The Basis Monomial Ring of a Matroid*

Neil L. White
Department of Mathematics, University of Florida, Gainesville, Florida 32611

Abstract

We define the basis monomial ring M_{G} of a matroid G and prove that it is Cohen-Macaulay for finite G. We then compute the Krull dimension of M_{G}, which is the rank over Q of the basis-point incidence matrix of G, and prove that $\operatorname{dim} B_{G} \geqslant \operatorname{dim} M_{G}$ under a certain hypothesis on coordinatizability of G, where B_{G} is the bracket ring of G.

There has been considerable interest recently in the applications of CohenMacaulay rings to combinatorics, especially in the work of Stanley. The question has been raised whether the bracket ring B_{G} of a matroid G is Cohen-Macaulay. As a step in this direction, we define the basis monomial ring M_{G} and prove that it is Cohen-Macaulay for all finite G. Since $B_{G} / \mathrm{rad} \dot{B}_{G} \cong M_{G}$ if G is unimodular, and $\operatorname{rad} B_{G}=0$ is conjectured in [13], we have settled the unimodular case modulo the conjecture. In the separate case of "skew-Schubert matroids," Stanley [10] proved B_{G} is Cohen-Macaulay. As a prelude to the CohenMacaulayncss of M_{G} wc prove that any monomial d on the elements of G, of degree a multiple of the rank of G, is factorable into bases of G provided some power d^{p} is factorable.

We proceed to a combinatorial computation of the Krull dimension of M_{G}. We then show $\operatorname{dim} B_{G} \geqslant \operatorname{dim} M_{G}$ for coordinatizable G, and relate this to results in [14] which characterize $\operatorname{dim} B_{G}$ in terms of the maximum transcendence degree of a coordinatization of G.

Although we use much of the notation and terminology of [1], we use the term "matroid" rather than the synonym "combinatorial pregeometry" because our Theorem 1 is completely matroidal in flavor.

Let $G(S)$ be a matroid (or combinatorial pregeometry) of rank n on the set S. If R is a commutative ring with 1 , we consider the commutative polynomial ring $R[S]$. Let \mathscr{M} be the multiplicative monoid ($=$ semigroup with identity) consisting of all monomials $\prod_{s \in S} s^{e_{3}}$ in $R[S]$, where $e_{s} \in \mathbb{N} \cup\{0\}$ for all s, and $e_{s}=0$ for all but a finite number of elements s. Let N be the set of all square-free monomials $s_{1} s_{2} \cdots s_{n}$ where $\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ is a basis of G, and \mathscr{M}_{G} the submonoid of \mathscr{M} generated by N. The basis monomial ring $M_{G}{ }^{R}$ is the ring $R[N]=R\left[\mathscr{M}_{G}\right]$, the subring of $R[S]$ generated by N over R.

[^0]Theorem 1. For every matroid G, if rank $G=n, d \in \mathscr{M}$, degree $d=\ln$ for some $l \in \mathbb{N} \cup\{0\}$, and $d^{p} \in \mathscr{M}_{G}$ for some $p \in \mathbb{N}$, then $d \in \mathscr{M}_{G}$.

Proof. We must show that a monomial d of degree \ln is factorable into bases of G, given that d^{p} is factorable into bases.

Let us change notation by omitting elements of exponent zero, so that $d=$ $\prod_{i=1}^{N} s_{i}^{i}{ }^{i}$ where $g_{i}>0$, for $1 \leqslant i \leqslant N$. We construct sets $T=\left\{t_{i}{ }^{j} \mid 1 \leqslant i \leqslant N\right.$, $\left.1 \leqslant j \leqslant g_{i}\right\}$ and $U=\left\{u_{i}^{j, k} \mid 1 \leqslant i \leqslant N, 1 \leqslant j \leqslant g_{i}, 1 \leqslant k \leqslant p\right\}$ with all $t_{i}{ }^{j}$ distinct and all $u_{i}^{i, k}$ distinct. Let $G^{\prime}(T)$ and $G^{\prime \prime}(U)$ be matroids defined by

$$
A=\left\{t_{i_{1}}^{j_{1}}, \ldots, t_{i_{m}}^{j_{m}}\right\} \subseteq T \text { is independent in } G^{\prime}
$$

$\Leftrightarrow\left\{s_{i_{1}}, \ldots, s_{i_{m}}\right\}$ has m distinct elements and is independent in G

$$
\Leftrightarrow B=\left\{u_{i_{1}}^{i_{1}, k_{1}}, \ldots, u_{i_{m}}^{j_{m}^{m}, k_{m}}\right\} \subseteq U \text { is independent in } G^{\prime \prime},
$$

for all $i_{1}, \ldots, i_{m}, j_{1}, \ldots, j_{m}, k_{1}, \ldots, k_{m}$. Since $j \neq h$ implies $\left\{t_{i}{ }^{j}, t_{i}{ }^{h}\right\}$ is dependent, we have replaced s_{i} in G by g_{i} elements (resp., $p g_{i}$ elements) all contained in the same closed point of G^{\prime} (resp., $G^{\prime \prime}$). For any set $A=\left\{t_{i_{1}}^{j_{1}}, \ldots, t_{i_{m}}^{j_{m}}\right\} \subseteq T$, we associate the set $B_{A}=\left\{u_{i}^{j, k} \mid\right.$ there exists $l \leqslant m$ such that $\left.i=i_{l}, j=j_{l} ; k \leqslant p\right\}$. Thus $\left|B_{A}\right|=p|A|$, and $r^{\prime \prime} B_{A}=r^{\prime} A$, where $r^{\prime \prime}$ (resp., r^{\prime}) denotes rank in $G^{\prime \prime}$ (resp., G^{\prime}).

We now observe that d (resp., d^{p}) may be factored into l (resp., $p l$) bases of $G \Leftrightarrow T$ (resp., U) may be partitioned into bases of G^{\prime} (resp., $G^{\prime \prime}$). We apply a theorem of Edmonds [2] that a matroid $H(V)$ may be partitioned into k independent subsets $\Leftrightarrow|A| \leqslant k r_{H}(A)$ for all $A \subseteq V$. Since d^{p} may be factored into $p l$ bases of G, U may be partitioned into $p l$ independent sets of $G^{\prime \prime}$, hence for all $B \subseteq U,|B| \leqslant p l r^{\prime \prime}(B)$. Thus for all $A \subseteq T,|A|=\left|B_{A}\right| \mid p \leqslant l r^{\prime \prime}\left(B_{A}\right)=\operatorname{lr}^{\prime}(A)$ and hence T may be partitioned into l independent sets. Since $|T|=\ln$, each of the independent sets is in fact a basis. Thus $d \in \mathscr{M}_{G^{\prime}}$.
Q.E.D.

Theorem 2. If $G(S)$ is finite and R is a Cohen-Macaulay domain, then $M_{G}{ }^{R}$ is a Cohen-Macaulay domain.

Proof. We define a monoid \mathcal{N} to be normal if $a b^{p}=c^{p}$ for $a, b, c \in \mathcal{N}$, $p \in \mathbb{N}$, implies that there exists $d \in \mathscr{N}$ such that $d^{p}=a$. We now verify that \mathscr{M}_{G} is normal. Let $a b^{p}=c^{p}$ in \mathscr{M}_{G}, with $b=\prod_{s \in S} s^{e_{s}}$ and $c=\Pi_{s \in S} s^{f_{s}}$. Thus $a=\prod_{s \in S} s^{p\left(f_{s}-e_{s}\right)}$, and $d=\prod_{s \in S} s^{f_{t}-\varepsilon_{s} \in \mathscr{M}^{\prime}}$ and $d^{p}=a \in \mathscr{M}_{G}$. Since $d b=c$ and b and c must each have degree a multiple of n, so must d, and by Theorem 1, $d \in \mathscr{M}_{G}$, proving that \mathscr{M}_{G} is normal.

Now Hochster [3, Theorem 1] shows that if R is Cohen-Macaulay and \mathscr{N} a finitely generated normal monoid of monomials then $R[\mathcal{N}]$ is Cohen-Macaulay. If G is finite, then \mathscr{M}_{G} is finitely generated, hence $M_{G}{ }^{R}$ is Cohen-Macaulay if R is. Furthermore, $M_{G}{ }^{R}$ is a domain since it is a subring of the domain $R[S]$. Q.E.D.

In [13, Remark 6.6], we showed (using different notation) that if G is unimodular and B_{G} is the bracket ring of G, then $B_{G} / \mathrm{rad} B_{G} \cong M_{G}{ }^{Z}$. Similarly, for any Cohen-Macaulay domain R, if $B_{G}{ }^{R}$ is the bracket ring with coefficients from R, then $B_{G}{ }^{R} / \mathrm{rad} B_{G}{ }^{R} \simeq M_{G}{ }^{R}$.

Corollary 3. If R is a Cohen-Macaulay domain and $G(S)$ is a finite unimodular matroid, then $B_{G}{ }^{R} / \mathrm{rad} B_{G}{ }^{R}$ is Cohen-Macaulay.

We now proceed to compute the Krull dimension of $M_{G}{ }^{k}$, where k is a field. Let $k[N]$ be the subring of a polynomial ring $k\left[x_{1}, \ldots, x_{u}\right.$] generated over k by a finite set $N=\left\{n_{1}, \ldots, n_{v}\right\}$ of monomials. We define the monomial incidence matrix to be the $v \times u$ rational matrix $I=\left(a_{i j}\right)$, where $n_{i}=\prod_{j=1}^{u} x_{j}^{a_{i j}}, a_{i j} \in$ $\mathbb{N} \cup\{0\}$.

Lemma 4. $\operatorname{dim} k[N]=\operatorname{rank}_{Q} I$, where Q is the rational field.
Proof. From [14, Theorem 2.8], $\operatorname{dim} k[N]=$ the maximum cardinality of a subset of N which is algebraically independent over k. Let $f\left(n_{1}, \ldots, n_{v}\right)=0$ for some polynomial $f, 0 \neq f\left(Y_{1}, \ldots, Y_{v}\right) \in k\left[Y_{1}, \ldots, Y_{v}\right]$. However, if we consider the grading g on $k\left[Y_{1}, \ldots, Y_{v}\right]$ induced by $g\left(Y_{i}\right)=n_{i}$, then each homogeneous component f_{i} of f must also satisfy $f_{i}\left(n_{1}, \ldots, n_{v}\right)=0$ in $k\left[x_{1}, \ldots, x_{u}\right]$. Thus if $\beta \prod_{i=1}^{v} Y_{i}^{b_{i}}$ and $\gamma \prod_{i-1}^{v} Y_{i}^{c_{i}}$ are two terms of the homogeneous polynomial f_{i}, where $\beta, \gamma \in k$, we have $\prod_{i=1}^{v} n_{i}^{b_{i}}=\prod_{i=1}^{v} n_{i}^{c_{i}}$. If $\left\langle n_{i}\right\rangle=\left(a_{i 1}, \ldots, a_{i u}\right)$ is the row of I corresponding to n_{i}, then $\sum_{i=1}^{v} b_{i}\left\langle n_{i}\right\rangle=\sum_{i=1}^{v} c_{i}\left\langle n_{i}\right\rangle$. Hence if $n_{i_{1}}, \ldots, n_{i_{i}}$ are algebraically dependent over k, then the vectors $\left\langle n_{i_{1}}\right\rangle, \ldots,\left\langle n_{i_{i}}\right\rangle$ are linearly dependent over Q. The converse is easily seen to hold as well, and the lemma follows.
Q.E.D.

The following theorem was proved by T. Brylawski and R. Stanley (unpublished).

Theorem 5. For every finite matroid $G(S)$ of positive rank, $\operatorname{dim} M_{G}{ }^{k}=|S|-$ $c(G)+1$, where $c(G)$ is the number of connected components of G.

Proof. $\quad M_{G}{ }^{k}=k[N]$ where $N=$ the set of monomials which are bases of G. Thus we must show $\operatorname{rank}_{Q} I(G)=|S|-c(G)+1$, where $I(G)$ is the basispoint incidence matrix of G. We begin by inducting on $c(G)$. If $G(S)=G_{1}\left(S_{1}\right) \oplus$ $G_{2}\left(S_{2}\right)$, suppose first that rank $G_{1}>0$ and rank $G_{2}-0$ in G. Then $\left|S_{2}\right|=c\left(G_{2}\right)$, hence $\operatorname{rank}_{Q} I(G)=\operatorname{rank}_{Q} I\left(G_{1}\right)=\left|S_{1}\right|-c\left(S_{1}\right)+1=|S|-$ $c(S)+1$, using the induction hypothesis on G_{1}. Thus we may assume that rank $G_{1}>0$ and rank $G_{2}>0$ in G. By the induction hypothesis, $\operatorname{rank}_{Q} I\left(G_{i}\right)=$ $\left|S_{i}\right|-c\left(G_{i}\right)+1, i=1,2$. If A_{1}, \ldots, A_{r} are the rows of $I\left(G_{1}\right)$ corresponding to the r bases of G_{1}, and B_{1}, \ldots, B_{t} are the rows of $I\left(G_{2}\right)$, then the rows of $I(G)$ are the juxtaposed rows $A_{i} B_{j}, 1 \leqslant i \leqslant r, 1 \leqslant j \leqslant t$, since S_{1} and S_{2} are disjoint and the bases of G are precisely all unions of a basis of G_{1} with a basis of G_{2}.

If A_{1}, \ldots, A_{p} and B_{1}, \ldots, B_{q} are bases of the row spaces of $I\left(G_{1}\right)$ and $I\left(G_{2}\right)$, it is straightforward to verify that $A_{1} B_{1}, A_{1} B_{2}, \ldots, A_{1} B_{q}, A_{2} B_{1}, \ldots, A_{p} B_{1}$ is a basis of the row space of $I(G)$, hence

$$
\begin{aligned}
\operatorname{rank}_{Q} I(G) & =\operatorname{rank}_{Q} I\left(G_{1}\right)+\operatorname{rank}_{Q} I\left(G_{2}\right)-1 \\
& =\left|S_{1}\right|+\left|S_{2}\right|-c\left(G_{1}\right)-c\left(G_{2}\right)+1 \\
& =|S|-c(G)+1 .
\end{aligned}
$$

Thus we are reduced to proving the case $c(G)=1$, i.e., G is connected.
We now prove the connected case by induction on $|S|$, the case for $|S|=1$ being trivial. Let $x \in S$, and suppose $G-x$ is connected. Then $\operatorname{rank}_{0} I(G-x)=|S|-1$ by the induction hypothesis. Since G has positive rank and no loops, there exists a basis B such that $x \in B$. Then

$$
I(G)=B\left\|\begin{array}{c|c}
I(G-x) & 0 \\
\hline * & 1 \\
\hline * & 1
\end{array}\right\|
$$

The row corresponding to B is clearly independent of the rows above it, hence $\operatorname{rank}_{o} I(G) \geqslant \operatorname{rank} I(G-x)+1=|S|$. Since $I(G)$ has $|S|$ columns, $\operatorname{rank}_{o} I(G)=|S|=|S|-c(G)+1$.

There remains the case where G is connected and $G-x$ is disconnected. Let $G-x=G_{1}\left(T_{1}\right) \oplus \cdots \oplus G_{k}\left(T_{k}\right)$, and let $B^{*}=B_{1} \oplus \cdots \oplus B_{k}$ be a basis of $G-x, B_{i}$ is a basis of $G_{i}\left(T_{i}\right)$. Let C be the basic circuit of x with respect to B^{*} in G. Then $C \cap B_{i} \neq \varnothing$ for all $i, 1 \leqslant i \leqslant k$, since G is connected. In G / x, $G_{i}\left(T_{i}\right)$ are all connected subgeometries and $C-\{x\}$ is a circuit intersecting each $G_{i}\left(T_{i}\right)$. Hence by [1, Proposition 14.1] G / x is connected. Since G is connected, there exists a basis B such that $x \notin B$. Then

$$
I(G)=B\left\|\begin{array}{|c|c|c}
I(G / x) & 1 \\
\hline * & 0 \\
\hline * & 0
\end{array}\right\|
$$

Let $v=\left(v^{j}\right)$ denote the row corresponding to B and $v_{i}=\left(v_{i}\right), 1 \leqslant i \leqslant s$, the preceding rows, which correspond to the bases of G containing x. Since $\operatorname{rank}_{o} I(G / x)=|S|-1$ by the induction hypotheses, and $I(G)$ has $|S|$ columns, it suffices to show that v is linearly independent of v_{1}, \ldots, v_{s}. Suppose to the contrary that $v=\sum_{i=1}^{s} \alpha_{i} v_{i}, \alpha_{i} \in Q$. From the column corresponding to x we see that $\sum_{i=1}^{i} \alpha_{i}=0$. But since each row is the incidence row of a basis of G,
$\sum_{j} v_{i}{ }^{j}=n$ for all i. Thus $\sum_{i} \sum_{j} \alpha_{i} v_{i}{ }^{j}=0=\sum_{j} v^{j}=n$, a contradiction. Thus v is independent of v_{1}, \ldots, v_{s} and $\operatorname{rank}_{Q} I(G)=|S|=|S|-c(G)+$ 1. Q.E.D.

Corollary 6. $\operatorname{dim} M_{G}{ }^{k}$ is independent of the field k.
Proposition 7. If $G(S)$ is a finite matroid and is coordinatizable over an extension field of k, then

$$
\operatorname{dim} B_{G}{ }^{k} \geqslant \operatorname{dim} M_{G}{ }^{k} .
$$

Proof. By [6, Theorem 4] there exists a finite algebraic extension K / k such that G is coordinatizable over K. Thus by [13, Propositions 2.1 and 6.1] there exists a prime ideal P in $B_{G}{ }^{K}$ such that no bracket is an element of P and the residue field is $K(P) \cong K$. If the canonical homomorphism is $\eta: B_{6}{ }^{K} \rightarrow$ $B_{G}{ }^{K} / P \rightarrow K$, we define a K-algebra homomorphism $\eta_{0}: B_{G}{ }^{K} \rightarrow M_{G}{ }^{K}$ by $\eta_{0}\left[x_{1}, \ldots\right.$, $\left.x_{n}\right]=\eta\left[x_{1}, \ldots, x_{n}\right] x_{1} \cdots x_{n}$. If n is a monomial in $M_{6}{ }^{K}, n$ factors into bases X_{1}, \ldots, X_{l}, hence $\left.\eta_{0}\left(\left(1 /\left(\eta\left[X_{1}\right] \cdots \eta_{[} X_{l}\right]\right)\right)\left[X_{1}\right] \cdots\left[X_{l}\right]\right)=n$. Since η is an epimorphism, it follows that η_{0} is an epimorphism, and hence $\operatorname{dim} B_{G}{ }^{K} \geqslant$ $\operatorname{dim} M_{G}{ }^{K}$. However, from [14], $\operatorname{dim} B_{G}{ }^{K}=\operatorname{dim} B_{G}{ }^{k}$, and from Corollary 6, $\operatorname{dim} M_{G}{ }^{K}=\operatorname{dim} M_{G}{ }^{k}$, and the proposition follows.
Q.E.D.

Corollary 8. Let $G(S)$ be a finite matroid coordinatizable over a field k. Then G has a weak coordinatization matrix in echelon form with at least $|S|-c(G)$ entries which are algebraically independent|k. If G is unimodular, this result is the best possible.
Proof. This follows from the result in [14] that $\operatorname{dim} B_{6}{ }^{k}-1=$ the maximum transcendence degree $/ k$ of a weak coordinatization of G in echelon form.
Q.E.D.

Remarks. If G is unimodular, then $\operatorname{dim} B_{G}{ }^{k}=\operatorname{dim}\left(B_{G}{ }^{k} / \mathrm{rad} B_{G}{ }^{k}\right)=$ $\operatorname{dim} M_{G}{ }^{k}$ for all k. The inequality in Proposition 7 is strict, for example, if G is the four-point line, and perhaps it is strict if and only if G is nonbinary. The hypothesis that G be coordinatizable over an extension of k is necessary, as the following example shows. Let G be the 7 -point Fano plane. Then $\operatorname{dim} M_{G}{ }^{k}=7$ for any field k, and it is not difficult to show that if char $k=2$, the maximum transcendence degree of a weak coordinatization of G in echelon form is 6 , hence $\operatorname{dim} B_{G}{ }^{k}=7$. However if char $k \neq 2, G$ cannot be coordinatized over an extension of k. Thus any prime P in $B_{6}{ }^{k}$ yields a coordinatization of a proper weak-map image F of G. By results of Lucas [5], F is a disconnected unimodular matroid. Thus

$$
\operatorname{dim} B_{G}{ }^{k}=\max _{P} \operatorname{coht} P=\max _{F} \operatorname{dim} B_{F}^{k}=\max _{F} \operatorname{dim} M_{F}^{k} \leqslant 6,
$$

since F is on the same set S as G, and $c(F) \geqslant 2$. In fact $\operatorname{dim} B_{G}{ }^{k}=6$, since there exists a proper weak-map image F of G with $c(F)=2$.

Acknowledgment

The author is indebted to Richard Stanley for several helpful conversations.

References

1. H. Crapo and G.-C. Rota, "Combinatorial Geometries," M.I.T. Press, Cambridge, Mass. 1970 (preliminary edition).
2. J. Edmonds, Minimum partition of a matroid into independent sets, J. Res. Nat. Bur. Standards, Sect. B 69 (1965), 67-72.
3. M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. Math. 96 (1972), 318-337.
4. M. Hochster, "Cohen-Macaulay Rings, Combinatorics, and Simplicial Complexes," Oklahoma Ring Theory Conference, March, 1976.
5. D. Lucas, Weak maps of combinatorial geometries, Trans. A.M.S. 206 (1975), 247-279.
6. R. Rado, A note on independence functions, Proc. London Math. Soc. Ser. 3, 7 (1957), 300-320.
7. R. Stanley, Cohen-Macaulay rings and constructible polytopes, Bull. A.M.S. 81 (1975), 133-135.
8. R. Stanley, Hilbert functions of graded algebras, Advances in Math., in press.
9. R. Stanley, Magic labelings of graphs, symmetric magic squares, systems of parameters, and Cohen-Macaulay rings, to appear.
10. R. Stanley, Some combinatorial aspects of the Schubert calculus, to appear.
11. R. Stanley, Cohen-Macaulay complexes, in "Proceedings of the Advanced Study Institute in Higher Combinatorics," Berlin, Germany, Sept., 1976.
12. N. White, "The bracket ring of a combinatorial geometry, I," Trans. A.M.S. 202 (1975), 79-95.
13. N. White, The bracket ring of a combinatorial geometry, II: Unimodular geometries, Trans. A.M.S. 214 (1975), 233-248.
14. N. White, The transcendence degree of a coordinatization of a combinatorial geometry, to appear.

[^0]: * This research was supported by NSF grant MSC 76-05823.

