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What’s a parking space?

The (by-now) classical parking space is a permutation

represention of W = Sn, acting on the

(n + 1)n−1

different rearrangements of the

Catn :=
1

n + 1

(

2n

n

)

many increasing parking functions of length n.

Definition

Increasing parking functions of length n

are sequences (a1, . . . ,an) with

a1 ≤ · · · ≤ an

1 ≤ ai ≤ i .
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Parking functions of length 3

Example

The (3 + 1)3−1 = 16 parking functions of length 3,

grouped by W -orbit, increasing parking function leftmost:

111

112 121 211

113 131 311

122 212 221

123 132 213 231 312 321
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Wondrous!

Just about every natural question about this W -permutation

representation Parkn has a beautiful answer.

Many were noted by Haiman in his 1993 original paper

“Conjectures on diagonal harmonics”.

A starting point: the (n + 1)n−1 parking functions give coset

representatives for the quotient

Q/(n + 1)Q

where here Q is the rank n − 1 lattice

Q := Z
n/Z[1,1, . . . ,1] ∼= Z

n−1.
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The parking space character

Corollary

Each permutation w in W = Sn acts on Parkn with

character value = trace = number of fixed parking functions

χParkn(w) = (n + 1)#(cycles of w)−1.
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Orbit structure?

We’ve seen the W -orbits in Parkn are parametrized by

increasing parking functions, which are Catalan objects.

The stabilizer of an orbit is always a Young subgroup

Sλ := Sλ1
× · · · ×Sλℓ

where λ are the multiplicities in any orbit representative.

Example

λ

111 (3)

112 121 211 (2,1)

113 131 311 (2,1)

122 212 221 (2,1)

123 132 213 231 312 321 (1,1,1)
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Two other Catalan objects

The stabilizer data Sλ are predicted by two other Catalan

objects: block sizes in these partitions of {1,2, . . . ,n}:

nonnesting partitions, or

noncrossing partitions.

Example

nesting: 1 2 3 4 5 nonnesting: 1 2 3 4 5
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Two other Catalan objects

The stabilizer data Sλ are predicted by two other Catalan

objects: block sizes in these partitions of {1,2, . . . ,n}:

nonnesting partitions, or

noncrossing partitions.

Example

nesting: 1 2 3 4 5 nonnesting: 1 2 3 4 5

Example

crossing: 1

*
*
*
*
*
*
*
*
* 2

8
TTT

TTT
TTT 3

7
??

4

6 5

noncrossing: 1

*
*
*
*
*
*
*
*
* 2

8

/
/
/
/
/ 3

7
??

4

6 5
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Nonnesting partitions NN(3) of {1, 2, 3}

1 2 3

(3)

1 2 3

(2,1)

1 2 3

(2,1)

1 2 3

(2,1)

1 2 3

(1,1,1)

Theorem (Shi 1986, Cellini-Papi 2002)

NN(n) bijects to increasing parking functions respecting λ.
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Noncrossing partitions NC(3) of {1, 2, 3}
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_ _ _ _ _
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Theorem (Athanasiadis 1998)

There is a bijection NN(n) → NC(n), respecting λ.
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NN(4) versus NC(4) is slightly more interesting

Example

For n = 4, among partitions of {1,2,3,4},

exactly one is nesting,

1 2 3 4

and exactly one is crossing,

1
<<

< 2
��
�

4 3

and note that both correspond to λ = (2,2).
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More wonders: Irreducible multiplicities in Parkn

W -irreducible characters are {χλ} indexed by partitions λ of n.

Haiman gave a formula for irreducible multiplicities

〈χλ,Parkn〉.

D. Armstrong,V. Reiner,B. Rhoades Parking spaces



More wonders: Irreducible multiplicities in Parkn

W -irreducible characters are {χλ} indexed by partitions λ of n.

Haiman gave a formula for irreducible multiplicities

〈χλ,Parkn〉.

The special case of hook shapes λ = (n − k ,1k ) becomes this .

Theorem (Pak-Postnikov 1997)

The multiplicity 〈χ(n−k ,1k ), χParkn〉W is

the number of subdivisions of an (n + 2)-gon using

n − 1 − k internal diagonals, or

the number of k-dimensional faces in the

(n − 1)-dimensional associahedron.
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Example: n=4

〈χ(3), χPark3
〉S3

= 5

〈χ(2,1), χPark3
〉S3

= 5

〈χ(1,1,1), χPark3
〉S3

= 1

〈χ(4), χPark4
〉S4

= 14

〈χ(3,1), χPark4
〉S4

= 21

〈χ(2,1,1), χPark4
〉S4

= 9

〈χ(1,1,1,1), χPark4
〉S4

= 1
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Last wonder: Cyclic symmetry and q-Catalan

The noncrossings NC(n) have a Z/nZ-action via rotations,

interacting well with MacMahon’s q-Catalan number

Catn(q) :=
(1 − qn+2)(1 − qn+3) · · · (1 − q2n)

(1 − q2)(1 − q3) · · · (1 − qn)
.
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Last wonder: Cyclic symmetry and q-Catalan

The noncrossings NC(n) have a Z/nZ-action via rotations,

interacting well with MacMahon’s q-Catalan number

Catn(q) :=
(1 − qn+2)(1 − qn+3) · · · (1 − q2n)

(1 − q2)(1 − q3) · · · (1 − qn)
.

Theorem (Stanton-White-R. 2004)

For d dividing n, the number of noncrossing partitions of n with

d-fold rotational symmetry is

[Catn(q)]q=ζd

where ζd is any primitive d th root of unity in C.
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NC(4),Cat4(q) and rotational symmetry

Example

Cat4(q) =
(1 − q6)(1 − q7)(1 − q8)

(1 − q2)(1 − q3)(1 − q4)
=











14 if q = +1 = ζ1

6 if q = −1 = ζ2

2 if q = ±i = ζ4.

D. Armstrong,V. Reiner,B. Rhoades Parking spaces



NC(4),Cat4(q) and rotational symmetry

Example

Cat4(q) =
(1 − q6)(1 − q7)(1 − q8)

(1 − q2)(1 − q3)(1 − q4)
=











14 if q = +1 = ζ1

6 if q = −1 = ζ2

2 if q = ±i = ζ4.

as there are 14 elements of NC(4) total,
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NC(4),Cat4(q) and rotational symmetry

Example

Cat4(q) =
(1 − q6)(1 − q7)(1 − q8)

(1 − q2)(1 − q3)(1 − q4)
=











14 if q = +1 = ζ1

6 if q = −1 = ζ2

2 if q = ±i = ζ4.

as there are 14 elements of NC(4) total, 6 with 2-fold symmetry,

1 2

3 4

1 2

3 4

1

>>
>>

>>
> 2

3 4

1 2

��
��
��
�

3 4

1 2

3 4

1 2

3 4
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NC(4),Cat4(q) and rotational symmetry

Example

Cat4(q) =
(1 − q6)(1 − q7)(1 − q8)

(1 − q2)(1 − q3)(1 − q4)
=











14 if q = +1 = ζ1

6 if q = −1 = ζ2

2 if q = ±i = ζ4.

as there are 14 elements of NC(4) total, 6 with 2-fold symmetry,

1 2

3 4

1 2

3 4

1

>>
>>

>>
> 2

3 4

1 2

��
��
��
�

3 4

1 2

3 4

1 2

3 4

2 of which have 4-fold rotational symmetry.
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On to the reflection group generalization

Generalize to irreducible real ref’n groups W acting on V = R
n.

Example

W = Sn acts irreducibly on V = R
n−1,

realized as x1 + x2 + · · ·+ xn = 0 within R
n.

It is generated transpositions (i , j),
which are reflections through the hyperplanes xi = xj .

1

4

2
3

1

4

2
3

1

3

2

s2 s

s

3

1
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Invariant theory enters the picture

Theorem (Chevalley, Shephard-Todd 1955)

When W acts on polynomials S = C[x1, . . . , xn] = Sym(V ∗), its

W-invariant subalgebra is again a polynomial algebra

SW = C[f1, . . . , fn]

One can pick f1, . . . , fn homogeneous, with degrees

d1 ≤ d2 ≤ · · · ≤ dn, and define h := dn the Coxeter number.
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Invariant theory enters the picture

Theorem (Chevalley, Shephard-Todd 1955)

When W acts on polynomials S = C[x1, . . . , xn] = Sym(V ∗), its

W-invariant subalgebra is again a polynomial algebra

SW = C[f1, . . . , fn]

One can pick f1, . . . , fn homogeneous, with degrees

d1 ≤ d2 ≤ · · · ≤ dn, and define h := dn the Coxeter number.

Example

For W = Sn, one has

SW = C[e2(x), . . . ,en(x)],

so the degrees are (2,3, . . . ,n), and h = n.
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Weyl groups and the first W -parking space

When W is a Weyl (crystallographic) real finite reflection group,

it preserves a full rank lattice

Q ∼= Z
n

inside V = R
n. One can choose a root system Φ of normals to

the hyperplanes, in such a way that the root lattice Q := ZΦ is a

W -stable lattice.
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Weyl groups and the first W -parking space

When W is a Weyl (crystallographic) real finite reflection group,

it preserves a full rank lattice

Q ∼= Z
n

inside V = R
n. One can choose a root system Φ of normals to

the hyperplanes, in such a way that the root lattice Q := ZΦ is a

W -stable lattice.

Definition (Haiman 1993)

We should think of the W -permutation representation on the set

Park(W ) := Q/(h + 1)Q

as a W -analogue of parking functions.
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Wondrous properties of Park(w) = Q/(h + 1)Q

Theorem (Haiman 1993)

For a Weyl group W,

#Q/(h + 1)Q = (h + 1)n.
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Wondrous properties of Park(w) = Q/(h + 1)Q

Theorem (Haiman 1993)

For a Weyl group W,

#Q/(h + 1)Q = (h + 1)n.

Any w in W acts with trace (character value)

χPark(W )(w) = (h + 1)dim V w

.
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Wondrous properties of Park(w) = Q/(h + 1)Q

Theorem (Haiman 1993)

For a Weyl group W,

#Q/(h + 1)Q = (h + 1)n.

Any w in W acts with trace (character value)

χPark(W )(w) = (h + 1)dim V w

.

The W-orbit count #W\Q/(h + 1)Q is the W-Catalan:

〈1W , χPark(W )〉 =
n
∏

i=1

h + di

di
=: Cat(W )
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Wondrous properties of Park(w) = Q/(h + 1)Q

Theorem (Haiman 1993)

For a Weyl group W,

#Q/(h + 1)Q = (h + 1)n.

Any w in W acts with trace (character value)

χPark(W )(w) = (h + 1)dim V w

.

The W-orbit count #W\Q/(h + 1)Q is the W-Catalan:

〈1W , χPark(W )〉 =
n
∏

i=1

h + di

di
=: Cat(W )

Park(W ) contains one copy of the sign/det character for W:

〈det W , χPark(W )〉 = 1.
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W -Catalan example: W = Sn

Example

Recall that W = Sn acts irreducibly on V = R
n−1

with degrees (2,3, . . . ,n) and h = n.

One can identify the root lattice Q ∼= Z
n/(1,1, . . . ,1)Z.

One has #Q/(h + 1)Q = (n + 1)n−1, and

Cat(Sn) = #W\Q/(h + 1)Q

=
(n + 2)(n + 3) · · · (2n)

2 · 3 · · · n
=

1

n + 1

(

2n

n

)

= Catn.

D. Armstrong,V. Reiner,B. Rhoades Parking spaces



Exterior powers of V

One can consider multiplicities in Park(W ) not just of

1W = ∧0V

det W = ∧nV

but all the exterior powers ∧kV for k = 0,1,2, . . . ,n,

which are known to all be W -irreducibles (Steinberg).

Example

W = Sn acts irreducibly on V = R
n−1 with character χ(n−1,1),

and on ∧kV with character χ(n−k ,1k ).
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Theorem (Armstrong-Rhoades-R. 2012)

For Weyl groups W, the multiplicity 〈χ∧k V , χPark(W )〉 is

the number of (n − k)-element sets of compatible cluster

variables in a cluster algebra of finite type W,

or the number of k-dimensional faces in the

W-associahedron of Chapoton-Fomin-Zelevinsky (2002).
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Two W -Catalan objects: NN(W ) and NC(W )

The previous result relies on an amazing coincidence for two

W -Catalan counted families generalizing NN(n),NC(n).

Definition (Postnikov 1997)

For Weyl groups W , define W -nonnesting partitions NN(W ) to

be the antichains in the poset of positive roots Φ+.

Example

1 2 3 4 5 corresponds to this antichain A:

e1 − e5

qqq
qq NNN

NN

e1 − e4

qqq
qq MMM

MM
e2 − e5

qqq
qq MMM

MM

e1 − e3

qqq
qq MMM

MM
e2 − e4

qqq
qq MMM

MM
e3 − e5

qqq
qq MMM

MM

e1 − e2 e2 − e3 e3 − e4 e4 − e5
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W -noncrossing partitions

Definition (Bessis 2003, Brady-Watt 2002)

W -noncrossing partitions NC(W ) are the interval [e, c]abs from

identity e to any Coxeter element c in absolute order ≤abs on W :

x ≤abs y if ℓT (x) + ℓT (x
−1y) = ℓT (y)

where the absolute (reflection) length is

ℓT (w) = min{w = t1t2 · · · tℓ : ti reflections}

and a Coxeter element c = s1s2 · · · sn is any product of a

choice of simple reflections S = {s1, . . . , sn}.

1

4

2
3

1

4

2
3

1

3

2

s2 s

s

3

1
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The case W = Sn

Example

For W = Sn, the n-cycle c = (1,2, . . . ,n) is one choice of a

Coxeter element.

And permutations w in NC(W ) = [e, c]abs come from orienting

clockwise the blocks of the noncrossing partitions NC(n).

4

2

3

6

8
9 1

7

5
4

2

3

6

8
9 1

7

5
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The absolute order on W = S3 and NC(S3)

Example

1
((
2

uu3

QQ 1

))

2
ww

3

MM

1
((
2hh

3

1
��

2

3

QQ 1 2

uu3

55

1 2

3
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Generalizing NN,NC block size coincidence

We understand why NN(W ) is counted by Cat(W ).

We do not really understand why the same holds for NC(W ).

Worse, we do not really understand why the following holds– it

was checked case-by-case.

Theorem (Athanasiadis-R. 2004)

The W-orbit distributions coincidea for subspaces arising as

intersections X = ∩α∈Aα
⊥ for A in NN(W ), and as

fixed spaces X = V w for w in NC(W ).

a...and have a nice product formula via Orlik-Solomon exponents.
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What about a q-analogue of Cat(W )?

Theorem (Gordon 2002, Berest-Etingof-Ginzburg 2003)

For irreducible real reflection groups W,

Cat(W ,q) :=

n
∏

i=1

1 − qh+di

1 − qdi

turns out to lie in N[q], as it is a Hilbert series

Cat(W ,q) = Hilb( (S/(Θ))W ,q)

where Θ = (θ1, . . . , θn) is a magical hsop in S = C[x1, . . . , xn]

Here magical means ...
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What about a q-analogue of Cat(W )?

Theorem (Gordon 2002, Berest-Etingof-Ginzburg 2003)

For irreducible real reflection groups W,

Cat(W ,q) :=

n
∏

i=1

1 − qh+di

1 − qdi

turns out to lie in N[q], as it is a Hilbert series

Cat(W ,q) = Hilb( (S/(Θ))W ,q)

where Θ = (θ1, . . . , θn) is a magical hsop in S = C[x1, . . . , xn]

Here magical means ...

(θ1, . . . , θn) are homogeneous, all of degree h + 1,
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What about a q-analogue of Cat(W )?

Theorem (Gordon 2002, Berest-Etingof-Ginzburg 2003)

For irreducible real reflection groups W,

Cat(W ,q) :=

n
∏

i=1

1 − qh+di

1 − qdi

turns out to lie in N[q], as it is a Hilbert series

Cat(W ,q) = Hilb( (S/(Θ))W ,q)

where Θ = (θ1, . . . , θn) is a magical hsop in S = C[x1, . . . , xn]

Here magical means ...

(θ1, . . . , θn) are homogeneous, all of degree h + 1,

their C-span carries W -rep’n V ∗, like {x1, . . . , xn}, and
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What about a q-analogue of Cat(W )?

Theorem (Gordon 2002, Berest-Etingof-Ginzburg 2003)

For irreducible real reflection groups W,

Cat(W ,q) :=

n
∏

i=1

1 − qh+di

1 − qdi

turns out to lie in N[q], as it is a Hilbert series

Cat(W ,q) = Hilb( (S/(Θ))W ,q)

where Θ = (θ1, . . . , θn) is a magical hsop in S = C[x1, . . . , xn]

Here magical means ...

(θ1, . . . , θn) are homogeneous, all of degree h + 1,

their C-span carries W -rep’n V ∗, like {x1, . . . , xn}, and

S/(Θ) is finite-dim’l (=: the graded W -parking space).
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Do you believe in magic?

These magical hsop’s do exist, and they’re not unique.

Example

For W = Bn, the hyperoctahedral group of signed permutation

matrices, acting on V = R
n, one has h = 2n, and one can take

Θ = (x2n+1
1 , . . . , x2n+1

n ).

Example

For W = Sn they’re tricky. A construction by Kraft appears in

Haiman (1993), and Dunkl (1998) gave another.

For general real reflection groups, Θ comes from rep theory of

the rational Cherednik algebra for W , with parameter h+1
h .
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NC(W ) and cyclic symmetry

Cat(W ,q) interacts well with a cyclic Z/hZ-action on

NC(W ) = [e, c]abs that comes from conjugation

w 7→ cwc−1,

generalizing rotation of noncrossing partitions NC(n).

Theorem (Bessis-R. 2004)

For any d dividing h, the number of w in NC(W ) that have

d-fold symmetry, meaning that c
h
d wc−

h
d = w, is

[Cat(W ,q)]q=ζd

where ζd is any primitive d th root of unity in C.
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NC(W ) and cyclic symmetry

Cat(W ,q) interacts well with a cyclic Z/hZ-action on

NC(W ) = [e, c]abs that comes from conjugation

w 7→ cwc−1,

generalizing rotation of noncrossing partitions NC(n).

Theorem (Bessis-R. 2004)

For any d dividing h, the number of w in NC(W ) that have

d-fold symmetry, meaning that c
h
d wc−

h
d = w, is

[Cat(W ,q)]q=ζd

where ζd is any primitive d th root of unity in C.

But the proof again needed some of the case-by-case facts!
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A conjecture that explains it all

Conjecture

For any irreducible real reflection group W and magical hsop Θ,

chosen so the map xi 7→ Θi is W-equivariant, the set

VΘ := {x ∈ V = C
n : θi(x) = x for i = 1,2, . . . ,n}
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A conjecture that explains it all

Conjecture

For any irreducible real reflection group W and magical hsop Θ,

chosen so the map xi 7→ Θi is W-equivariant, the set

VΘ := {x ∈ V = C
n : θi(x) = x for i = 1,2, . . . ,n}

contains (h + 1)n distinct points, permuted by W.
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A conjecture that explains it all

Conjecture

For any irreducible real reflection group W and magical hsop Θ,

chosen so the map xi 7→ Θi is W-equivariant, the set

VΘ := {x ∈ V = C
n : θi(x) = x for i = 1,2, . . . ,n}

contains (h + 1)n distinct points, permuted by W.

has its W-orbits Ow indexed by w in NC(W ) = [e, c]abs.
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A conjecture that explains it all

Conjecture

For any irreducible real reflection group W and magical hsop Θ,

chosen so the map xi 7→ Θi is W-equivariant, the set

VΘ := {x ∈ V = C
n : θi(x) = x for i = 1,2, . . . ,n}

contains (h + 1)n distinct points, permuted by W.

has its W-orbits Ow indexed by w in NC(W ) = [e, c]abs.

has the orbit Ow described as W/W ′ where W ′ is the

reflection subgroup pointwise-stabilizing X = V w .
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A conjecture that explains it all

Conjecture

For any irreducible real reflection group W and magical hsop Θ,

chosen so the map xi 7→ Θi is W-equivariant, the set

VΘ := {x ∈ V = C
n : θi(x) = x for i = 1,2, . . . ,n}

contains (h + 1)n distinct points, permuted by W.

has its W-orbits Ow indexed by w in NC(W ) = [e, c]abs.

has the orbit Ow described as W/W ′ where W ′ is the

reflection subgroup pointwise-stabilizing X = V w .

has Z/hZ-action from scaling x 7→ ζhx easily described

using conjugation w 7→ cwc−1 on NC(W ).
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Type Bn

Example

For W = Bn the hyperoctahedral group,

if we pick the magical hsop Θ = (x2n+1
1 , . . . , x2n+1

n ), then

VΘ = {x ∈ V = C
n : x2n+1

i = xi for i = 1,2, . . . ,n}

=
(

{0} ∪ { 2n
√

1}
)n

contains (h + 1)n = (2n + 1)n distinct points, as desired.
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Type Bn

Example

For W = Bn the hyperoctahedral group,

if we pick the magical hsop Θ = (x2n+1
1 , . . . , x2n+1

n ), then

VΘ = {x ∈ V = C
n : x2n+1

i = xi for i = 1,2, . . . ,n}

=
(

{0} ∪ { 2n
√

1}
)n

contains (h + 1)n = (2n + 1)n distinct points, as desired.

The two actions on VΘ of

W via signed permutations, and

Z/2nZ via scalings x 7→ ζ2nx

both have a simple description in terms of NC(Bn),
proven via a slightly non-trivial bijection.
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Question

Can one resolve the conjecture case-free?
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Question

Can one resolve the conjecture case-free?

Thanks for listening!
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