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Abstract

For a graded naturally labelled po$&tit is shown that thé>-Eulerian polynomial

WP =y desw
weZ(P)

counting linear extensions &by their number of descents has symmetric and unimodal coefficient
sequence, verifying the motivating consequence of the Neggers—Stanley conjecture on real zeroes for
W (P, t)inthese cases. The resultis deduced from McMullgfTheorem, by exhibiting a simplicial
polytopal sphere whodepolynomial isW (P, 1).

Whenever this simplicial sphere turns out to be flag, that is, its minimal non-faces all have cardinal-
ity two, it is shown that the Neggers—Stanley Conjecture would imply the Charney—Davis Conjecture
for this sphere. In particular, it is shown that the sphere is flag whenever theFieagvidth at most
2. In this case, the sphere is shown to have a stronger geometric property (local convexity), which
then implies the Charney—Davis Conjecture in this case via a result from Leung and Reiner (Duke
Math. J. 111 (2002) 253).

Itis speculated that the proper context in which to view both of these conjectures may be the theory
of Koszul algebras, and some evidence is presented.
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1. Introduction

This paper has several goals. The first is to show that, in the context of the Neggers—
Stanley Conjecturd.2, for every graded posd® there is a polytopal simplicial sphere
lurking in the background, which we will denofeq(P). This sphere is relevant for two
purposes:

e TheP-Eulerian polynomial (defined below) coincides with thpolynomial ofAgq(P).
As a consequence, its coefficients satisfy McMullen’s conditions fohitector of a
simplicial polytope, and are in particular symmetric and unimodal. Thereby we verify
the motivating consequence of the Neggers—Stanley Conjecture for naturally labeled
graded posets (see discussion after the statement of Conjé@ure

e Whenever the simplicial sphefeq(P) is flag, the Neggers—Stanley Conjectlirgfor P
implies the Charney—Davis Conjecture for the spheyg P). Furthermore, wheR has
width at most 2, it is shown in Theore@23that Aeq(P) satisfies a stronger geometric
condition than flagness known &scal convexity which implies the Charney—Davis
Conjecture in this case by a result from Leung and ReB&

The latter portion of the paper (Sectidronward) is aimed toward the thesis that both the
Charney—Davis and Neggers—Stanley Conjectures, along with some other combinatorial
conjectures and results, should be considered in the context of the following
question.

Question 1.1. For which Koszul algebras is the Hilbert function a Polya frequency se-
quencé

To give a more precise discussion, we start by recalling the Neggers—Stanley Conjecture.
For any partial ordeP on[n] := {1, 2, ..., n}, let L(P) denote its set of linear extensions,
that is the set ofv = (w1, ..., w,) € S, for whichi <p j impliesw=1(i) < w=1()).
TheP-Eulerian polynomial

WP, 1):= Y (4

weL(P)

is the generating function for the linear extensid@h{#) counted according to cardinality
of theirdescent sets

Desw):={i e [n — 1] : w; > wj+1}
degw) :=#Degw)
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Conjecture 1.2(Neggers—Stanl¢y For any labelled poset P orin] the polynomial
W (P, t) has only realnon-positivg zeroes

We are mainly interested in the case whiiis naturally labelled thatisi <p j implies
i < j. Forthe general case Brand@&h has recently announced a counterexample.

Some history and context for the conjecture follows. For naturally labelled posets Con-
jecturel.2was made originally by Neggef35], and generalized to the above statement by
Stanley in 1986. WheR is an antichain of elementsW (P, ¢) is theEulerian polynomial
whose real-rootedness was shown by Hafp8}and served as an initial motivation for the
conjecture. For the case whers a naturally labelled disjoint union of chains the result is
due to Simior{40Q]. This result was extended to arbitrary labellings by Br{gijtiwho also
verified the conjecture for Ferrers posets and Gaussian j6e4 important combinato-
rial implication of the real-rootedness of a polynomial with non-negative coefficients is the
unimodality of the coefficients (i.e. for the sequence of coefficiegts. . , a, there is an
indexj such thatg< - - - <a; > --- >a,). Gasharoj23] verified the unimodality conse-
quence of the conjecture for naturally labelled graded posets with at most 3 ranks. Corollary
3.15verifies this (and something stronger) more generallyafonaturally labelled graded
posets.

Next, we recall the Charney—Davis Conjecture. Given an abstract simplicial corplex
triangulating ald — 1)-dimensional (homology) sphere, one can collate the face numbers
fi,» which count the number @fdimensional faces, into ifsvectorandf-polynomial

fA) =(f-1, fo. f1. ..., fa-1)
d
fAD =) fiat.

i=0
Theh-polynomialandh-vectorare easily seen to encode the same information:
h(A) := (ho, h1, ..., hg) where
h(A 1) = Xd: h;t' satisfies (1.1)
R Y = T FA Dl

Theh-polynomial turns out to be a more convenient and natural encoding in several ways,
closely related to commutative algebra, toric geometry, and shellability. For example, the
fact that homology spheres a@®hen—Macaulaymplies non-negativity of thé;, and the
Dehn-Sommervillequations for simplicial spheres assert that= h,_; for 0<i <d
(see[47, Section 11.6]. Note that the latter implies that thepolynomial issymmetri¢

h(A, t) = t9h(A, 1), and thati(A, —1) = 0 wheneved is odd.

The Charney—Davis Conjectuf&3, Conjecture Djconcerns the sign of the quantity
h(A, —1) in the case wherdis even and\ is a simplicial homologyd — 1)-sphere which
happens to be #lag complex, that is the minimal subsets of vertices whiclndbspan a
simplex all have cardinality two. For polytopal simplicial sphesgshis quantity is known
[33] to coincide with thesignatureor indexof the associated toric variefy,.
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Conjecture 1.3(Charney—Davis, Conjecture [13]). If A is a flag simplicial homology
(d — 1)-sphere and d is evethen

(—=1)2h(A, —1)>0.

The first hint of arelation between these two conjectures comes from the following simple
observation (cf[13, Lemma 7.5].

Proposition 1.4. Leth(t) = hqt? + --- + h1t + ho € R[r] be a polynomial in t of even
degree d with non-negative coefficients:(f) is symmetric and has only real zeroésen

(—=1)?2h(—1)>0.

Proof. Sinceh(r) has degre@ we haveh; # 0 and by symmetryig # 0. Thush(r)
hasd zeroes which must then all be strictly negative sihge=0 for 0<i <d. Factor
h(t) = hy ]_[le(z — r;) according to its (real) zeroes Symmetry ofa(r) implies thatr is
a zero if and only if% is a zero. Ifr £ —1, exactly one of, % is less than-1. Thus for a
zeror, eitherr = —1is a zero, in which case(—1) = 0 and we are done, or elsgactly
half of the factors in the produét(—1) = hy ]’[le(—l — r;) are negative, implying that
the product has sign—l)%. O

The paper is structured as follows.

Section2 reviews some theory d?-partitions, order polytopes, and their canonical tri-
angulations.

In Section3.1we show that whelR is agradedposet, that is every maximal chainkn
has the same number of elementshere exists a simplicial spherfgq(P) of dimension
#P — r — 1 such that

h(Aeg(P),t) = W(P,1).

Thus the Neggers—Stanley Conjecture Foimplies the Charney—Davis Conjecture for
Aeq(P) (whenever itis flag) via Propositiadn4. Combinatorial interpretations for the (non-
negative) Charney—Davis quantity-1) o W (P, —1), for some cases of posets where the
Neggers—Stanley Conjecture is known, are explordd9h

In Section3.2it is shown that the spherke(P) is the boundary complex of a simplicial
convex polytope. Therefore by McMullengsTheorem characterizing the number of faces
of such polytopef4?], the coefficientshg, k1, ... , hgp—,) are symmetric and unimodal.

Convexity has further relevance [BB] it was shown via the Hirzebruch signature formula
that the Charney—Davis Conjecture holds for a simplicial polytope under a certain geometric
hypothesis lpcal convexity stronger than being flag. We show in Secti®2 that this
hypothesis holds foAeq(P) wheneverP haswidth (i.e. size of the largest antichain) at
most 2, thereby providing more evidence for the Neggers—Stanley Conjecture.

In Sections4 and5 we gather evidence for the thesis that both of these conjectures can
be fruitfully viewed within the context dkoszul algebrasin particular, we point out ways
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in which Hilbert series of Koszul algebras interact well with the theoripalfa frequency
seriesand polynomials with real zeroes.

After this paper was circulated, Athanasiadishas shown that the unimodular triangu-
lation of the order polytope from Sectidilis a member of a class of triangulations of
polytopes that decompose into a join of a simplex and a polytopal sphere. Most notably he
has exhibited such a triangulation for the Birkhoff polytope.

2. Review: P-partitions and order polytopes

In this section we review some of the theoryRepartitions, distributive lattices and order
polytopes; se§29,31,30,41,43for proofs and more details. Also s, Section 1.2for
definitions and basic facts about polyhedral cones and fans.

Given a naturally labelled posBton [n] ordered by< p, the vector space of functions
f=UQ, ..., f(n): P — R wil be identified withR". One says that is a P-
partitionif f(i)>0foralliand f(i)> f(j) foralli <p j. Denote byA(P) the cone of
all P-partitions inR". The convex polytope

O(P) = A(P)NJ[O, 11"

is called theorder polytopeof P. An order ideal lin P is a subset oP such thai € 7 and
Jj <p iimpliesj € I.Itis known thatO(P) is the convex hull of the characteristic vectors
11 € {0, 1} asl runs through all order idealsn P.

A useful alternative way to viewd (P) is provided by the fact that it is isometric to the
hyperplane slice aty = 1 of the cone4(P% c R"**, whereP? is the naturally labelled
poset o0, n] :={0, 1, ..., n} obtained fronP by adjoining a new minimum element 0.
We call the coned(P%) thehomogenizationf the coneA(P).

We recall a few basic definitions some of which were already mentioned in the introduc-
tion. The set of permutations = (w1, ..., w,) € S, which extendP to a linear order is
called itsJordan—Holder set

L(P) = {w =(wg, ..., wy) €S, i <pj impIiESw_l(i) < w_l(j)}.

Thedescent seainddescent numbesf w are defined by
Desw):={i € [n — 1] : w; > wj+1}
degw) :=#Desw).
Define a cone for each € S,
Aw) :={ feR":
fw) = f(wig) fori € [n — 1],
fwi) > f(wit) if i € Degw)}

It is not hard to see that the closure.dtw) (defined by removing the strict inequalities
above), is aunimodular(simplicial) cone, that is its extreme rays are spanned by a set of
vectors forming a lattice basis f@r'. Similarly, the closure afl(w)N[0, 11" is a unimodular
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simplex. Now we are in position to formulate the basic fact from the theoBymdirtitions
which will be crucial for subsequent arguments.

Proposition 2.1.

(i) The cone of P-partitions decomposes into a disjoint union as follows
A(P) = Uyerp)A(w)

The closures of the cone$(w) for w € L(P) give a unimodular triangulation of
A(P).

(i) The unimodular triangulation ofl(P) described ir(i) restricts to a unimodular trian-
gulation of the order polytope

O(P) = UUJGC(P)A(U)) N[0, 1]n

We call the triangulations 0 ( P) (into simplicial cones) an@( P) (into simplices) from
Proposition2.1their canonical triangulationsNote that via homogenization the canonical
triangulation ofO(P) is easily seen to be the restriction of the canonical triangulation of
the homogenized coné(P°) to the hyperplaneg = 1. This makes sense since there is an
obvious bijection between the linear extensigii®%) and£(P).

The combinatorics of these triangulations is closely related tadisteibutive lattice
J(P) of all order ideals in P ordered by inclusion. Therder complexAJ (P) is the
abstract simplicial complex having a vertex for each ideial P and a simplex for each
chainly C --- C I, of nested ideals. Given a set of vectdtsc R”, define theimpositive
spanto be the (relatively open) cone

pogV) := ch-v:cveR,cv >0}.
veV

Proposition 2.2.

(i) Every non-zero P-partitiorf € Ap can be uniquely expressed in the form

t
f = Z iy
i=1

where thec; are positive realsand /1 C --- C I; is a chain of ideals in P. In other
words

A(P) = L pos{ (71, )(1)-

ideals IhC---CI;,CP

(i) The canonical triangulation of the order polytogK P) is isomorphidas an abstract
simplicial complexto AJ (P), via an isomorphism sending an ideal | to its character-
istic vectory;.

(iii) The lexicographic order of permutations X P) gives rise to a shelling order on
AJ(P).
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(iv) In this shelling for each w inL(P), the minimal face of its corresponding simplex in
AJ (P) which is not contained in a lexicographically earlier simplex is spanned by the
ideals{w1, wo, ..., w;} wherei € Deqw).

Using basic facts about shellings (§49€), part (iv) of the preceding proposition implies
that one can re-interpret the polynomi&k P, 7):

WP 1) = Y 19 = p(AJ(P).1) (2.1)
weL(P)
This connection with/ (P) also allows one to re-interpret these results in terms of Ehrhart
polynomials. Recall that for a convex polyto@an R having vertices irZ”, the number
of lattice points contained in an integer dilatid@ grows as a polynomial in the dilation
factord € N. This polynomial ind is called theEhrhart polynomial

Ehrhar(©®(Q), d) := #(d@(P) n N)

WhenevelQ has a unimodular triangulation abstractly isomorphic to a simplicial complex
A, there is the following relationship:

h(A, 1)

d _ "\
Z Ehrhar(O(Q)’ d) = (1 _ t)n+l'

d=0

2.2)

3. The equatorial sphere for a graded poset
3.1. Definition and main properties

In this section we exhibit for every graded naturally labelled p&seh [n] havingr
ranks an alternative triangulation of the order polytdn@), which we call theequatorial
triangulation This triangulation has several pleasant properties, proven in this and the next
subsection, which may be summarized as follows:

e Itis a unimodular triangulation.
(See PropositioR.6)

e It is isomorphic, as an abstract simplicial complex, to the join of ®mplex with a
simplicial (#P — r — 1)-sphere, which we will denotdeq(P), and call theequatorial
sphere
(See Corollary.8)

o 1(Aeq(P), 1) = h(AJ(P), 1) = W(P, 1).

(See Corollan3.8)

e The equatorial spheteq(P) is polytopal, and hence shellable and a PL-sphere.
(See Theorem.14)

e WhenP has width at most 2, the equatorial sph&gg(P) is realized by a locally convex
simplicial fan. Hence the equatorial sphere is a flag subcompléx/o®), and a flag
sphere for which the Charney—Davis Conjecture holds.

(See Theoren.23
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Fig. 1. (a) A graded posét (b) The distributive lattice of order idealg P). (c) Part of the canonical triangulation
AJ(P) of its order polytopeOD(P). (d) The analogous part of the equatorial triangulation. (e) The equatorial
1-sphereleq(P).

Example 3.1. Let P be the graded naturally labelled poset[dhwith r = 2 ranks shown
in Fig. 1(a). LetJ (P) be its associated (distributive) lattice of order ideals (seelfm).

The 4-dimensional order polytogd®( P), and its canonical triangulation ldyJ (P), may
be “visualized” as follows. Start with the convex pentagowhich is the convex hull of

{11 %2> x12: 113> X123 X124}

and triangulater as shown in Figl(c). The canonical triangulation is obtained by taking
the simplicial join of this triangulation of with the edg€ ). 1234}

The equatorial triangulation (see Propositi®®) is obtained starting from the alter-
nate triangulation of: depicted in Fig1(d) and taking the simplicial join with the edge
{xg> 11234 Equivalently, it is obtained from the equatorial 1-sphAeg(P) depicted in
Fig. 1(e) and taking the simplicial join with the triangiey. 112, x1234}-

Fix a naturally labelled posd?® on [r], and assume that it igraded with r rank sets
Py, ..., P.. The following are the key definitions.

Definition 3.2. A P-partitionf will be calledrank-constanif it is constant along ranks, i.e.
f(p) = f(g) wheneverp, g € P; for somej.

A P-partitionf will be calledequatorialif min ,cp f(p) = 0 and for everyj e [2,r]
there exists a covering relation between rapks 1, j in P along whichf is constant, i.e.
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there existp;_1 <p p; with

pj-1€ Pj_1,pj € Piandf(pj-1) = f(p)).

Anorderideal in Pwill be calledrank-constanfresp.equatoria) if its characteristic vector
x; is rank-constant (resp. equatorial). More generally, a collection of idéals. . , I;}
forming a chain/y C --- C I, will be calledrank-constan{resp.equatoria) if the sum
%1, +- - -+, (orequivalentlyanyvector in the cone pcosx,/ };:l)) is rank-constant (resp.
equatorial). '
Note that the only rank-constant ideals are the ones in the chain
p=IfCliFC---Cll°=P

Whereljr.c := L < j P;. Also note that the onl{?-partition which is both rank-constant and
equatorial is the zer®-partition f(p) = 0. Thus the only rank-constant and equatorial
order ideal is/g® = #.

Proposition 3.3. Every non-zero P-partition f can be uniquely expressed as
f=r%+r%
where f'¢, €4 are rank-constant and equatorial P-partitiomespectively

Proof. To show existence, forZ j <r — 1 define non-negative constants

cj=min{f(pj—1) — f(p;): pj—1 € Pj—1, pj € Pj, pj_1<p pj}
cr:=min{f(p,) : pr € P},

and set
p
frC = Z ijljrc
j=1
fS=r -1

Obviously f'¢ is a rank-constarf®-partition. It is a straightforward verification, left to the
reader, thayf®%is aP-partition, and that it is equatorial by construction.

For uniqueness, assunfe= g + ¢®%is an additive decomposition éfinto a rank-
constant and an equatoripartition. It is again straightforward to show that the equato-
riality of g®9and rank-constancy @f© forcesg" = 37", cjres wherec; is defined as
above interms of. [J

We wish to deduce our equatorial triangulationdqfP ) from Propositior8.3, and for this
we need to understand both rank-constant and equatorial chains of ideals better. Equatoriality
and rank-constancy of a chain of ide&sc - - - C I, are intimately related with properties
of its jumps

Ji=1 —Li_q1fori=1...,t+1

(where by conventiotp := ¢, I,+1 = P).
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It is easy to see that the rank-const&apartitions form anr-dimensional simplicial
subcone within the-dimensional coned(P), and that this subcone is the non-negative
span of the vectorgyrc}’;_;.

J

Proposition 3.4. The rank-constant subcone df P) is interior, that is, it does not lie in
the boundary subcomplex of the codéP).

Proof. In atriangulation of a polyhedral cone, a subcone lies on the boundary if and only if
itis contained in a codimension one subcone that lies on the boundary. For codimension one
subcones, lying in the boundary is equivalent to being contained in a unique top dimensional
subcone. Specializing to the case of the canonical triangulation of the 46Rg from
Proposition2.1, one sees that this means a chain of idéals --- C I, corresponds to a
subcone on the boundary if and only if at least one of its jufg®ntains a pair of elements
which are comparable iR. But for I;° C - -- C IJ, since the jumpd; = I/ — I[°; = P,

are antichains, this property fails to hold

Proposition 3.5. A chain of non-empty ideals C --- C I, is equatorial if and only if its
jumpsJ; have the following propertyFor every;j € [2,r], there existp;_1 <p p; with
pj—1€ Pj_1,pj € Pjandavalug < [t + 1], such thatp;_1, p; € J;.

The chainly C --- C I, is maximal with respect to the equatorial property if and only if
its jumpsJ; fori € [t + 1] satisfy the following two conditions

(i) TheJ; are all maximal(saturated chains in P possibly singletons
(i) The non-singletory; can be re-ordereds;,, Ji,, ..., Ji, SO thatminjl.1 has rank1,
max;, has rank f andmaxJ;,, min J;, ., have the same rank in P fére [s — 1].

Consequently = n — r for any maximal equatorial chain of non-empty ideals

Proof. Since the jumpg; are the domains on which the associdggartitiony;, +- - -+,
is constant, the first assertion is direct from Definit®a

It is then easy to see that a chain of non-empty ideals having properties (i), (ii) will be
equatorial, and maximal with respect to refinement. Conversely, suppose one is given a
maximal equatorial chain of non-empty ideals. If there exists an incomparable,p4dim
one of its jumps/;, it is straightforward to check that one can refine the chain further while
preserving the equatorial property, e.g. by adding in the iffealu {g € J; : ¢ < p}. Thus
each jump/; must be a maximal chain, proving (i). Furthermore, the pairs of adjacent ranks
{j — 1, j} spanned by two different jumps, J;; must be disjoint, else one could refine the
chain equatorially by “breaking’; between two such rankg — 1, j} which they share.
The jumpsJ; must then disjointly cover all possible adjacent rank pgirs- 1, j};zz, o)
they can be re-ordered as in (ii)J

Proposition 3.6. The collection of all cones

po{y; : I e RUE&Y,
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whereR (resp &) is a chain of non-empty rank-constamésp. equatoriglideals in B
gives a unimodular triangulation of the cone of P-partitiQdéP).

Proof. First we check that these polytopal cones indeed decomyp0Be. Given f € A,
write f = £+ f®asin Propositior.3. Then use these easy facts:

e f'Clies in the cone of rank-constaRtpartitions, which is the simplicial cone positively
spanned by the (non-empty) rank-constant |delé§f‘s}

e When f®9is expressed in the unique way as a posmve combination of characteristic
vectors of a chain of ideals, as in Proposit@®2 part (i), this chain of ideals must be
equatorial sincer®dis.

Itremains to check that all such cones are unimodular. Thus it suffices to show that whenever
RU¢E ismaximal under inclusion, therfU€ = n andtheZ-spanofthe sey; : I € RUE}
additively generates inside” is the full integer latticeZ”. To see /R U £ = n, first note

that whenR U £ is maximal, one ha® = {1]“3}’_1, and then # = n — r follows from
Proposition3.5. To show they additively generaZ, we show by induction on the ramk

of P that the subgroup they generate contains each standard basiseydiciop € P. The

base case = 1 hasP an antichain, hence all ideals_ P are equatorial, so the cones in
question coincide with the cones in the canonical triangulation, which are unimodular by
Propositior2.1 In the inductive step, note that this subgroup generatdg byl € RUE}

has the alternate description as the subgroup generated by the characterlsthg\;ecabrs

all of the ranks ofP along with the characteristic vectoys, of all of the jumps between

the equatorial ideals i&. Proposition3.5 shows that there will be exactly one element

of the top rank in P which does not occur in a singleton jurdp Namely,g = maxJ;,

after the re-labelling as in Propositi@u6. Hence for every € P. — {q}, one hag,, inthe
subgroup, but then one also hgsin the subgroup, since the subgroup contaips Now

apply induction to the graded poset— P, of rankr — 1, replacing the ideals iR U £ by

their intersections withlP — P, and removing multiple copies of the same ideal created by
the intersection process[]

The triangulation ofA(P) given in Propositior8.6 induces a unimodular triangulation
of O(P), which we will call theequatorial triangulationof O(P).

Definition 3.7. Theequatorial compleXeq(P) is defined to be the subcomplex of the order
complexAJ (P) whose faces are indexed by the equatorial chains of non-empty ideals.

For the formulation of the next corollary we need the concept of simplicial join. For two
simplicial complexed\1, Ao which are defined over disjoint vertex sets, siaplicial join
A1 %Az is the simplicial complexoi1Uoz : a; € A;, i = 1, 2}. Note that we always assume
that the empty facé is a face of a simplicial complex.

Corollary 3.8. The equatorial triangulation of the order polytod¥ P) is abstractly iso-
morphic to the simplicial joing” x Aeq(P), whereo” is the interior r-simplex spanned
by the chain of rank-constant idea{s!jr.c};zo. As a consequence of its unimodulayity
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one has

h(Aeg(P),t) = h(AJ(P),t) = W(P,1).

Proof. The first assertion follows directly from Propositi8r6, noting that, is interior due
to PropositiorB.4. For the second, note that bath« Aeq(P) andAJ (P) index unimodular
triangulations of the order polytope, s&.2) implies

h(c" % Aeq(P), 1) = h(AJ(P),1).
On the other hand, the defining EG.1) of the h-polynomial shows that

f(ALxAp, 1) = f(A1, 1) * f(A2, 1)
h(A1x Az, t) =h(A1,1) * h(Ao, 1)
hc",t)=1,

and hencé(o” * A, t) = h(A,1). O

Remark 3.9. Corollary 3.8 has the following consequence: for a graded p&sdhe set
of linear extensionL(P) is equinumerous with the skq(P) of all maximal equatorial
chains of ideals ifP, as both coincide withW (P, 1)];—1.

This begs for a bijectio) : L(P) — Leq(P). The authors thank Dennis Whi[g4]
for supplying one which is elegant, using the idegeaf-de-taquinon linear extensions
of P, thought of a>-shaped tableaux that use each entr®,1 .. , n exactly once. Given
such a linear extensiow, replace the highest labal(at top rankr) by a jeu-de-taquin
hole, and slide it past other entries down to rank 1, duplicating the last entry that it slid
past in the hole’s resting position at rank 1. Then repeat this with the entr, sliding
it down to rank 2, and similarly with the entries— 2,n — 3, ...,n — r + 1. The result is
a P-shaped tableaux that can be interpreted as an equafepiaitition, compatible with
a unique maximal equatorial chain of ided@léw). It is not hard to check that this map
w — ¢(w) is a bijection.

3.2. Geometric and Convexity Properties/ey(P)

In this section, we use convexity and the concrete geometric realizatidgqoP) to
learn more about it.

Definition 3.10. The rank-constant subspacé™ c R” is the R-linear span of the set
{7['.°}r'_1-
v j ]_

LetQ be a convex polytope, arid a linear subspace, both insiB&. Then there is a well
definedquotient polytope

Q/V={qg+V:qeQ}CcR"/V.
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If = : R* — R"9MV js any linear surjection with kerneV (such as an

orthogonal projection ontd ), then the polytope?/V can be identified with the im-

agen(Q). Also note that ifV is a rational subspace Bf* with respect to the integer lattice
Z" C R", the quotient lattic&” /(V N Z") is well-defined, and a full rank sublattice in
R"/V.

Proposition 3.11. The collection of quotient cones
{Ce =pos{y; : 1 €&EH+ V™Y,

as¢& runsthrough all equatorial chains of non-empty ideals jifidPms a complete simplicial
faninR"/V'C,

(i) This simplicial fan is unimodular with respect to the quotient lati#¢g (V' N Z").
(i) The simplicesCg N O(P)) + V' form a unimodular triangulation of the quotient
polytopeOeq(P) := O(P)/ V'
(iii) This triangulation ofO(P)/ V' is isomorphic as an abstract simplicial completo
the coned x Agq(P) With baseAeq(P) and apex at the interior poird = V'°.

Consequently Aeq(P) triangulates the(n — r — 1)-dimensional boundary sphere
00eq(P).

Proof. Apply the following general statement, Proposit@i 2 about polytopes (and the
analogous statement about fans) with

0=0(P),

A = the equatorial triangulation
A/ = Aeq(P)5

V=V 0

Proposition 3.12. Let Q be an n-dimensional convex polytopeRf. Assume Q has a
triangulation abstractly isomorphic to a simplicial compléxof the formA = ¢ « A/,
whereg” is an r-simplex not lying on the boundary of Q. Let V be the r-dimensional linear
subspace parallel to the affine span of the vertices,of

Then the quotientn — r)-dimensional polytop®/V c R"/V inherits a triangulation
abstractly isomorphic ta® = A", whereg® is an interior point ofQ/V c R"/ V.

Furthermore when V is rational with respect @" c R" and if the triangulation of Q is
unimodular with respect t@", then the triangulation o/ V' is unimodular with respect
toZ"/(V'nzZm).

The proof of Propositio.12is straightforward. We leave it as an exercise.

Proposition3.11, shows thatAeq(P) corresponds to a complete unimodular fan. This
fact suffices to infer both that it is spherical, and that it corresponds to a smooth, complete
toric varietyXAeq(P) (see[21, Section 2.1} Our next goal will be to show thakeq(P)
corresponds topolytopalfan, as this has multiple consequences; see Cord@lagbelow.
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We prove polytopality ofAeq(P) by choosing for each equatorial iddabf P a point
on its ray posy; + V') so that the convex hull of all such points is a simplicial polytope
havingAeq(P) as its boundary complex. Here we employ the following strategy. We start
with the (usually) non-simplicial polytop@eq(P) and pull each of its vertices in a certain
order to produce a simplicial polytope with boundary compigy(P).

Recall[34, Section 2.5}hat if Q is a convex polytope, onpulls the vertexv in Q to
produce a new polytope pyllQ) by taking the convex hull after movingslightly outward
pastthe supporting hyperplanes of all facets that contdint past no other facet-supporting
hyperplanes of). Assuming thaQ contains the origin in its interior, this can clearly be
achieved by replacing with (1 + ¢)v wheree > 0 is sufficiently small.

We will require the following proposition describing the 1-skeleton resulting from pulling
all the vertices of a polytope:

Proposition 3.13. Let Q be the polytope resulting from pulling all of the vertices of a
polytope Q in some orden, v, . .., and letv; denote the corresponding verticesgn

Then two vertice®;, vx will not form a boundary edge af if and only if the unique
smallest face F of Q containing, vy is either Q itselfor contains a vertex; withi < j, k.

Proof. The basic fact about pullinf4, Theorem 2.5.23js that the faces of pyl(Q)
correspond either to faces Qfthat do not contaim, or faces which are cones of the form
v *x F whereF is a facenot containingv inside a facet of) thatdoescontainv.

This implies the following two facts.

(a) If vj, v do not lie on some common boundary face, the edgev,} will never be
introduced by pulling.

(b) When one pull® at a sequence of vertices that do not lie on a facd Q, then the
faceF will remain unsubdivided.

Thus ifF is the unique smallest face Qfcontainingv; anduy, it will remain unsubdivided
until one pulls the first vertex; in the sequence that lies dh By replacingQ with
pull,,_,(---pull, (Q)---), one may assume without loss of generality that 1. We may
also assume th&tis a boundary face d.

If 1 & {j, k}, then we claim that ;, v, no longer lie in any common boundary facet of
pull,, (@) (and hence will never form an edge after any subsequent pullings). To see this,
assume there was such a faGetlf G does not contaimq, then by fact (b) aboves is a
face ofQ. But since it contains both;, v, it would also contain, because, € F C G,

a contradiction. IfG containsv1, thenG = v1 * G’ for some faces’ of Q not containing
v1. But thenG’" must contain both; andvy, sinceG does. Hence the same reasoning as
for G applies toG” and thenG’ must contairvy, again a contradiction.

If1 € {j, k}, sayv; = v, then when one pulls; one creates the edde;, v}, asyy lies
on any facet ofQ containingF. Then this edge will persist during all subsequent pullings.
Thus in this cas¢v;, v} will be an edge oD. O

Theorem 3.14. The equatorial complefgq(P) can be realized as the boundary complex
of a polytope
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Proof. We construct a polytop® such thatAeq(P) is its boundary complex by pulling the
vertices

{v; := yx; + V', I an equatorial ideal i},

of Ogq(P) in any linear order which is compatible with the cardinality of the equatorial
idealsl, that is, in any order where smaller ideals come eatrlier.

We will show that whenevefvy,, ..., vy} spans a face o, then{ly, ..., I} is an
equatorial chain of ideals. This would suffice since it would imply that the simplicial sphere
A which is the boundary of the pulled polytoggis a subcomplex of\eq(P). However,
both triangulate aiz — r — 1)-sphere, and hence one cannot be properly contained in the
other. Thus they must coincide.

We prove the contrapositive: given equatorial idgals . ., I; such that the sdtf4, ...,

I} is notequatorial, we will show thgfvy,, . . ., v;, } doesnotspan a face of. Denote by
F the unique smallest fade of Ogq(P) containing{vy,, ..., vy }. Pick a linear functional
f + R" — R which supports the fade of Oeq(P). This means

o fisalinear functional oRR" that descends to a linear functional on the quotiEhtV .
In other wordsf restricts to O or equivalently,‘(xpj) = 0 for any rankP; of P.
e fassumes its maximum valbé among all equatorial ideals at the verticesiri.e.

M := f(vy) == f(vy) > f(vy) for all ideals/.
Note thatM > 0 whenever is a proper face 0Deq(P), since we know from Proposition

3.11(iii) that the origin 0= V' in R"/ V'€ is actually an interior point 0@eq(P).
There are then two cases for the non-equatorialiet. ., I }.

Casel: {11, ..., I} is not totally ordered by inclusion. In this case, there is some pair of
idealsJ, K among them which are not nested, and one has
fp)+ fok) = funk) + fvjuk)- (3.1)

Note that/ N K and J U K are both ideals irP, and whether they are equatorial or
not, they satisfyf (vynk), f(vjux) <M. Sincef(vy) = f(vg) = M, Eqg. @.1) forces
f(wink) = f(vyjuk) = M. This means that botfin K, J U K lie on the facd-. Thus we
can choosd := J N K in this case, and #< #J, #K . Hencev; would have been pulled
beforev;, vk . By Proposition3.13this showsv;, vg do not span a face @, and hence
neither does its supersgty, , ..., vy }.

Case2: I; C --- C I are nested, but still do not form an equatorial chain. In this case
we will show thatF is the entire polytop&eq(P).

Becaus€ 11, ..., I} is not equatorial there exists a valyes [1, r — 1] such that no
covering pair between ranks j + 1 lies entirely in any of its jumpg; := I; — I;_1. For
eacht =1, 2, ...,k — 1define new sets

I = (Igp1 — 1;") U Iy.

We first claim that eacl, is an order ideal o. If not, then without loss of generality there
exists some covering relatign < p in P with p € I, but p’ ¢ I;. Becausd, is an ideal,



262 V. Reiner, V. Welker / Journal of Combinatorial Theory, Series A 109 (2005) 247-280

we may assume ¢ I,. Thenp € I, 1 — I'¢, which forcesp’ € I,.1 because the latter
is an ideal. Hence’ € I}C, which means thap’< p is a covering relation between ranks
Jj.j+ 1, and thugp’, p} ¢ Jey1 = Ipy1 — I, From this one has that’ € I, C 1), a
contradiction.

We next prove that

FR) + - ) = fQr) + fg) + -+ foy ). (3.2)

by checking that the coefficient of the standard basis vegtdor any p € P is the same
on both sides. We check this in two cases, depending upon whéhet ;. In either case,
define

ig:=min{i : p € I;}.

In the case (p) >j + 1, note thatp ¢ I else the jump/; would contain some cover-
ing relation between rankg j + 1 by following a chain downward from. Thusio>2,
and hence, appears once eachin, , vy ;. ..., vy onthe left side, and once each in
v,l/(rl, Vs« s Vg ON the right.

In the case (p) < j, note thatp € I else the jumpli,1 := P — I} would contain some
covering relation between rani{sj + 1 by following a chain upward fromp. Thusio <k,
and hence, appears once each ml.o, VI , v, on the left side, and once each in

. ig+l> '
vy, vy o, ...,vp _ plusonce ine on the right.
0 ig+1 k-1 J

We now used.2). Sinceljr.c is rank-constan'g‘(v,;c) = 0. Since eachlj’. is an ideal, one
hasf(I]/.) <M. Thus Eq. 8.2 leads to the inequality - M <0+ (k — 1) - M, which forces
M <0. In other wordsF is not a proper face; rathdt = Ogq(P), and sofvy,, ..., vy}
will not span aface o®. O

Corollary 3.15. Let P be a naturally labelled graded poset with r ranks

(i) The equatorial spherdeq(P) is shellable
(i) The associated smooth toric variemeq( p) is projective
(iii) The P-Eulerian polynomiaW (P, r) has symmetric unimodal coefficient sequence
(ho, h1, ..., hgp_,), and their differences

(hOs hl_hOa hp —ha, ... ’hL#PT*rJ _hL#LZ*VJ,]_)

form an M-vectorthat is they satisfy the inequalities characterizing the Hilbert func-
tion of a standard graded commutative algebra

Proof. For (i), sed4]. For (ii), seg21]. For (iii), see[42]. O

Remark 3.16. We should point outarecent related partial unimodality result of Bjérner and
Farley[3]: thef-vector of the order complex of a distributive lattice is unimodal in its first half
and last quarter. This is relevant since E4sl)and @.1) show that for a naturally labelled
posetP and its distributive lattice/ (P) of order ideals, the real-rootednessWwt P, r) is
equivalent to the real-rootedness of the f-polynomial of the order complgxmy.
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Remark 3.17. Hibi [30] considers, for any posé the restriction of thé-partition trian-
gulation of the order polytop@(P) to its boundary. This induces a complete fan by placing
the origin anywhere in the interior, and looking at the cones from the origin through the
faces of this boundary triangulation. The main resu[B86f shows that this fan is polytopal.
The part of the proof of Theore®14 up throughCase 1 gives an alternate proof of this
result. In fact, it shows that the polytope involved may be obtained by pulling the vertices
of O(P) inany order that refines the order by cardinality of the ideals indexing the vertices.

Remark 3.18. Theorem3.14shows thatAeq(P) is a shellable sphere, but does not quite
give an explicit shelling order on its facets, raising the following question.

Question 3.19.1s there a natural order on the séleq(P) of maximal equatorial chains
which induces a shelling order akeq(P)? If S0, what is the statistic ofeq( P), analogous

to the descent statistibesw) on L(P), whose generating function gives the h-polynomial
W(P,1)?

One might hope that the bijectiof(P) — Leq(P) from Remark3.9 could be used to
transfer known orderings ofi(P) (such as lexicographic order) that induce shellings of
AJ(P) to orderings orCeq( P) that shellAgq(P). However, this seems to fail, even in small
examples.

As mentioned earlier, Theorefi14is important for the geometry of the toric variety
X Aeq(P)» but this geometry also has relevance for the Charney—Davis ConjectyBs, In
Theorem 1.1]t was shown that wher is a simplicial sphere arising from a simplicial,
rational, polytopal fan, the quantity(A, —1) coincides with thesignaturea(X,) of the
associated toric variety. This opens the possibility for ideas from geometry to be applied.
In particular, in[33] a property of the far\ was identified, called local convexity, which
implies thatA is flag, and furthermore via the Hirzebruch signature formula implies the
Charney—Davis Conjecture fd.

Definition 3.20. For a 1-dimensional ray p6s) in a complete simplicial far\, we denote

by star,(A) its star, that is the set of cones which together with this ray span a cone in the
fan. Say that a complete simplicial fanis locally convexf for every 1-dimensional ray
pogv) one has that sta¢A) forms a convex cone.

Theorem 3.21(Leung and Rein€f33, Theorem 1.2(i), Proposition 5.8] The simplicial
sphereA associated to any locally convex complete simplicial fan is flag. If furthermore the
fan is rational and polytopalthen the Charney—Davis Conjecture holds for

It is therefore interesting to know whether the farRifty/ V'© associated witi\eq(P) is
locally convex. Unfortunately, it does not even possess the weaker property of being flag in
general?® as shown by the following example.

3Contrary to a mistaken assertion with incorrect proof in an earlier version of this manuscript. The authors
thank Xun Dong for catching this error.
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4 5 6

1 2 3

Fig. 2. Zig-zag poset.

Example 3.22. LetP be the “zig-zag” graded poset ¢8] with r = 2 ranksP; = {1, 2, 3},
P> = {4, 5, 6} and covering relations given in Fig.
To show thatAeq(P) is not flag in this case, consider the chain of ideals

I C I C I3
{1 c {L,24 c {1,23,4,5}.

Note that eacl; is equatorial, as is each pdif;, I}, but the whole triplg{/1, I, I3} is
not.

To illustrate more explicitly how the relevant fan fails to be locally convex, consider the
maximal equatorial chain of ideals

L ¢ L C I3 C n
{1 c (1,4 c {1,245 C {1,23,4,5}

and the equatorial paiy = {1} C {1, 2, 4} =: I. We wish to show that in the simplicial fan
corresponding t@d\eq(P) in R6/ V', which we identify for the moment Witheq(P), the

star of the ray pa@,, ) is not convex. Specifically, the 2-dimensional cone(pos, v;}) <
star,, (Aeq(P)) has points in its interior that lie on the supporting hyperplane for the cone

that is spanned (in the quotient sp&% V'°) by {vy,, vr,, v1,}:
In v X=Xyt X124
=Xz T L4
=123 — ({12,345 — X1245) T L4
=11 = Uty = Aag) + Ly

Here ;¢ denotes the rank-constant idegal = {1, 2, 3} as usual.

However, we do have the following result. For a poBethe width is the size of the
largestantichain(=totally unordered subset) i

Theorem 3.23. ThefanirR”"/ V' associated witheq( P) is locally convexitvidth(P) < 2.
ConsequentlyAeq(P) is flag in this caseand the Charney—Davis Conjecture holds for
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Aeq(P), that is

(—1)"Z h(Aeq(P), —=1)>0
(= (=17 W(P, -1))

Although flagness follows from local convexity, when widi) <2 it is easy enough to
show flagness directly; we omit this direct proof.

Proof. Without loss of generality, we may assume not only fRdtas width 2, but also
that every rankP; has cardinality 2; when a rank Bfhas only one element, this element is
comparable to all oP and its removal is easily seen not to affégh(P) or its associated
faninR™/V'® up to linear isomorphism.

Local convexity here amounts to checking the following. Consider a maximal equatorial
chain of ideald;1 C --- C I,—,. Letl be another ideal that forms an equatorial géirly}
with one of the ideald; in the chain. We must show that the unique linear functidnal
defined orR” by the conditions

fv©) =0
flu,) = 0fori € [n—r]— {k} (3.3)
f(}([k) =1

has f (x;) > 0. This suffices because the zero set of the functibdafines a typical sup-
porting hyperplane for the star of the ray pog), and one needs to check that every other
ray vy in this star lies on the same side of this hyperplane;as

From the defining equation 6{3.3) and its additivity we infer the following list of values
of f on the characteristic vectors of the jumps.= I; — I;,_1, which we will use without
further reference:

f(XJkH):—l
S =+1
fQy)=0fori #k k+1

Another fact that will be used frequently without mention is that 8y8) for every rank
Pj ={p, p'yone hasf(ep) + f(ey) = f(xp,) = 0.

By Propositior3.5the two sets of ranks occupied by the chaips; andJ;, can overlap
in at most one rank. When they do overlap, say in the ®nk= {p, p’} with p € J; and
p’ € Jrr1, One can check thésatisfies

Flep)=+1
flepy)=-1
f(eg)=0forqg # p, p'.

As p' & Iy, this means thaf (e,) >0 for g € I;. Thus any ideal that forms an equatorial
chain of the form/ C I will have f(y;) >0 as desired. If the equatorial chain looks like
Iy C 1,thenp e I C I will force f(y;) >0 again.
When the sets of ranks occupied #y.1 andJ; do notoverlap, we consider two cases.
Casel: J; occupies strictly higher ranks thap, 1.



266 V. Reiner, V. Welker / Journal of Combinatorial Theory, Series A 109 (2005) 247-280

Then by Propositio.5it is possible to index a subset of the jumpsas
Jevr = Jig, Jigy oo Jig_qs iy = Uk

insuchaway that;,, Ji;, ..., J;,_, are non-singleton jumpg, , with max(J;,), min(J;,, ;)
occupying the same rank for eatle [s — 1].

In fact, one can check that the definition of the jumps along with the facPtlisagraded
(so that every element iR is comparable to at least one out of the two elements in each
rank P;) forcessto be even. Moreover, one can verify the following total orderings of the
chainsJ;,:

Ji, <p Jiy <p - <p Jiy, Clk
Ju<p Jig<p- - <pJi,, € Ir.

(hereJ <p J' means that the two chains satisfy max p min J’). This then implies
that f(e,) = 0 for mostp € P, with the exception of values 1, —1 alternating along the
following two linearly ordered subsets:

maxJ;, < minJ, < maxJ, <---<  minJ;_, < maxJ;_,
-1 +1 -1 +1 -1
(3.4)
minJ, < maxJ, <---<minJ;_, < maxJ; , < minJ;
+1 -1 +1 -1 +1.

Let| be an ideal irP such thaf/, I;} is equatorial.

I C I;: We havef (y;) >0 because the only € I; with e, # 0 that can lie inl will form
an initial segment of the second chain 814).

I C I: It follows that f(y;) >0, because thg € I — I; such thatf(e,) # 0 form
an initial segment of the first chain i13.4), so their sum is at least1, while
fg) =+1.

Case2: J; occupies strictly lower ranks than doés; 1.

Inthis case, the definition of the jumps, along with the gradedndéfofes the following
situation. There exists a pair of adjacent ratks P; 1 and two elementg;, p;11 such
that

Pjt1 = {mMin Jiy1, pj+1}
P;j = {max Ji, p;} (3.5)
pj < pj+a(infact, /i1 ={p;. pj+1}) '
max Jit1 £ pj+1-

One can check that this implies the following valuesffor

fmaxJy) = f(pj+1) =+1
fmin Jiy1) = f(pj) =-1 (3.6)
f(p) = Oforall otherp € P.

Again, letl be an ideal irP such thaf/, I} is equatorial.
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Ir C I: From 3.5 and @.6), there is only one possibtgin I — I; such thatf (e,) < 0,
namelyg = min Ji+1 hasf(q) = —1. Butthenf(y, ) = +1, so

FGo =G+ t-1)2 —14+1=0.

I C Iy: From @.5 and @.6), the only way one could havg(y;) < O would be ifp; € I
but both maxJ; and p;1 are not inl. However this would contradict the equa-
toriality of the pair{I, I;}: since max/,11 £ pj+1, there would be no covering
pair from rankg, j + 1 contained in any of the jumps Iy — I, P — I;. [

The Neggers—Stanley Conjecture is trivial when width = 1, but unknown even when
width(P) = 2, although claims for its proof in this case have been made, and then retracted,
more than oncg53]. In light of Propositionl.4, we regard Theorer8.23as non-trivial
further evidence for both the Charney—Davis and the Neggers—Stanley Conjectures.

4. Which Koszul algebras have PF Hilbert functions?

In this and the next section, we give some results aimed toward the thesis that the right
context in which to view both the Charney—Davis and Neggers—Stanley Conjectures (along
with some other combinatorial conjectures and questions) may be the interaction between
Koszul algebras and PF-sequences.

4.1. Koszul algebras and PF-sequences

We begin with a quick review both of Koszul algebras and of PF-sequences. The reader
is referred to[20] for more information on Koszul algebras, and[832] for more on
PF-sequences.

Let R = P, > R: be a finitely generated, standard graded, connected, associative (but
not necessarily commutative) algebra over a fiettiat is a quotienk = k{x1, ..., x,)/J
for some two-sided idedlwhich is homogeneous with respect to the grading.dég= 1.

By eliminating redundant generators we may assume without loss of generality that
only contains elements of degree 2 and higher.

Definition 4.1 (see Froberd20]). Ris calledKoszulif the field k, endowed with the triv-
ial R-module structure as the quotieht= R/(x1, ..., x,), has a gradetinear R-free
resolution, that is an exact sequence of the form

~~~—>ZR(—i)ﬁi - ...—>ZR(—1)/H—> R— k— 0.
J J

EquivalentlyRis Koszul if the grade#-vector space Tq5"r(k, k) is concentrated in degree
i for eachi, or equivalently, if thd?oincaré serie® (R, ¢) andHilbert seriesH (R, t) defined

by
P(R.t):=)_dim Torf (k. k)i’
i>0
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H(R.t):=)_dim Rit",
i=0

whereRr; is thek-vector subspace & generated by the monomials of degreare related
by the equation

P(R,HH(R, —1) = 1. (4.1)

It is not hard to see that Koszulness®implies that the ideal of relationsdefiningR
is generated quadratically, but the reverse implication holds only in special cases; see e.g.
Theoremd.5below.

Note thatH (R, t), P(R, t) are only power series i) and not rational functions dfin
general. However, we will be particularly interested in the case WRésea commutative
ring, so that one can (uniquely) express

h(R, 1)
1—nd

H(R, 1) := Z dimg R; £ =
i>0

whereh(R, t) = ho + hat + -+ + hygyt™® € Z[t] with hyg) # 0 (see[17, Exercise
12.12, p. 284] Hered is theKrull dimensionof R, the vector(ho, i1, ... , hygy) is called
the h-vectorof R, and we will callz(R, ¢) the h-polynomialof R. Although the quantity
o(R) does not seem to have a particular name in the literature that we could find, the degree
of H(R, t) as a rational function is usually called thénvarianta(R). So we can express
a(R) as the sumx(R) = a(R) + d of thea-invariant and Krull dimension.
The theory of Hilbert series relatbgpolynomials of simplicial complexes aldpolyno-
mials through the polynomid (R, t). WhenR is commutative and Cohen—Macaulay we
say thatR is CM. The following facts are well known (see for examfié]):

e If Ris CMthenh(R, 1) € N[t].
o If Riscommutative and Gorenstein tHeis CM andi(R, t) = ho-+hit+- - -+hygr)t*®
satisfiediy,g)—i = h; fori € [0, a(R)].

We are interested in the case whgIR, r) has only real non-positive zeroes. This question
can be approached via the theory of total positivity (§3éor a pleasant introduction, and
[32] for an extensive treatment). We review some of the basic facts and definitions here.

Say that a sequence of real numbeis a1, . . .) is aPolya frequency sequence of order
r (or PF, for short) if all minor subdeterminants of size at most the infinite Toeplitz
matrix (a;—;);, j=0,1,2,... are non-negative. For example,Afeans the; are non-negative,
while PR, is equivalent tdog-concavity i.e.a?}ai,laiJrl for eachi. A Polya frequency
sequencéor PF sequence) is one which is Pfor all r. We say that a formal power series
A(t) == Zi>oa,~ti generates a PF-sequenidehe sequencéag, a1, . ..) is PF.

We also recall a basic relationship between zefpeles of rational functions and PF-
sequences, in a form stated by Brenti that is convenient for our applications. It can be
deduced from a fundamental and deep refl@ylTheorem 4.5.2]32, Chapter 8, Theorem
5.1] characterizing PF-sequences.
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Theorem 4.2(Theorem 4.5.3 Brenff] ). Let Zi>oaiti be a rational power series in
R[[#]] with non-negative coefficients. Then(ag, a1, ...) is a PFsequence if and only
if when we express

i W@
E ajt' = ——
V(1)

i=0

with W, V relatively prime polynomials ifR[¢], the numeratoriW () has only real non-
positive zeroes and the denominaio) has only real positive zeroes

Corollary 4.3. When R is Koszuthe following are equivalent

(i) The sequenceHilb(R, 0), Hilb(R, 1), ...) generated byH (R, ¢t) is PF.
(ii) The sequencéBy, 1, ...) generated byP (R, 1) is PF.

When R is furthermore commutative abil, then(i) and(ii) are equivalent to

(i) h(R,t) has only negative real zeraes
(iv) The sequencéig, h1, ... , hyr)) generated byi(R, 1) is PF.

Proof. The equivalence of the PF-property for power seti&s), P(r) satisfying P (t)
H(—t) = 1is well-known[32, Theorem 8.1.2]s0 the equivalence of (i), (ii) follows from
(4.7).

CM-ness oRimplies that the:; are non-negative, so Theoren2shows the equivalence
of (iii) and (iv).

Sincehg = 1 > 0 and theé; are non-negative, the polynomiaiR, r) does not vanish at
t = 1, and consequently the numerator and denominat&r(iR, 1) = f’l(fl)’?, are relatively
prime. Hence Theoremh.2 also shows the equivalence of (i) and (iii)J

4.2. Questions and examples

The questions motivating this section are as follows. Say that a Koszul algé&bRF if
H(R, 1) (or equivalentlyP (R, t)) generates a PF-sequence. Say that a Koszul Gorenstein
commutative algebrRis CD (for Charney—[avis) if either
e o(R) is odd, or
(R
e if a(R) is even and—l)%h(R, -1)>0.

Question 4.4,

e Which Koszul algebras afeF?

e Inparticular, which KoszuCM-algebras ardPF,that is which ones have only real zeroes
for their h-polynomiali (R, 1)?

e Which Koszul Gorenstein algebras &2®?

Note that Propositiod.4 shows that for a Gorenstein algebra, PF implies CD.
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Part of the relevance of Koszulness for various combinatorial conjectures derives from a
result of Froberd19]. Recall that for a simplicial compleX on vertex seV the Stanley—
Reisnerringc[A] is the quotient ok[x, : v € V] by the ideall, generated by the squarefree
monomials whose support is a minimal non-facé\of

Theorem 4.5(Froberg[19]). For monomial ideals | inS = k[x1, ..., x,], the algebra
R = §/I is Koszul if and only if | is quadratically generated

Consequently, for a simplicial compléx the Stanley—Reisner ringA] is Koszul if and
only if Ais flag

Instances of Questiof.4 have occurred several times in the literature. Here are some
notable examples, beginning with the two that originally motivated us.

Example 4.6. The Charney—Davis Conjecture for a flag simplicial homology spiere
asserts CD-ness for the Koszul Gorenstein Stanley—Reisnek[jg

Example 4.7. The Neggers—Stanley Conjecture for a naturally labelled poasserts PF-
ness for the Koszul CMStanley—Reisner riridJ (P)]. Here we recall from Sectiohthat
AJ(P) is the order complex of the distributive lattice of order idealBin

Example 4.8. A conjecture by Hamidoune, recently proven][i¥], asserts that thé
polynomial of the compleX\s of independenfor stablg sets in eclaw-free(see Example

4.12 graphG has only real zeroes. The independent set comfilexs always flag: it is
defined as having a simplex for every subset of vertices that contains no edges. Thus the
Stanley—Reisner riff A is Koszul by Theorem.5, and the proof of the Hamidoune Con-
jecture implies thatitis PF. In geneddA ;] is far from being CM. However its further quo-
tientk[AG]/(xE : v € V) is of Krull dimension 0, hence Cohen—Macaulay, and also Koszul

by Theorend.5, havingh-polynomial the same as tHgyolynomial of Ag. Thus one can

also view the proof of the Hamidoune Conjecture as showing that this Koszul CM-ring is PF.

Example 4.9. Given a graplG on vertex sefn], define itsmatching compleX{ to be

the simplicial complex having vertex set corresponding to the edg€s ahd a simplex

for each subset of edges that form a partial matching. This is clearly a flag complex, so
thatk[M¢] is Koszul. A classical theorem in enumerative graph theory by Heilmann and
Lieb [25] can be rephrased as asserting thatfthelynomial of M has only real zeroes.
Analogous to Exampld.8 one constructs from the Stanley—Reisner ;] a Koszul
CM-ring whoseh-polynomial is thef-polynomial of M.

Example 4.10. In[9, Chapter 7]Brentiinitiated the study of the following question, gener-
alizing the Neggers—Stanley problem. Given a directed giafdr digraph), leta; denoted
the number of directed walks of lengkhin D. For which digraphs igag, a1, ...) a PF-
sequence?

The sequencép, as, . ..) turns out to be the Hilbert function for a (non-commutative)
Koszul algebra studied by Bruns, Herzog and Vetter, and also by KobayasfiZ$eevho
give algebraic interpretations for some of the combinatorial results.
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Example 4.11. Hai has shown that certain quantum deformations of polynomial and exte-
rior algebras are Kosz{26] and PH27], by representation-theoretic means.

This list of examples might make it tempting to conjecture that any Koszul CM-algebra
is PF. But this is indeed far from being true.

Example 4.12. The claw graph Gis a tree with one vertex of degree 3 connected to 3
leaves. Its independent set complex is the disjoint union of a 2-simplex and a 0-simplex,
havingf-vector

(f-1, fo, f1, f2) = (1,4,3,1).

This |mpI|es thatR = k[ A(;]/(xl,xz,x3,x ) is a Koszul CM-algebra wittk (R, t) =
1+ 4t + 32 + 13. But h(R, 1) can be easily seen to have two non-real zeroeR &
not PF.

4.3. Motivating results

Inthis subsection we will give results that show, in spite of Examfle there is evidence
for the assertion that Koszul rings and their Hilbert functions are a good framework in which
to think about PF-questions.

One indication that the Koszul and PF-properties interact well is the following propo-
sition, apparently well-known to those who study ¢k, k). The authors thank Vesselin
Gasharov and Irena Peeva for bringing it to their attention.

Proposition 4.13. Let R be a Koszul algebra whose Hilbert serig6R, 1) is rational (e.g.
if R is commutativeor finite-dimensional over)k

Thenif H(R, t) has any zeroes at alt will have at least one real zefoamely—p where
p is the radius of convergence 8f(R, t).

Proof. Recall thatH(R =P[R, 1) =2 >0 B;t" has non-negative coefficienfis(=
dimy, TorlR(k, k)). Then Pnngshelms Theoref®0, Section 7.2Jimplies that whenever
H(R,t) has any zeroes? (R, t) will have a pole (and? (R, —t) a zero) at = p, wherep
is the radius of convergence (= the minimum complex modulus of the polé&)Rf1).

O

This has consequences for CM-algeliRashoseh-polynomial is of low degree(R).

Corollary 4.14.

(i) Every KoszuCM-algebra R witho(R) <2 is PF.
(i) Every Koszul Gorenstein algebra R withR) < 3is PF.
(iif) A Koszul Gorenstein algebra R witfiR) <4 is PFif and only if it isCD.
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In particular, (iii) combines with Davis and Okun’s prodf6] of the Charney—Davis
Conjecture for flag simplicial homology spheres of dimension at most 3, to show that such
simplicial spheres are always PF. Recently, [2d] has shown that thie-polynomial of a
flag homology sphere of dimension at most 4 has only real roots. He also constructs examples
of flag simplicial convex polytopes in dimensio#$: 6 for which theh-polynomial of the
boundary(d — 1)-sphere has some non-real roots. We remark that calculations similar to
those in the proof of Corollarg.14appeared (independently) i, Chapter 6]

Proof. Assertion (i) is immediate from Propositicghl3 «(R) <2 impliesh(R,t) is a
quadratic polynomial, and it has real coefficients, so since it has at least one real zero, both
its zeroes are real.

For assertions (ii), (iii) certain possibilities fé(R, r) whenRis Koszul and Gorenstein
must be ruled out in an ad hoc way, which we do all at once here:

h(R,1) = 1+t 412413

h(R,t) = 142t + 212 4¢3

h(R,t) = 1+ 2t + 22+ 23 + ¢4
h(R,t) = 1+ 3t + 42+ 33 +1*
h(R,1) = 1+ hit +0r% 4+ hqt® + 14
h(R,t) = 1+ hit + 12 + hqt® + 14

4.2)

Firstly, by means of Theorem.15iv) below, one can mod out by a regular sequence of
degree one and assume tRdtas Krull dimension 0, and hence is generated bglements

in degree 1. Then Koszulness implies that the idesgenerated by,. The 5th possibility
above is absurd for a standard graded algebra. The 1st would refguize0 and hence

J = 0, which is absurd sinc&s = 0. In the 6th possibility above, one of Macaulay’s
conditions for being aM-vector[47, Corollary 11.2.4]asserts thais <h<22>, which would
forcehi(= h3) = 1. This leads to a contradiction as in the 1st possibility. For the 2nd, 3rd,
and 4th possibilities, one contradicts the fact that

dimg J3 < dimg Jo - dimg Ry

h 2 h 1
andhence( 1; )—h3<<< 1; )—h2>-h1.

Now to prove assertion (ii), we must consider the cag®) = 3, so
h(R, 1) = 1+ hat + hat® + 15 = (L+ )L+ (ha — D +12).

For real zeroes we need only show that— 1> 2. Sinceh1 is a non-negative integer, this
means ruling out the first two possibilities ih.2), so we are done.
To prove assertion (iii), we must consider the ca&R) = 4, so

h(R,t) = 1+ hat + hot® + hat® + 1%

We consider two cases, depending on whether the radius of convergaficR of) isp = 1
or not.

Casel: p = 1. In this case, we will showR is always PF. Heré(R, r) hast = —1 as a
zero, so K-t as a factor, and since it is a symmetric quartic polynomial, it must have it as
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a double factor:

h(R,t) =1+ hit + hot® + h1t® + 1t
=1+ 0%A+ (h1— Dt +17).
For real zeroes we need only to shayw— 2> 2, that is to rule out the 2nd, 3rd and 4th

possibilities in 4.2). This was already done.
Case2: p # 1. In this case, sinck(R, t) is symmetric, both-p and‘T1 are zeroes. If

we setu :=p + %, and definéd by a + b = h1, then this means
h(R,t) =1+ hit + hot® + h1t> +
=1+ p1) (1+ %t) q(t)
=A+at +15A+bt +1?),

where we further note thab = h,—1. Nowp € (0, 1) since exactly one of the two positive
valuesp, ¥ lies in this range, ang is the smaller of the two. This implies:= p + % > 2,
and hence one concludes that the Charney—Davis quantity

MR, -D)=1-a+1)A-b+1) =(@—2)b—2)

has the same sign @&— 2. ThusRis CD if and only ifb>2. Clearly,h(R, t) has only
real roots if and only if| > 2. Thus if we can show tha@t> 0, thenRis CD if and only if
h(R, t) has only real zeroes, as desired.

To seeb >0, using the equatiomb = ho — 2 and the fact that > 0, we need only show
thathy > 2. In other words, we need to rule out the last two possibilitied ig) (which was
already done. O

Next we discuss how Questigh4 respects various natural constructions. Given two
commutative standard gradkeilgebrask, R’ one can form theitensor produci® ®; R’
having

(R@R) ==Y R &R,
i+j=l
their Segre producR * R’ having
(R R) == R ® R
and thedth Veronese subalgeb®@(® having
R\ = Ra

for any positive integed.

These ring operations have corresponding effects on the Hilbert function. Tensor product
corresponds to theonvolutionc; := Zi—i—j:l a;b; of two sequences;), (b;). The Segre
product corresponds to théadamard product; = a;b;. The dth Veronese subalgebra
corresponds to thdth arithmetic subsequenee= ay;.
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Theorem 4.15. Let R, R’ be commutative standard k-algebrasd (a,)52,, (b;)2, two
sequences of complex numbers

(i) (Tensor products

(a) If (a;), (b;) are PF,then so is their convolution

(b) If R, R’ are Koszulthen so isR ®; R'.

(c) If R, R" areCM, then so isR ®; R'.

(ii) (Segre producls

(@) If (@), (b;) are PF,and if furthermore either both are finite sequenaasboth are
polynomial functions (i), b(i) of the index ithen so is their Hadamard product

(b) If R, R’ are Koszulthen so isR x R’.

(c) If R, R' are CM, and if furthermore either both have Krull dimension zeoo
both have Hilbert functions equal to their Hilbert polynomidtlsenR = R" is CM
also

(i) (Veronese subrings

(@) If (a;) is PF,then so i9ay;) for any positive integer.d

(b) If R is Koszulthen so isR@ for any positive integer.d

(c) IfRisCM, then so isR“).

(iv) (Quotients by a linear non-zero-divigor

(a) If

ia'ti = h(t)
i=0 (1_t)d

for some polynomiak(¢) havingh(1l) # 0 andd > 0,then(q;) is PFif and only if
the sequence generated ﬁ% is PF.

(b) When f € R is a linear non-zero divisQrR is Koszul if and only ifR/(f)
is Koszul

(c) Whenf € R is a linear non-zero divisQIR isCM if and only if R/(f) is CM.

Proof. The assertions about preservation of the Koszul property follow from a result of
Backelin and Froberf0, Theorem 5.2]

(h(a) Is easy (see e.§B32, Theorem 1.2]
(i)(@) This is a result of Mal6 (sel®, Section 4.7] when the sequences are finite, and a
result of Wagnef52] when the sequences are polynomial.
(ii)(a) Is easy (see e.g9, Proposition 2.2.3]
(iv)(a) Follows from Theorerd.2
(h(c) Follows from standard facts about systems of parameters and regular sequences in
CM-rings[11].
(ii)(c) Thisis trivial when bothr, R” have Krull dimension 0, since such rings are always
CM. WhenR, R’ have Hilbert functions which are polynomial, it follows from a
result of Stlickrad and Vog@l9, Theorem, part (i), p. 378]
(ii)(c) The arguments for this fact are given, for examplg2#, Beginning of Section 3]
(iv)(c) Same as (i)(c). O
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5. Families of examples

In this section, we examine some interesting families of flag simplicial spheres and other
CM flag complexeg\. Adopting the conventions of the previous sections we say that a flag
simplicial sphere\ is CD if A satisfies the Charney—Davis conjecture, say that a simplicial
complexA is PF ish(A, t) has only real zeroes. All of these examples have either been
checked or conjectured to be CD or PF.

5.1. Simplicial hyperplane arrangements

Simplicial hyperplane arrangementsrn out to give rise to complete simplicial fans
which are locally conveX33, Proposition 4.8]and hence to flag simplicial spher&s,
Proposition 5.3]Because of their local convexity, it was noted &3] that whenever the
arrangements are rational, they are at least CD. We do not know whether they are PF, nor
whether they are CD without the assumption of rationality.

Coxeter arrangementme the simplicial hyperplane arrangements given by the reflecting
hyperplanes of afinite Coxeter systéW, S), and are closely related to the Neggers—Stanley
Conjecture. The associated simplicial comple®¥, S), called theCoxeter complesee
[47, Section 111.4) hash-polynomial

h(AW, S), 1) = Z (desw)
weW

where deéw) := #{s € S : ¢(ws) < £(w)}. Because thib-polynomial is multiplicative for
reducible Coxeter systeni®/; x Wo, S1 U S»), it suffices to check the CD or PF-property
for irreducible finite Coxeter systems, which have a well-known classification.

For typesA,,_1 and B,,, theh-polynomial coincides with the special casesaef 1 and
k = 2 of a family of polynomialsEX (r) studied by Steingrimsso@8] which generalize
the classical Eulerian polynomials. These satisfy

EX()
= Y tmr v
m >0 (5.1)
5 e - A0
RS T 1 — tekul-n)

n=0

From the first equation irb(1) and results of Brenf], it follows that EX(¢) has only real
zeroes, taking care of the PF-property for typandB Coxeter complexes. It is known that
the Charney—Davis quantity

0 forn even
h(Ay, 4. —1) = —)des) = n
Aa, 0 =D =Y (=D (—1)"2'E, forn odd

weS,

whereE, is the number of alternating permutations

w=w1 < w2 >w3z<---
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in S, (this can be deduced, e.g., froB1) by settingk = 1, = —1 and comparing with
[45, pp. 148-149] The formulas %.1) show similarly that

0 forn odd

h(Ag,. —1) = { (=1)22"E, forn even

For typeD, theh-polynomial of the Coxeter complex was first investigated by Stembridge,
who showed (sef88, p. 136) that it satisfies
h(A(D,), 1) = h(A(By), 1) — 2" nt - h(A(Ap—2), 1). (5.2)

Brenti further explored these polynomials, and conject(it€ Conjecture 5.1f{hat they
are PF. Although this is not known, it can at least be shown u&fy that they are CD,
as follows. From the above generating functions, and the answers forAypesB,,, one
checks that fon even,

(—DER(AD,), —1) = 2" 2E, —nE,-1).
To show the right-hand side is non-negative, we exhibififfeven an injection
{(i,w) :i € [n], w an alternating permutation i&,,_1}

¢ . N . .
—{w € S, : w is alternating oreversealternating

defined as follows: gively, w) as above, define

d(w) =
Wi] > W2 <+ >wWL <N >w; <Wi1>->w,_1, i 0odd
WL <W2>-+>W_1<N>W,_1<Wy_2>---<w, 1even.

For the remaining (non-dihedral) exceptional finite irreducible Coxeter grdip$y7, Es,

F4, H3, Hy), one can compute thie-polynomials of the Coxeter complex explicitly via
computer, and check ad hoc that they have only real zeroes (in fact, most of them were
already checked ifiL0]).

5.2. Generalized associahedra

Thegeneralized associaheddgfined recently by Fomin and Zelevindiyg] are a family
of flag simplicial spheres associated to any finite Weyl grivjpwe will denote their
associated simplicial complek-z(W). These complexes generalize #ssociahedrand
cyclohedraand possess beautiful numerology. Their number of facets is a known Coxeter
group generalization of the Catalan humbers

ei+h+1

CatalaniW) = 1_[ .1
e

wherehis theCoxeter numbeof Wande; are theexponentsFrom recursions for their face
numbers given if18, Section 3.3]Jone can compute thdirpolynomials explicitly:

nt 1 /n n X
h(AFz<An_1>,r)=]; - (k) (Hl)r
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Mz B0 =3 (1)

k=0
h(Arz(Dp), 1) =1+1"

n—1
n\2 n n—1 n—1 i
i — t
+(;(<k> 20 () )
h(Arz(Eg), ) = 1+ 120 + 15402 + 6120° + 9518*
+612Q° + 15405 + 1207 + ¢8,
h(Arz(E7),t) = 1+ 63 + 5462 + 14703 + 1470
+546° + 638 + 17,

h(Aez(Eg), ) = 1+ 36t 4+ 2042 + 3513 + 204* + 36> + 1©,
h(Arz(Fa), 1) =1+ 24t + 5562 + 24¢° + 14,

For type A,,_1, the h-polynomial is the generating function for the Narayana numbers
[46, Exercise 6.34]and one can check (s¢&7, Proposition 17]that it coincides with

W (2 x n, t), where2 x n is a naturally labelled Cartesian product of chains of sizes 2 and
n. This is PF by Brenti’s result that the Neggers—Stanley Conjecture holds for all naturally
labelled Gaussian posdt Theorem 5.6.8]

For type B,,, the h-polynomial coincides withiW (nun, ) wherenun is a naturally
labelled disjoint union of two chains of sireThis is PFby Simion’s result that the Neggers—
Stanley Conjecture holds for naturally labelled disjoint unions of chdids

For type D, it is rather simple to check that thepolynomial is CD. By calculating
explicitly one shows that

0 for n odd
h(Arz(Dy), =1) = (—1)3 (’};2) (2- ;il) for n even

n-2
2

which forn > 2 has the appropriate sign. Recently, it has been sl@viat indeed the
h-polynomial is PF.

One can check ad hoc for each of the exceptional cases abovie-pgblnomial
h(Apz(W), t) has only real zeroes, and hence is PF.

5.3. Barycentric subdivisions

Barycentric subdivision®f the boundaries of convex polytopes give flag simplicial
spheres which are known to be CD. The Charney-Davis quantity in this case was ob-
served by Babson (s¢é7, p. 103] [13, Section 7.3]to be a certain coefficient in a finer
enumerative invariant of the polytope known ascisindex Then a result of Stanlg4]
shows that thesed-index coefficients are all non-negative for a more general class of flag
simplicial spheres (barycentric subdivisionsaghellablgegular cellular spheres). We do
not know whether these barycentric subdivisions are PF.
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5.4. Broken circuit complexes

Given a matroidM with a linear ordero on its ground set, there is an important shellable
(hence CM) simplicial complex known as theoken-circuit complex8C (M, w). It was
shown by Bjorner and Ziegldb, Theorem 2.8that BC (M, w) is a flag complex if and
only if M is supersolvableand in this case thie-polynomial factors

h(BC(M, w), 1) = [ [+ (e; — D)

1

wheree; are theexponent®f the supersolvable matroM. Thus wheneveBC (M, w) is
flag, it is also trivially PF.

5.5. Regular complex polytopes

Regular complex polytopesere first defined by Shephard (44&]), as arrangements
of complex affine subspaces @f satisfying axioms modelled after the affine subspaces
spanned by faces in a regular convex (real) polytope. To each regular complex p@tytope
is associated a flag simplicial compl&xP) called itsMilnor fiber complex(or the order
complex of its lattice of faces). These complexes are known to bg3BMbut not known
to be shellable.

The classification of regular complex polytopes which are not regular real convex poly-
topes is fairly short, with three infinite families (simplices, generalized cross-polytopes,
generalized cubes) all of who#€A(P), r) are subsumed by the polynomieﬂé(r) from
(5.2), and hence are PF. There remains a finite list of exceptions, many of which live in
C?, so thatA(P) is 1-dimensional, and hence are PFby Propos#idd(i). There are only
four others on this list. In the following we list theirpolynomials (where we are using
Coxeter’s notation for the polytopes themselves):

h(A(2{4)3(3}3), 1) = h(A(3{3}3{4}2), 1)
=1+ 339 + 8312 + 1253,
h(AB(313{3}3), 1) = 1 + 123 + 3992 + 1253,
h(A3{3}3(3}3(3}3), 1) = 1 + 4796 + 568862 + 79196° + 14641%.

All of these have real zeroes by ad hoc computation.
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Note added in proof:

John Stembridge has informed us that he has found a counterexample to the Neggers—Stanley
Conjecture that is naturally labeled and of width 2.
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