are nested, but still do not form an equatorial chain. In this case
we will show thatF is the entire polytopeOeq(P ).

Because{I1, . . . , Ik} is not equatorial there exists a valuej ∈ [1, r − 1] such that no
covering pair between ranksj, j + 1 lies entirely in any of its jumpsJi := Ii − Ii−1. For
each( = 1,2, . . . , k − 1 define new sets

I ′( := (I(+1− I rc
j ) ∪ I(.

We first claim that eachI ′( is an order ideal ofP. If not, then without loss of generality there
exists some covering relationp′�p in P with p ∈ I ′( butp′ �∈ I ′(. BecauseI( is an ideal,
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we may assumep �∈ I(. Thenp ∈ I(+1 − I rc
j , which forcesp′ ∈ I(+1 because the latter

is an ideal. Hencep′ ∈ I rc
j , which means thatp′�p is a covering relation between ranks

j, j + 1, and thus{p′, p} �⊂ J(+1 = I(+1 − I(. From this one has thatp′ ∈ I( ⊂ I ′(, a
contradiction.

We next prove that

f (vI1)+ · · · + f (vIk ) = f (vI rc
j
)+ f (vI ′1)+ · · · + f (vI ′k−1

). (3.2)

by checking that the coefficient of the standard basis vectorep for anyp ∈ P is the same
on both sides. We check this in two cases, depending upon whetherr(p)�j . In either case,
define

i0 := min{i : p ∈ Ii}.
In the caser(p)�j + 1, note thatp �∈ I1 else the jumpJ1 would contain some cover-
ing relation between ranksj, j + 1 by following a chain downward fromp. Thusi0�2,
and henceep appears once each invIi0 , vIi0+1, . . . , vIk on the left side, and once each in
vI ′i0−1

, vIi0
, . . . , vIk−1 on the right.

In the caser(p)�j , note thatp ∈ Ik else the jumpJk+1 := P − Ik would contain some
covering relation between ranksj, j + 1 by following a chain upward fromp. Thusi0�k,
and henceep appears once each invIi0 , vIi0+1, . . . , vIk on the left side, and once each in
vI ′i0

, vI ′i0+1
, . . . , vI ′k−1

plus once invI rc
j

on the right.

We now use (3.2). SinceI rc
j is rank-constant,f (vI rc

j
) = 0. Since eachI ′j is an ideal, one

hasf (I ′j )�M. Thus Eq. (3.2) leads to the inequalityk ·M�0+ (k− 1) ·M, which forces
M�0. In other words,F is not a proper face; ratherF = Oeq(P ), and so{vI1, . . . , vIk }
will not span a face ofQ. �

Corollary 3.15. Let P be a naturally labelled graded poset with r ranks.

(i) The equatorial sphere�eq(P ) is shellable.
(ii) The associated smooth toric varietyX�eq(P ) is projective.

(iii) The P-Eulerian polynomialW(P, t) has symmetric unimodal coefficient sequence
(h0, h1, . . . , h#P−r ), and their differences

(h0, h1− h0, h2− h1, . . . , h� #P−r
2 � − h� #P−r

2 �−1)

form an M-vector, that is they satisfy the inequalities characterizing the Hilbert func-
tion of a standard graded commutative algebra.

Proof. For (i), see[4]. For (ii), see[21]. For (iii), see[42]. �

Remark 3.16. We should point out a recent related partial unimodality result of Björner and
Farley[3]: thef-vector of the order complex of a distributive lattice is unimodal in its first half
and last quarter. This is relevant since Eqs. (1.1) and (2.1) show that for a naturally labelled
posetP and its distributive latticeJ (P ) of order ideals, the real-rootedness ofW(P, t) is
equivalent to the real-rootedness of the f-polynomial of the order complex ofJ (P ).
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Remark 3.17. Hibi [30] considers, for any posetP, the restriction of theP-partition trian-
gulation of the order polytopeO(P ) to its boundary. This induces a complete fan by placing
the origin anywhere in the interior, and looking at the cones from the origin through the
faces of this boundary triangulation. The main result of[30] shows that this fan is polytopal.
The part of the proof of Theorem3.14up throughCase 1 gives an alternate proof of this
result. In fact, it shows that the polytope involved may be obtained by pulling the vertices
of O(P ) in any order that refines the order by cardinality of the ideals indexing the vertices.

Remark 3.18. Theorem3.14shows that�eq(P ) is a shellable sphere, but does not quite
give an explicit shelling order on its facets, raising the following question.

Question 3.19. Is there a natural order on the setLeq(P ) of maximal equatorial chains
which induces a shelling order on�eq(P )? If so, what is the statistic onLeq(P ), analogous
to the descent statisticdes(w) onL(P ), whose generating function gives the h-polynomial
W(P, t)?

One might hope that the bijectionL(P ) → Leq(P ) from Remark3.9 could be used to
transfer known orderings onL(P ) (such as lexicographic order) that induce shellings of
�J (P ) to orderings onLeq(P ) that shell�eq(P ). However, this seems to fail, even in small
examples.

As mentioned earlier, Theorem3.14 is important for the geometry of the toric variety
X�eq(P ), but this geometry also has relevance for the Charney–Davis Conjecture. In[33,
Theorem 1.1]it was shown that when� is a simplicial sphere arising from a simplicial,
rational, polytopal fan, the quantityh(�,−1) coincides with thesignature�(X�) of the
associated toric variety. This opens the possibility for ideas from geometry to be applied.
In particular, in[33] a property of the fan� was identified, called local convexity, which
implies that� is flag, and furthermore via the Hirzebruch signature formula implies the
Charney–Davis Conjecture for�.

Definition 3.20. For a 1-dimensional ray pos(v) in a complete simplicial fan�, we denote
by starv(�) its star, that is the set of cones which together with this ray span a cone in the
fan. Say that a complete simplicial fan� is locally convexif for every 1-dimensional ray
pos(v) one has that starv(�) forms a convex cone.

Theorem 3.21(Leung and Reiner[33, Theorem 1.2(i), Proposition 5.3]). The simplicial
sphere� associated to any locally convex complete simplicial fan is flag. If furthermore the
fan is rational and polytopal, then the Charney–Davis Conjecture holds for�.

It is therefore interesting to know whether the fan inRn/V rc associated with�eq(P ) is
locally convex. Unfortunately, it does not even possess the weaker property of being flag in
general,3 as shown by the following example.

3 Contrary to a mistaken assertion with incorrect proof in an earlier version of this manuscript. The authors
thank Xun Dong for catching this error.
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1 32

4 65

Fig. 2. Zig-zag poset.

Example 3.22.LetPbe the “zig-zag” graded poset on[6]with r = 2 ranksP1 = {1,2,3},
P2 = {4,5,6} and covering relations given in Fig.2.

To show that�eq(P ) is not flag in this case, consider the chain of ideals

I1 ⊂ I2 ⊂ I3
{1} ⊂ {1,2,4} ⊂ {1,2,3,4,5}.

Note that eachIj is equatorial, as is each pair{Ij , Ik}, but the whole triple{I1, I2, I3} is
not.

To illustrate more explicitly how the relevant fan fails to be locally convex, consider the
maximal equatorial chain of ideals

I1 ⊂ I2 ⊂ I3 ⊂ I4
{1} ⊂ {1,4} ⊂ {1,2,4,5} ⊂ {1,2,3,4,5}

and the equatorial pairI1 = {1} ⊂ {1,2,4} =: I . We wish to show that in the simplicial fan
corresponding to�eq(P ) in R6/V rc, which we identify for the moment with�eq(P ), the
star of the ray pos(vI1) is not convex. Specifically, the 2-dimensional cone pos({vI1, vI }) ⊆
starvI1 (�eq(P )) has points in its interior that lie on the supporting hyperplane for the cone

that is spanned (in the quotient spaceR6/V rc) by {vI2, vI3, vI4}:
�I1
+ �I = �{1} + �{1,2,4}

= �{1,2} + �{1,4}
= �{1,2,3} − (�{1,2,3,4,5} − �{1,2,4,5})+ �{1,4}
= �I rc

1
− (�I4

− �I3
)+ �I2

.

HereI rc
1 denotes the rank-constant idealP1 = {1,2,3} as usual.

However, we do have the following result. For a posetP, thewidth is the size of the
largestantichain(=totally unordered subset) inP.

Theorem 3.23.The fan inRn/V rc associatedwith�eq(P ) is locally convex ifwidth(P )�2.
Consequently, �eq(P ) is flag in this case, and the Charney–Davis Conjecture holds for
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�eq(P ), that is

(−1)
n−r

2 h(�eq(P ),−1)�0

(= (−1)
n−r

2 W(P,−1))

Although flagness follows from local convexity, when width(P )�2 it is easy enough to
show flagness directly; we omit this direct proof.

Proof. Without loss of generality, we may assume not only thatP has width 2, but also
that every rankPj has cardinality 2; when a rank ofP has only one element, this element is
comparable to all ofP and its removal is easily seen not to affect�eq(P ) or its associated
fan inRn/V rc up to linear isomorphism.

Local convexity here amounts to checking the following. Consider a maximal equatorial
chain of idealsI1 ⊂ · · · ⊂ In−r . Let I be another ideal that forms an equatorial pair{I, Ik}
with one of the idealsIk in the chain. We must show that the unique linear functionalf
defined onRn by the conditions

f (V rc) = 0
f (�Ij ) = 0 for i ∈ [n− r] − {k}
f (�Ik ) = 1

(3.3)

hasf (�I )�0. This suffices because the zero set of the functionalf defines a typical sup-
porting hyperplane for the star of the ray pos(vIk ), and one needs to check that every other
rayvI in this star lies on the same side of this hyperplane asvIk .

From the defining equation off (3.3) and its additivity we infer the following list of values
of f on the characteristic vectors of the jumpsJi := Ii − Ii−1, which we will use without
further reference:

f (�Jk+1
)=−1

f (�Jk )=+1

f (�Ji )= 0 for i �= k, k + 1

Another fact that will be used frequently without mention is that by (3.3) for every rank
Pj = {p, p′} one hasf (ep)+ f (ep′) = f (�Pj ) = 0.

By Proposition3.5the two sets of ranks occupied by the chainsJk+1 andJk can overlap
in at most one rank. When they do overlap, say in the rankPj = {p, p′} with p ∈ Jk and
p′ ∈ Jk+1, one can check thatf satisfies

f (ep)=+1

f (ep′)=−1

f (eq)= 0 for q �= p, p′.

As p′ �∈ Ik, this means thatf (eq)�0 for q ∈ Ik. Thus any idealI that forms an equatorial
chain of the formI ⊂ Ik will havef (�I )�0 as desired. If the equatorial chain looks like
Ik ⊂ I , thenp ∈ Ik ⊂ I will force f (�I )�0 again.

When the sets of ranks occupied byJk+1 andJk do notoverlap, we consider two cases.
Case1: Jk occupies strictly higher ranks thanJk+1.
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Then by Proposition3.5 it is possible to index a subset of the jumpsJi as

Jk+1 := Ji1, Ji2, . . . , Jis−1, Jis := Jk

in such a way thatJi2, Ji3, . . . , Jis−1 are non-singleton jumpsJi( , with max(Ji(),min(Ji(+1)

occupying the same rank for each( ∈ [s − 1].
In fact, one can check that the definition of the jumps along with the fact thatP is graded

(so that every element inP is comparable to at least one out of the two elements in each
rankPj ) forcess to be even. Moreover, one can verify the following total orderings of the
chainsJi( :

Ji2 <P Ji4 <P · · · <P Jis ⊂ Ik

Ji1 <P Ji3 <P · · · <P Jis−1 �⊂ Ik.

(hereJ <P J ′ means that the two chains satisfy maxJ <P min J ′). This then implies
thatf (ep) = 0 for mostp ∈ P , with the exception of values+1,−1 alternating along the
following two linearly ordered subsets:

maxJi1 < minJi3 < maxJi3 < · · · < minJis−1 < maxJis−1

−1 +1 −1 +1 −1

minJi2 < maxJi2 < · · · < minJis−2 < maxJis−2 < minJis
+1 −1 +1 −1 +1.

(3.4)

Let I be an ideal inP such that{I, Ik} is equatorial.

I ⊂ Ik: We havef (�I )�0 because the onlyq ∈ Ik with eq �= 0 that can lie inI will form
an initial segment of the second chain in (3.4).

Ik ⊂ I : It follows that f (�I )�0, because theq ∈ I − Ik such thatf (eq) �= 0 form
an initial segment of the first chain in (3.4), so their sum is at least−1, while
f (�Ik ) = +1.

Case2: Jk occupies strictly lower ranks than doesJk+1.
In this case, the definition of the jumps, along with the gradedness ofP forces the following

situation. There exists a pair of adjacent ranksPj , Pj+1 and two elementspj , pj+1 such
that

Pj+1 = {min Jk+1, pj+1}
Pj = {max Jk, pj }
pj < pj+1 ( in fact,Jk−1 = {pj , pj+1})

max Jk+1 �< pj+1.

(3.5)

One can check that this implies the following values forf:

f (max Jk) = f (pj+1) = +1
f (min Jk+1) = f (pj ) = −1

f (p) = 0 for all otherp ∈ P.

(3.6)

Again, letI be an ideal inP such that{I, Ik} is equatorial.
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Ik ⊂ I : From (3.5) and (3.6), there is only one possibleq in I − Ik such thatf (eq) < 0,
namelyq = min Jk+1 hasf (q) = −1. But thenf (�Ik ) = +1, so

f (�I ) = f (�Ik + �I−Ik )� − 1+ 1= 0.

I ⊂ Ik: From (3.5) and (3.6), the only way one could havef (�I ) < 0 would be ifpj ∈ I

but both maxJk andpj+1 are not inI. However this would contradict the equa-
toriality of the pair{I, Ik}: since maxJk+1 �< pj+1, there would be no covering
pair from ranksj, j + 1 contained in any of the jumpsI, Ik − I, P − Ik. �

The Neggers–Stanley Conjecture is trivial when width(P ) = 1, but unknown even when
width(P ) = 2, although claims for its proof in this case have been made, and then retracted,
more than once[53]. In light of Proposition1.4, we regard Theorem3.23 as non-trivial
further evidence for both the Charney–Davis and the Neggers–Stanley Conjectures.

4. Which Koszul algebras have PF Hilbert functions?

In this and the next section, we give some results aimed toward the thesis that the right
context in which to view both the Charney–Davis and Neggers–Stanley Conjectures (along
with some other combinatorial conjectures and questions) may be the interaction between
Koszul algebras and PF-sequences.

4.1. Koszul algebras and PF-sequences

We begin with a quick review both of Koszul algebras and of PF-sequences. The reader
is referred to[20] for more information on Koszul algebras, and to[9,32] for more on
PF-sequences.

Let R =⊕
i�0Ri be a finitely generated, standard graded, connected, associative (but

not necessarily commutative) algebra over a fieldk, that is a quotientR = k〈x1, . . . , xn〉/J
for some two-sided idealJ which is homogeneous with respect to the grading deg(xi) = 1.
By eliminating redundant generatorsxi , we may assume without loss of generality thatJ
only contains elements of degree 2 and higher.

Definition 4.1 (see Fröberg[20] ). R is calledKoszulif the fieldk, endowed with the triv-
ial R-module structure as the quotientk = R/〈x1, . . . , xn〉, has a gradedlinear R-free
resolution, that is an exact sequence of the form

· · · →
∑
j

R(−i)�i → · · · →
∑
j

R(−1)�1 → R→ k→ 0.

Equivalently,Ris Koszul if the gradedk-vector space TorRi (k, k) is concentrated in degree
i for eachi, or equivalently, if thePoincaré seriesP(R, t) andHilbert seriesH(R, t) defined
by

P(R, t) : =
∑
i�0

dimk TorRi (k, k)t
i
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H(R, t) : =
∑
i�0

dimk Rit
i ,

whereRi is thek-vector subspace ofRgenerated by the monomials of degreei, are related
by the equation

P(R, t)H(R,−t) = 1. (4.1)

It is not hard to see that Koszulness ofR implies that the ideal of relationsJ definingR
is generated quadratically, but the reverse implication holds only in special cases; see e.g.
Theorem4.5below.

Note thatH(R, t), P (R, t) are only power series int, and not rational functions oft in
general. However, we will be particularly interested in the case whereR is a commutative
ring, so that one can (uniquely) express

H(R, t) :=
∑
i�0

dimk Ri t
i = h(R, t)

(1− t)d

whereh(R, t) = h0 + h1t + · · · + h�(R)t
�(R) ∈ Z[t] with h�(R) �= 0 (see[17, Exercise

12.12, p. 284]). Hered is theKrull dimensionof R, the vector(h0, h1, . . . , h�(R)) is called
theh-vectorof R, and we will callh(R, t) theh-polynomialof R. Although the quantity
�(R) does not seem to have a particular name in the literature that we could find, the degree
of H(R, t) as a rational function is usually called thea-invarianta(R). So we can express
�(R) as the sum�(R) = a(R)+ d of thea-invariant and Krull dimension.

The theory of Hilbert series relatesh-polynomials of simplicial complexes andW-polyno-
mials through the polynomialh(R, t). WhenR is commutative and Cohen–Macaulay we
say thatR is CM. The following facts are well known (see for example[11]):

• If R is CM thenh(R, t) ∈ N[t].
• If Ris commutative and Gorenstein thenRis CM andh(R, t) = h0+h1t+· · ·+h�(R)t

�(R)

satisfiesh�(R)−i = hi for i ∈ [0, �(R)].
We are interested in the case whenh(R, t) has only real non-positive zeroes. This question
can be approached via the theory of total positivity (see[9] for a pleasant introduction, and
[32] for an extensive treatment). We review some of the basic facts and definitions here.

Say that a sequence of real numbers(a0, a1, . . .) is aPolya frequency sequence of order
r (or PFr for short) if all minor subdeterminants of size at mostr in the infiniteToeplitz
matrix(aj−i )i,j=0,1,2,... are non-negative. For example, PF1 means theai are non-negative,
while PF2 is equivalent tolog-concavity, i.e. a2

i �ai−1ai+1 for eachi. A Polya frequency
sequence(or PF sequence) is one which is PFr for all r. We say that a formal power series
A(t) :=∑i�0 ait

i generates a PF-sequenceif the sequence(a0, a1, . . .) is PF.
We also recall a basic relationship between zeroes/poles of rational functions and PF-

sequences, in a form stated by Brenti that is convenient for our applications. It can be
deduced from a fundamental and deep result[9, Theorem 4.5.2],[32, Chapter 8, Theorem
5.1] characterizing PF-sequences.
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Theorem 4.2(Theorem 4.5.3 Brenti[9] ). Let
∑

i�0 ait
i be a rational power series in

R[[t]] with non-negative coefficientsai . Then(a0, a1, . . .) is a PF-sequence if and only
if when we express∑

i�0

ait
i = W(t)

V (t)

with W,V relatively prime polynomials inR[t], the numeratorW(t) has only real non-
positive zeroes and the denominatorV (t) has only real positive zeroes.

Corollary 4.3. When R is Koszul, the following are equivalent:

(i) The sequence(Hilb(R,0),Hilb(R,1), . . .) generated byH(R, t) is PF.
(ii) The sequence(�0,�1, . . .) generated byP(R, t) is PF.

When R is furthermore commutative andCM, then(i) and(ii) are equivalent to:

(iii) h(R, t) has only negative real zeroes.
(iv) The sequence(h0, h1, . . . , h�(R)) generated byh(R, t) is PF.

Proof. The equivalence of the PF-property for power seriesH(t), P (t) satisfyingP(t)

H(−t) = 1 is well-known[32, Theorem 8.1.2], so the equivalence of (i), (ii) follows from
(4.1).

CM-ness ofR implies that thehi are non-negative, so Theorem4.2shows the equivalence
of (iii) and (iv).

Sinceh0 = 1 > 0 and thehi are non-negative, the polynomialh(R, t) does not vanish at
t = 1, and consequently the numerator and denominator inH(R, t) = h(R,t)

(1−t)d are relatively
prime. Hence Theorem4.2also shows the equivalence of (i) and (iii).�

4.2. Questions and examples

The questions motivating this section are as follows. Say that a Koszul algebraR is PF if
H(R, t) (or equivalentlyP(R, t)) generates a PF-sequence. Say that a Koszul Gorenstein
commutative algebraR is CD (for Charney–Davis) if either

• �(R) is odd, or

• if �(R) is even and(−1)
�(R)

2 h(R,−1)�0.

Question 4.4.

• Which Koszul algebras arePF?
• In particular,which KoszulCM-algebras arePF,that is,which ones have only real zeroes

for their h-polynomialh(R, t)?
• Which Koszul Gorenstein algebras areCD?

Note that Proposition1.4shows that for a Gorenstein algebra, PF implies CD.
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Part of the relevance of Koszulness for various combinatorial conjectures derives from a
result of Fröberg[19]. Recall that for a simplicial complex� on vertex setV theStanley–
Reisner ringk[�] is the quotient ofk[xv : v ∈ V ] by the idealI� generated by the squarefree
monomials whose support is a minimal non-face of�.

Theorem 4.5(Fröberg[19] ). For monomial ideals I inS = k[x1, . . . , xn], the algebra
R = S/I is Koszul if and only if I is quadratically generated.

Consequently, for a simplicial complex�, the Stanley–Reisner ringk[�] is Koszul if and
only if � is flag.

Instances of Question4.4 have occurred several times in the literature. Here are some
notable examples, beginning with the two that originally motivated us.

Example 4.6. The Charney–Davis Conjecture for a flag simplicial homology sphere�
asserts CD-ness for the Koszul Gorenstein Stanley–Reisner ringk[�].

Example 4.7. The Neggers–Stanley Conjecture for a naturally labelled posetPasserts PF-
ness for the Koszul CMStanley–Reisner ringk[�J (P )]. Here we recall from Section2 that
�J (P ) is the order complex of the distributive lattice of order ideals inP.

Example 4.8.A conjecture by Hamidoune, recently proven in[14], asserts that thef-
polynomial of the complex�G of independent(or stable) sets in aclaw-free(see Example
4.12) graphG has only real zeroes. The independent set complex�G is always flag: it is
defined as having a simplex for every subset of vertices that contains no edges. Thus the
Stanley–Reisner ringk[�G] is Koszul by Theorem4.5, and the proof of the Hamidoune Con-
jecture implies that it is PF. In generalk[�G] is far from being CM. However its further quo-
tientk[�G]/(x2

v : v ∈ V ) is of Krull dimension 0, hence Cohen–Macaulay, and also Koszul
by Theorem4.5, havingh-polynomial the same as thef-polynomial of�G. Thus one can
also view the proof of the Hamidoune Conjecture as showing that this Koszul CM-ring is PF.

Example 4.9. Given a graphG on vertex set[n], define itsmatching complexMG to be
the simplicial complex having vertex set corresponding to the edges ofG, and a simplex
for each subset of edges that form a partial matching. This is clearly a flag complex, so
thatk[MG] is Koszul. A classical theorem in enumerative graph theory by Heilmann and
Lieb [25] can be rephrased as asserting that thef-polynomial ofMG has only real zeroes.
Analogous to Example4.8one constructs from the Stanley–Reisner ringk[MG] a Koszul
CM-ring whoseh-polynomial is thef-polynomial ofMG.

Example 4.10. In [9, Chapter 7], Brenti initiated the study of the following question, gener-
alizing the Neggers–Stanley problem. Given a directed graphD (ordigraph), letai denoted
the number of directed walks of lengthk in D. For which digraphs is(a0, a1, . . .) a PF-
sequence?

The sequence(a0, a1, . . .) turns out to be the Hilbert function for a (non-commutative)
Koszul algebra studied by Bruns, Herzog and Vetter, and also by Kobayashi (see[12]), who
give algebraic interpretations for some of the combinatorial results.
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Example 4.11.Hai has shown that certain quantum deformations of polynomial and exte-
rior algebras are Koszul[26] and PF[27], by representation-theoretic means.

This list of examples might make it tempting to conjecture that any Koszul CM-algebra
is PF. But this is indeed far from being true.

Example 4.12.The claw graph Gis a tree with one vertex of degree 3 connected to 3
leaves. Its independent set complex�G is the disjoint union of a 2-simplex and a 0-simplex,
havingf-vector

(f−1, f0, f1, f2) = (1,4,3,1).

This implies thatR = k[�G]/(x2
1, x

2
2, x

2
3, x

2
4) is a Koszul CM-algebra withh(R, t) =

1 + 4t + 3t2 + t3. But h(R, t) can be easily seen to have two non-real zeroes, soR is
not PF.

4.3. Motivating results

In this subsection we will give results that show, in spite of Example4.12, there is evidence
for the assertion that Koszul rings and their Hilbert functions are a good framework in which
to think about PF-questions.

One indication that the Koszul and PF-properties interact well is the following propo-
sition, apparently well-known to those who study TorR· (k, k). The authors thank Vesselin
Gasharov and Irena Peeva for bringing it to their attention.

Proposition 4.13. Let R be a Koszul algebra whose Hilbert seriesH(R, t) is rational (e.g.
if R is commutative, or finite-dimensional over k).

Then ifH(R, t) has any zeroes at all, it will have at least one real zero, namely−� where
� is the radius of convergence ofP(R, t).

Proof. Recall that 1
H(R,−t) = P(R, t) = ∑

i�0 �i t
i has non-negative coefficients�i (=

dimk TorRi (k, k)). Then Pringsheim’s Theorem[50, Section 7.2]implies that whenever
H(R, t) has any zeroes,P(R, t) will have a pole (andH(R,−t) a zero) att = �, where�
is the radius of convergence (= the minimum complex modulus of the poles) ofP(R, t).

�

This has consequences for CM-algebrasRwhoseh-polynomial is of low degree�(R).

Corollary 4.14.

(i) Every KoszulCM-algebra R with�(R)�2 is PF.
(ii) Every Koszul Gorenstein algebra R with�(R)�3 is PF.

(iii) A Koszul Gorenstein algebra R with�(R)�4 is PF if and only if it isCD.
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In particular, (iii) combines with Davis and Okun’s proof[16] of the Charney–Davis
Conjecture for flag simplicial homology spheres of dimension at most 3, to show that such
simplicial spheres are always PF. Recently, Gal[22] has shown that theh-polynomial of a
flag homology sphere of dimension at most 4 has only real roots. He also constructs examples
of flag simplicial convex polytopes in dimensionsd�6 for which theh-polynomial of the
boundary(d − 1)-sphere has some non-real roots. We remark that calculations similar to
those in the proof of Corollary4.14appeared (independently) in[6, Chapter 6].

Proof. Assertion (i) is immediate from Proposition4.13: �(R)�2 impliesh(R, t) is a
quadratic polynomial, and it has real coefficients, so since it has at least one real zero, both
its zeroes are real.

For assertions (ii), (iii) certain possibilities forh(R, t) whenR is Koszul and Gorenstein
must be ruled out in an ad hoc way, which we do all at once here:

h(R, t) = 1+ t + t2+ t3

h(R, t) = 1+ 2t + 2t2+ t3

h(R, t) = 1+ 2t + 2t2+ 2t3+ t4

h(R, t) = 1+ 3t + 4t2+ 3t3+ t4

h(R, t) = 1+ h1t + 0t2+ h1t
3+ t4

h(R, t) = 1+ h1t + 1t2+ h1t
3+ t4

(4.2)

Firstly, by means of Theorem4.15(iv) below, one can mod out by a regular sequence of
degree one and assume thatRhas Krull dimension 0, and hence is generated byh1 elements
in degree 1. Then Koszulness implies that the idealJ is generated byJ2. The 5th possibility
above is absurd for a standard graded algebra. The 1st would requireJ2 = 0 and hence
J = 0, which is absurd sinceR5 = 0. In the 6th possibility above, one of Macaulay’s
conditions for being anM-vector[47, Corollary II.2.4]asserts thath3�h

〈2〉
2 , which would

forceh1(= h3) = 1. This leads to a contradiction as in the 1st possibility. For the 2nd, 3rd,
and 4th possibilities, one contradicts the fact that

dimk J3 � dimk J2 · dimk R1

and hence

(
h1+ 2

3

)
− h3 �

((
h1+ 1

2

)
− h2

)
· h1.

Now to prove assertion (ii), we must consider the case�(R) = 3, so

h(R, t) = 1+ h1t + h1t
2+ t3 = (1+ t)(1+ (h1− 1)t + t2).

For real zeroes we need only show thath1− 1�2. Sinceh1 is a non-negative integer, this
means ruling out the first two possibilities in (4.2), so we are done.

To prove assertion (iii), we must consider the case�(R) = 4, so

h(R, t) = 1+ h1t + h2t
2+ h1t

3+ t4.

We consider two cases, depending on whether the radius of convergence ofH(R, t) is� = 1
or not.

Case1: � = 1. In this case, we will showR is always PF. Hereh(R, t) hast = −1 as a
zero, so 1+ t as a factor, and since it is a symmetric quartic polynomial, it must have it as
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a double factor:

h(R, t)= 1+ h1t + h2t
2+ h1t

3+ t4

= (1+ t)2(1+ (h1− 2)t + t2).

For real zeroes we need only to showh1 − 2�2, that is to rule out the 2nd, 3rd and 4th
possibilities in (4.2). This was already done.

Case2: � �= 1. In this case, sinceh(R, t) is symmetric, both−� and −1
� are zeroes. If

we seta := �+ 1
� , and defineb by a + b = h1, then this means

h(R, t)= 1+ h1t + h2t
2+ h1t

3+ t4

= (1+ �t)
(

1+ 1

�
t

)
q(t)

= (1+ at + t2)(1+ bt + t2),

where we further note thatab = h2−1. Now� ∈ (0,1) since exactly one of the two positive
values�, 1

� lies in this range, and� is the smaller of the two. This impliesa := �+ 1
� > 2,

and hence one concludes that the Charney–Davis quantity

h(R,−1) = (1− a + 1)(1− b + 1) = (a − 2)(b − 2)

has the same sign asb − 2. ThusR is CD if and only if b�2. Clearly,h(R, t) has only
real roots if and only if|b|�2. Thus if we can show thatb�0, thenR is CD if and only if
h(R, t) has only real zeroes, as desired.

To seeb�0, using the equationab = h2− 2 and the fact thata > 0, we need only show
thath2�2. In other words, we need to rule out the last two possibilities in (4.2), which was
already done. �

Next we discuss how Question4.4 respects various natural constructions. Given two
commutative standard gradedk-algebrasR,R′ one can form theirtensor productR ⊗k R

′
having

(R ⊗k R
′)l :=

∑
i+j=l

Ri ⊗k R
′
j ,

theirSegre productR ∗ R′ having

(R ∗ R′)l := Rl ⊗k R
′
l

and thedth Veronese subalgebraR(d) having

R
(d)
l := Rdl

for any positive integerd.
These ring operations have corresponding effects on the Hilbert function. Tensor product

corresponds to theconvolutioncl :=∑
i+j=l aibj of two sequences(ai), (bj ). The Segre

product corresponds to theHadamard productci = aibi . The dth Veronese subalgebra
corresponds to thedth arithmetic subsequencecl = adl .
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Theorem 4.15.LetR,R′ be commutative standard k-algebras, and (ai)∞i=0, (bi)
∞
i=0 two

sequences of complex numbers.

(i) (Tensor products)
(a) If (ai), (bi) arePF,then so is their convolution.
(b) If R,R′ are Koszul, then so isR ⊗k R

′.
(c) If R,R′ areCM, then so isR ⊗k R

′.
(ii) (Segre products)

(a) If (ai), (bi) are PF,and if furthermore either both are finite sequences, or both are
polynomial functionsa(i), b(i) of the index i, then so is their Hadamard product.

(b) If R,R′ are Koszul, then so isR ∗ R′.
(c) If R,R′ are CM, and if furthermore either both have Krull dimension zero, or

both have Hilbert functions equal to their Hilbert polynomials, thenR ∗ R′ is CM
also.

(iii) (Veronese subrings)
(a) If (ai) is PF,then so is(adi) for any positive integer d.
(b) If R is Koszul, then so isR(d) for any positive integer d.
(c) If R isCM, then so isR(d).

(iv) (Quotients by a linear non-zero-divisor)
(a) If

∞∑
i=0

ait
i = h(t)

(1− t)d

for some polynomialh(t) havingh(1) �= 0 andd > 0, then(ai) is PF if and only if
the sequence generated byh(t)

(1−t)d−1 is PF.
(b) Whenf ∈ R is a linear non-zero divisor, R is Koszul if and only ifR/(f )

is Koszul.
(c) Whenf ∈ R is a linear non-zero divisor, R isCM if and only ifR/(f ) is CM.

Proof. The assertions about preservation of the Koszul property follow from a result of
Backelin and Fröberg[20, Theorem 5.2]

(i)(a) Is easy (see e.g.[32, Theorem 1.2]).
(ii)(a) This is a result of Maló (see[9, Section 4.7]) when the sequences are finite, and a

result of Wagner[52] when the sequences are polynomial.
(iii)(a) Is easy (see e.g.[9, Proposition 2.2.3]).
(iv)(a) Follows from Theorem4.2.
(i)(c) Follows from standard facts about systems of parameters and regular sequences in

CM-rings[11].
(ii)(c) This is trivial when bothR,R′ have Krull dimension 0, since such rings are always

CM. WhenR,R′ have Hilbert functions which are polynomial, it follows from a
result of Stückrad and Vogel[49, Theorem, part (i), p. 378].

(iii)(c) The arguments for this fact are given, for example, in[24, Beginning of Section 3].
(iv)(c) Same as (i)(c). �
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5. Families of examples

In this section, we examine some interesting families of flag simplicial spheres and other
CM flag complexes�. Adopting the conventions of the previous sections we say that a flag
simplicial sphere� is CD if � satisfies the Charney–Davis conjecture, say that a simplicial
complex� is PF ish(�, t) has only real zeroes. All of these examples have either been
checked or conjectured to be CD or PF.

5.1. Simplicial hyperplane arrangements

Simplicial hyperplane arrangementsturn out to give rise to complete simplicial fans
which are locally convex[33, Proposition 4.8], and hence to flag simplicial spheres[33,
Proposition 5.3]. Because of their local convexity, it was noted in[33] that whenever the
arrangements are rational, they are at least CD. We do not know whether they are PF, nor
whether they are CD without the assumption of rationality.

Coxeter arrangementsare the simplicial hyperplane arrangements given by the reflecting
hyperplanes of a finite Coxeter system(W, S), and are closely related to the Neggers–Stanley
Conjecture. The associated simplicial complex�(W, S), called theCoxeter complex(see
[47, Section III.4]) hash-polynomial

h(�(W, S), t) =
∑
w∈W

tdes(w)

where des(w) := #{s ∈ S : ((ws) < ((w)}.Because thish-polynomial is multiplicative for
reducible Coxeter systems(W1×W2, S1 � S2), it suffices to check the CD or PF-property
for irreducible finite Coxeter systems, which have a well-known classification.

For typesAn−1 andBn, theh-polynomial coincides with the special cases ofk = 1 and
k = 2 of a family of polynomialsEk

n(t) studied by Steingrimsson[48] which generalize
the classical Eulerian polynomials. These satisfy

Ek
n(t)

(1− t)d+1 =
∑
m�0

(km+ 1)ntm

∑
n�0

Ek
n(t)

un

n! =
(1− t)eu(1−t)

1− teku(1−t)

(5.1)

From the first equation in (5.1) and results of Brenti[9], it follows thatEk
n(t) has only real

zeroes, taking care of the PF-property for typeA andB Coxeter complexes. It is known that
the Charney–Davis quantity

h(�An−1,−1) =
∑
w∈Sn

(−1)des(w) =
{

0 for n even,

(−1)
n−1

2 En for n odd,

whereEn is the number of alternating permutations

w = w1 < w2 > w3 < · · ·
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in Sn (this can be deduced, e.g., from (5.1) by settingk = 1, t = −1 and comparing with
[45, pp. 148–149]). The formulas (5.1) show similarly that

h(�Bn,−1) =
{

0 for n odd
(−1)

n
2 2nEn for n even.

For typeD, theh-polynomial of the Coxeter complex was first investigated by Stembridge,
who showed (see[38, p. 136]) that it satisfies

h(�(Dn), t) = h(�(Bn), t)− 2n−1n t · h(�(An−2), t). (5.2)

Brenti further explored these polynomials, and conjectured[10, Conjecture 5.1]that they
are PF. Although this is not known, it can at least be shown using (5.2) that they are CD,
as follows. From the above generating functions, and the answers for typesAn−1, Bn, one
checks that forn even,

(−1)
n
2h(�(Dn),−1) = 2n−1(2En − nEn−1).

To show the right-hand side is non-negative, we exhibit forn even an injection

{(i, w) : i ∈ [n], w an alternating permutation inSn−1}
�
↪→{ŵ ∈ Sn : ŵ is alternating orreversealternating}

defined as follows: given(i, w) as above, define

�(w) ={
wi−1 > wi−2 < · · · > w1 < n > wi < wi+1 > · · · > wn−1, i odd,
w1 < w2 > · · · > wi−1 < n > wn−1 < wn−2 > · · · < wi, i even.

For the remaining (non-dihedral) exceptional finite irreducible Coxeter groups (E6, E7, E8,

F4, H3, H4), one can compute theh-polynomials of the Coxeter complex explicitly via
computer, and check ad hoc that they have only real zeroes (in fact, most of them were
already checked in[10]).

5.2. Generalized associahedra

Thegeneralized associahedradefined recently by Fomin and Zelevinsky[18] are a family
of flag simplicial spheres associated to any finite Weyl groupW; we will denote their
associated simplicial complex�FZ(W). These complexes generalize theassociahedraand
cyclohedraand possess beautiful numerology. Their number of facets is a known Coxeter
group generalization of the Catalan numbers

Catalan(W) =
∏
i

ei + h+ 1

ei + 1
,

whereh is theCoxeter numberof Wandei are theexponents. From recursions for their face
numbers given in[18, Section 3.3], one can compute theirh-polynomials explicitly:

h(�FZ(An−1), t)=
n−1∑
k=0

1

n

(n
k

) ( n

k + 1

)
tk
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h(�FZ(Bn), t)=
n∑

k=0

(n
k

)2
tk

h(�FZ(Dn), t)= 1+ tn

+
(
n−1∑
k=1

((n
k

)2− n

n− 1

(
n− 1

k − 1

)(
n− 1

k

))
tk

)
h(�FZ(E8), t)= 1+ 120t + 1540t2+ 6120t3+ 9518t4

+6120t5+ 1540t6+ 120t7+ t8,

h(�FZ(E7), t)= 1+ 63t + 546t2+ 1470t3+ 1470t4

+546t5+ 63t6+ t7,

h(�FZ(E6), t)= 1+ 36t + 204t2+ 351t3+ 204t4+ 36t5+ t6,

h(�FZ(F4), t)= 1+ 24t + 55t2+ 24t3+ t4.

For typeAn−1, the h-polynomial is the generating function for the Narayana numbers
[46, Exercise 6.34], and one can check (see[37, Proposition 17]) that it coincides with
W(2× n, t), where2× n is a naturally labelled Cartesian product of chains of sizes 2 and
n. This is PF by Brenti’s result that the Neggers–Stanley Conjecture holds for all naturally
labelled Gaussian posets[9, Theorem 5.6.8].

For typeBn, the h-polynomial coincides withW(n�n, t) wheren�n is a naturally
labelled disjoint union of two chains of sizen. This is PFby Simion’s result that the Neggers–
Stanley Conjecture holds for naturally labelled disjoint unions of chains[40].

For typeDn it is rather simple to check that theh-polynomial is CD. By calculating
explicitly one shows that

h(�FZ(Dn),−1) =
{

0 for n odd

(−1)
n
2

(
n−2
n−2

2

) (
2− 4

n

)
for n even

which for n�2 has the appropriate sign. Recently, it has been shown[7] that indeed the
h-polynomial is PF.

One can check ad hoc for each of the exceptional cases above theh-polynomial
h(�FZ(W), t) has only real zeroes, and hence is PF.

5.3. Barycentric subdivisions

Barycentric subdivisionsof the boundaries of convex polytopes give flag simplicial
spheres which are known to be CD. The Charney–Davis quantity in this case was ob-
served by Babson (see[47, p. 103], [13, Section 7.3]) to be a certain coefficient in a finer
enumerative invariant of the polytope known as itscd-index. Then a result of Stanley[44]
shows that thesecd-index coefficients are all non-negative for a more general class of flag
simplicial spheres (barycentric subdivisions ofS-shellableregular cellular spheres). We do
not know whether these barycentric subdivisions are PF.
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5.4. Broken circuit complexes

Given a matroidM with a linear order	 on its ground set, there is an important shellable
(hence CM) simplicial complex known as thebroken-circuit complexBC(M,	). It was
shown by Björner and Ziegler[5, Theorem 2.8]thatBC(M,	) is a flag complex if and
only if M is supersolvable, and in this case theh-polynomial factors

h(BC(M,	), t) =
∏
i

(1+ (ei − 1)t)

whereei are theexponentsof the supersolvable matroidM. Thus wheneverBC(M,	) is
flag, it is also trivially PF.

5.5. Regular complex polytopes

Regular complex polytopeswere first defined by Shephard (see[15]), as arrangements
of complex affine subspaces inCn satisfying axioms modelled after the affine subspaces
spanned by faces in a regular convex (real) polytope. To each regular complex polytopeP
is associated a flag simplicial complex�(P) called itsMilnor fiber complex(or the order
complex of its lattice of faces). These complexes are known to be CM[36], but not known
to be shellable.

The classification of regular complex polytopes which are not regular real convex poly-
topes is fairly short, with three infinite families (simplices, generalized cross-polytopes,
generalized cubes) all of whoseh(�(P), t) are subsumed by the polynomialsEk

n(t) from
(5.1), and hence are PF. There remains a finite list of exceptions, many of which live in
C2, so that�(P) is 1-dimensional, and hence are PFby Proposition4.14(i). There are only
four others on this list. In the following we list theirh-polynomials (where we are using
Coxeter’s notation for the polytopes themselves):

h(�(2{4}3{3}3), t)= h(�(3{3}3{4}2), t)
= 1+ 339t + 831t2+ 125t3,

h(�(3{3}3{3}3), t)= 1+ 123t + 399t2+ 125t3,

h(�(3{3}3{3}3{3}3), t)= 1+ 4796t + 56886t2+ 79196t3+ 14641t4.

All of these have real zeroes by ad hoc computation.
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Note added in proof:

John Stembridge has informed us that he has found a counterexample to the Neggers–Stanley
Conjecture that is naturally labeled and of width 2.
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