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The Basis Monomial Ring of a Matroid* 
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We define the basis monomial ring M, of a matroid G and prove that it is 
Cohen-Macaulay for finite G. We then compute the Krull dimension of M, , 
which is the rank over Q of the basis-point incidence matrix of G, and prove 
that dim B, > dim M, under a certain hypothesis on coordinatizability of G, 
where Bo is the bracket ring of G. 

There has been considerable interest recently in the applications of Cohen- 
Macaulay rings to combinatorics, especially in the work of Stanley. The question 
has been raised whether the bracket ring BG of a matroid G is Cohen-Macaulay. 
As a step in this direction, we define the basis monomial ring M, and prove that 
it is Cohen-Macaulay for all finite G. Since B,/rad B, E M, if G is unimodular, 
and rad BG = 0 is conjectured in [13], we have settled the unimodular case 
modulo the conjecture. In the separate case of “skew-Schubert matroids,” 
Stanley [lo] proved B, is Cohen-Macaulay. As a prelude to the Cohen- 
Macaulayness of MG we prove that any monomial d on the elements of G, of 
degree a multiple of the rank of G, is factorable into bases of G provided some 
power dP is factorable. 

We proceed to a combinatorial computation of the Krull dimension of 
M, . We then show dim B, > dim M, for coordinatizable G, and relate this to 
results in [14] which characterize dim B, in terms of the maximum transcen- 
dence degree of a coordinatization of G. 

Although we use much of the notation and terminology of [l], we use the term 
“matroid” rather than the synonym “combinatorial pregeometry” because our 
Theorem 1 is completely matroidal in flavor. 

Let G(S) be a matroid (or combinatorial pregeometry) of rank ft on the set S. 
If R is a commutative ring with 1, we consider the commutative polynomial ring 
R[Sj. Let J! be the multiplicative monoid (= semigroup with identity) con- 
sisting of all monomials nIsos se, in R[S], where e, E N u (0) for all s, and e, = 0 
for all but a finite number of elements s. Let N be the set of all square-free 
monomials srsa ... s, where (sr s , a ,..., s,> is a basis of G, and &?c the submonoid 
of J? generated by IV. The basis monomial ring MCR is the ring R[N] = R[&lG], 
the subring of R[Sj generated by N over R. 
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THEOREM 1. For every mumid G, if rank G = n, d E A, degree d = In for 
somel~N u{O},andd*~rlYGforsomep~N, tkendE..41C. 

Proof. We must show that a monomial d of degree In is factorable into bases 
of G, given that dP is factorable into bases. 

Let us change notation by omitting elements of exponent zero, so that d = 

I-I” ip1 sii where gi > 0, for 1 < i < N. We construct sets T = {tii 1 1 < i < N, 
1 <j<g,}andU={u:*“Il <‘;<N,l <j<gi,l <k<p}withalltii 
distinct and all u$” distinct. Let G’(T) and G”(U) be matroids defined by 

A = {e ,..., @} C T is independent in G 

* {Sil >**-> sim} has m distinct elements and is independent in G 

9 B = {+kl,..., ~&‘a} C U is independent in G”, 

for all i1 ,..., i,,, , jl ,..., jm , k, ,..., km . Since j # h implies {t?, tmh} is dependent, 
we have replaced st in G by gi elements (resp., pgi elements) all contained in the 
same closed point of G’ (resp., G”). For any set A = {t:: ,..., $“} C T, we associate 
the set BA = {uiVk 1 there exists 1 < m such that i = il, j =” j, ; k < p}. Thus 
1 B,, 1 = p I A I, and Y~B,, = #A, where Y’ (resp., r’) denotes rank in G” (resp., 
G’). 

We now observe that d (resp., dp) may be factored into 1 (resp., pl) bases of 
Go T (resp., U) may be partitioned into bases of G’ (resp., G”). We apply a 
theorem of Edmonds [2] that a matroid H(V) may be partitioned into k inde- 
pendent subsets o I A 1 < h,(A) for all A C V. Since dp may be factored into 
pl bases of G, U may be partitioned into pl independent sets of G”, hence for all 
B C U, 1 B I < pZr”(B). Thus for all A c T, I A 1 = I B,, l/p < ZY”(BJ = h’(A) 
and hence T may be partitioned into I independent sets. Since ( T I = In, each 
of the independent sets is in fact a basis. Thus d E A& . Q.E.D. 

THEOREM 2. If G(S) isjinite and R is a Coken-Macaulay domain, tken MoR is 
a CokesMacaulay &main. 

Proof. We define a monoid J to be normal if abp = cp for a, b, c E .Ar, 
p E WI, implies that there exists d E Jcr such that dP = a. We now verify that 
AC is normal. Let abp = cP in & , with b = nsos se* and c = flEs fa . Thus 
a = nssS sp(fr@*), and d = naES sf*-** EA and dP = a E .Hc . Since a% = c 
and b and c must each have degree a multiple of n, so must d, and by Theorem 1, 
d E do , proving that AG is normal. 

Now Hochster [3, Theorem l] shows that if R is Cohen-Macaulay and 3cr a 
finitely generated normal monoid of monomials then R[KJ is Cohen-Matiulay. 
If G is finite, then dc is finitely generated, hence MGR is Cohen-Macaulay if R 
is. Furthermore, MCR is a domain since it is a subring of the domain R[SJ Q.E.D. 
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In [13, Remark 6.61, we showed (using different notation) that if G is uni- 
modular and B, is the bracket ring of G, then B&ad BG g MGn. Similarly, for 
any Cohen-Macaulay domain R, if B, s is the bracket ring with coefficients from 

R, then BGR/rad BGR g MGR. 

COROLLARY 3. If  R is a Cohen-Macaulay domain and G(S) is a finite uni- 

modular matroid, then BoRlrad BGR is Cohen-Macaulay. 

We now proceed to compute the Krull dimension of Mck, where k is a field. 
Let k[N] be the subring of a polynomial ring k[x, ,..., xU] generated over K by a 
finite set N = {n, ,..., n,} of monomials. We define the monomial incidence 

matrix to be the v  x u rational matrix I = (aif), where ni = J$i ~7’9, aij E 
N u (0). 

LEMMA 4. dim k[N] = rank .I, where Q is the rational jield. 

Proof. From [14, Theorem 2.81, dim k[N] = the maximum cardinality of a 
subset of N which is algebraically independent over k. Let f  (n, ,..., n,) = 0 for 
some polynomial f ,  0 # f  (Yi ,..., Y,J E k[Y, ,..., YV]. However, if we consider 
the grading g on k[Y, ,..., Y,,] induced by g( YJ = ni , then each homogeneous 
component fi off must also satisfy fi(n, ,..., n,) = 0 in k[x, ,..., x,]. Thus if 
/3 ny=, Yii and y  ny=, Yp are two terms of the homogeneous polynomial fi, 
where @, y  E k, we have ny=, nf* = ny=, nii. I f  (n& = (ail ,..., a,J is the row 
of 1 corresponding to ni , then Cy=, bi(ni) = Cy=, c,(nJ. Hence if nil ,..., nil are 
algebraically dependent over k, then the vectors (nil),..., (n$ are linearly 
dependent over Q. The converse is easily seen to hold as well, and the lemma 
follows. Q.E.D. 

The following theorem was proved by T. Brylawski and R. Stanley (unpub- 
lished). 

THEOREM 5. For every$nite matroid G(S) ofpositive rank, dim MGk = 1 S 1 - 
c(G) + 1, where c(G) is the number of connected components of G. 

Proof. MGk = k[N] where N = the set of monomials which are bases of G. 
Thus we must show rankor = 1 S 1 - c(G) + 1, where 1(G) is the basis- 
point incidence matrix of G. We begin by inducting on c(G). If  G(S) = Gi(S,) @ 
G,(S,), suppose first that rank G1 > 0 and rank G, = 0 in G. Then 
1 Sa / = c(G,), hence rank, 1(G) = rank, I(GJ = j S, 1 - c(S,) + 1 = 1 S j - 
c(S) + 1, using the induction hypothesis on Gi . Thus we may assume that rank 
Gi > 0 and rank G, > 0 in G. By the induction hypothesis, rankoI(GJ = 

I si I - c(GJ + 1, i = 1, 2. I f  A, ,..., A, are the rows of I(G,) corresponding 
to the r bases of Gi , and B, ,..., B, are the rows of I(Ga), then the rows of I(G) 
are the juxtaposed rows A,Bj , 1 < i < r, 1 < j < t, since S, and S, are disjoint 
and the bases of G are precisely all unions of a basis of Gi with a basis of G, . 
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If A, ,..., A, and B1 ,..., B, are bases of the row spaces of I(Gr) and I(Gs), it is 
straightforward to verify that A,B, , AIBa ,..., A,B, , AzBl ,..., A& is a basis 
of the row space of I(G), hence 

ranko I(G) = ranko I(Gr) + rank, I(G,) - 1 

= I SI I + I S, I - c(G) - c(G,) + 1 
= 1 S 1 - c(G) + 1. 

Thus we are reduced to proving the case c(G) = 1, i.e., G is connected. 
we now prove the connected case by induction on I S 1, the case for 

1 S 1 = 1 being trivial. Let x E S, and suppose G - x is connected. Then 
rankJ(G - x) = 1 S I - 1 by the induction hypothesis. Since G has positive 
rank and no loops, there exists a basis B such that x E B. Then 

I(G - x) 0” 
- 

I(G) = B * 1 
- 

* 1 

The row corresponding to B is clearly independent of the rows above it, 
hence rank, I(G) 2 rank I(G - x) + 1 = 1 S I. Since I(G) has I S I columns, 
rankoI(G)=IS] =ISI-c(G)+l. 

There remains the case where G is connected and G - x is disconnected. Let 
G - x = G,(?‘,) @ *a- @ G,(T,), and let B* = B, @ *a* @B, be a basis of 
G - x, Bi is a basis of G,(T,). Let C be the basic circuit of x with respect to B* 
in G. Then C n B, # g for all i, 1 < i < K, since G is connected. In G/x, 
Gi( Ti) are all connected subgeometries and C - {x} is a circuit intersecting each 
G,(T,). Hence by [I, Proposition 14.11 G/ x is connected. Since G is connected, 
there exists a basis B such that x q! B. Then 

I(G/x) ; 
- 

I(G)=B * 0 
- 

* 0 * 

Let v = (~3) denote the row corresponding to B and vi = (vii), 1 < i < s, the 
preceding rows, which correspond to the bases of G containing x. Since 
ranko1(G/x) = I S 1 - 1 by the induction hypotheses, and I(G) has I S I columns, 
it suffices to show that v is linearly independent of vi ,..., v, . Suppose to the 
contrary that v = C:=1 q+ , 01~ E Q. From the column corresponding to x we see 
that zlz, 0~~ = 0. But since each row is the incidence row of a basis of G, 
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Ci vii = n for all i. Thus xi Cj ~r,v,i = 0 = Cj vj = n, a contradiction. Thus v 
is independent of vi ,..., v, and rank, I(G) = 1 S 1 = ] S 1 - c(G) + 1. Q.E.D. 

COROLLARY 6. dim MoB is independent of the$eld k. 

PROPOSITION 7. If G(S) is a finite matroid and is coordinatizable over an 
extension field of k, then 

dim Bok > dim Mok. 

Proof. By [6, Theorem 41 there exists a finite algebraic extension K/k such 
that G is coordinatizable over K. Thus by [13, Propositions 2.1 and 6.11 there 
exists a prime ideal P in BoK such that no bracket is an element of P and the 
residue field is K(P) g K. If the canonical homomorphism is 7: BoK -+ 
BoK/P + K, we define a K-algebra homomorphism r], : BoK -+ MoK by q,,[xi ,..., 
x,J = ~[xr ,..., x,] xi ... x, . If n is a monomial in MoK, n factors into bases 
x XL, 1 ,*--, hence ~,,((l/(~[Xi] ... 7[XJ))[XJ *.* [X,]) = n. Since 71 is an 
epimorphism, it follows that 7s is an epimorphism, and hence dim BoK > 
dim MoK. However, from [14], dim BoK = dim Bok, and from Corollary 6, 
dim MoK = dim MC”, and the proposition follows. Q.E.D. 

COROLLARY 8. Let G(S) be a Jinite matroid coordinatizable over a field k. 
Then G has a weak coordinatixation matrix in echelon form with at least 1 S / - c(G) 
entries which are algebraically independent/k. If G is unimodular, this result is the 
best possible. 

Proof. This follows from the result in [14] that dim Bok - 1 = the 
maximum transcendence degree/k of a weak coordinatization of G in echelon 
form. Q.E.D. 

Remarks. If G is unimodular, then dim Bok = dim (B,“/rad Bok) = 
dim Mok for all k. The inequality in Proposition 7 is strict, for example, if G is 
the four-point line, and perhaps it is strict if and only if G is nonbinary. The 
hypothesis that G be coordinatizable over an extension of k is necessary, as the 
following example shows. Let G be the 7-point Fano plane. Then dim Mok = 7 
for any field k, and it is not difficult to show that if char k = 2, the maximum 
transcendence degree of a weak coordinatization of G in echelon form is 6, hence 
dim BGL = 7. However if char k # 2, G cannot be coordinatized over an 
extension of k. Thus any prime P in Bok yields a coordinatization of a proper 
weak-map image F of G. By results of Lucas [5], F is a disconnected unimodular 
matroid. Thus 

dim Bok = mp”x coht P = m;x dim Brk = m;x dim Mpk < 6, 

since F is on the same set S as G, and c(F) > 2. In fact dim Bok = 6, since there 
exists a proper weak-map image F of G with c(F) = 2. 
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