# Exercises on reflection group counting and $q$-counting Summer School: Algebraic and Enumerative Combinatorics ${ }^{1}$ S. Miguel de Seide, Portugal, July 2012 Vic Reiner 

Contents

1. Invariant theory and Hilbert series ..... 2
2. Abstract polytopes and regular complex polytopes ..... 10
3. Regular elements ..... 13
4. Noncrossing and nonnesting partitions ..... 14
5. $q$-analogues and cyclic sieving phenomena ..... 17
References ..... 18

Problems marked with an asterisk * are particularly recommended.

[^0]
## 1. Invariant theory and Hilbert series

1*. (Hilbert series warm-up)
Recall that for a graded $\mathbb{F}$-vector space

$$
V=\bigoplus_{d \geq 0} V_{d}
$$

where each $V_{d}$ is a finite-dimensional $\mathbb{F}$-vector space, the Hilbert series in variable $t$ is the formal power series generating function in $\mathbb{Z}[[t]]$ for the dimensions of the $V_{d}$ :

$$
\operatorname{Hilb}(V, t):=\sum_{d \geq 0} t^{d} \cdot \operatorname{dim}_{\mathbb{F}} V_{d}
$$

(a) Show that a polynomial algebra $S:=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ considered as a graded ring in which each variable $x_{i}$ has $\operatorname{deg}\left(x_{i}\right)=1$, so that a monomial $x^{a}:=x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ has degree $a_{1}+\cdots+a_{n}$, will have Hilbert series

$$
\operatorname{Hilb}(S, t)=\frac{1}{(1-t)^{n}}
$$

(b) Show more generally that a polynomial algebra $\mathbb{F}\left[f_{1}, \ldots, f_{n}\right]$ in which the algebraically independent generators $f_{1}, \ldots, f_{n}$ are have degrees $\operatorname{deg}\left(f_{i}\right)=d_{i} \geq 1$ will have Hilbert series

$$
\operatorname{Hilb}\left(\mathbb{F}\left[f_{1}, \ldots, f_{n}\right], t\right)=\prod_{i=1}^{n} \frac{1}{\left(1-t^{d_{i}}\right)}
$$

(c) Show that the Hilbert series in part (b) has Laurent expansion about $t=1$ whose pole is of order $n$ and begins

$$
\operatorname{Hilb}\left(\mathbb{F}\left[f_{1}, \ldots, f_{n}\right], t\right)=\frac{1}{d_{1} \cdots d_{n}(1-t)^{n}}+O\left(\frac{1}{(1-t)^{n-1}}\right)
$$

2*. (Representation theory warm-up)
(a) Let $V$ be a finite-dimensional $\mathbb{C}$-vector space, and

$$
V \xrightarrow{\pi} V
$$

a $\mathbb{C}$-linear map which is idempotent: $\pi^{2}=\pi$.
Show that one has a direct sum decomposition

$$
V=\pi V \oplus(1-\pi) V
$$

in which $\pi V=\operatorname{im} \pi$ and $(1-\pi) V=\operatorname{ker} \pi$.
(b) Deduce that

$$
\operatorname{dim}_{\mathbb{C}}(\operatorname{im} \pi)=\operatorname{Tr}(\pi)
$$

where $\operatorname{Tr}$ denotes the trace of $\pi$, that is, the sum $\pi_{11}+\cdots+\pi_{n n}$ where $\left(\pi_{i j}\right)$ is the matrix expressing the action of $\pi$ in any choice of basis for $V$.
(c) When $G$ is a finite group acting $\mathbb{C}$-linearly on a $\mathbb{C}$-vector space $V$, show that the averaging map

$$
\begin{array}{rll}
V & \xrightarrow{\pi_{G}} & V \\
v & \longmapsto & \frac{1}{|G|} \sum_{g \in G} g(v)
\end{array}
$$

is an idempotent, having image

$$
\operatorname{im}\left(\pi_{G}\right)=V^{G}:=\{v \in V: g(v)=v \text { for all } g \text { in } G\} .
$$

(d) Deduce that, in the setting of part (c),

$$
\operatorname{dim}_{\mathbb{C}} V^{G}=\frac{1}{|G|} \sum_{g \in G} \operatorname{Tr}\left(\left.g\right|_{V}\right)
$$

(e) Explain how (d) proves Burnside's formula: when $G$ is a group of permutations acting on a finite set $X$, the number of $G$-orbits on $X$ is given by

$$
\frac{1}{|G|} \sum_{g \in G}|\{x \in X: g(x)=x\}| .
$$

(Hint: Consider the $\mathbb{C}$-vector space $V$ whose basis is indexed by $X$ and permuted by $G$. How can one describe $V^{G}$ ? How can one compute $\operatorname{Tr}\left(\left.g\right|_{V}\right)$ ?)

3*. (Molien's formula)
This is a useful formula that lets one compute the Hilbert series for the subalgebra of $G$-invariant polynomials $S^{G}=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{G}$ when a finite subgroup $G$ of $G L_{n}(\mathbb{C})$ acts on $S:=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ by linear substitutions of the variables $x_{i}$.
(a) Explain why any $g$ in a finite subgroup of $G L_{n}(\mathbb{C})$ is diagonalizable over $\mathbb{C}$.
(b) Assume $g$ has eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ when it acts on $V^{*}=S_{1}=\mathbb{C} x_{1}+\cdots+\mathbb{C} x_{n}$. Explain why $g$ acts on the $d^{t h}$ homogeneous component $S_{d}$ of $S$ with eigenvalues

$$
\left\{\lambda_{1}^{a_{1}} \cdots \lambda_{n}^{a_{n}}: a_{1}+\cdots a_{n}=d \text { and } a_{i} \geq 0\right\}
$$

(Hint: why can one temporarily assume $g\left(x_{i}\right)=\lambda_{i} x_{i}$ for $i=1,2, \ldots, n$ in making this calculation?)
(c) Explain why, in the notation of part (b),

$$
\frac{1}{\operatorname{det}(1-t g)}=\prod_{i=1}^{n} \frac{1}{1-t \lambda_{i}}=\sum_{d \geq 0} t^{d} \cdot \operatorname{Tr}\left(\left.g\right|_{S_{d}}\right)
$$

(d) Explain Molien's formula:

$$
\operatorname{Hilb}\left(S^{G}, t\right)=\frac{1}{|G|} \sum_{g \in G} \frac{1}{\operatorname{det}(1-t g)}
$$

(e) Explain why the Laurent series for $\operatorname{Hilb}\left(S^{G}, t\right)$ about $t=1$ has a pole of order $n$ and begins

$$
\operatorname{Hilb}\left(S^{G}, t\right)=\frac{1}{|G|(1-t)^{n}}+O\left(\frac{1}{(1-t)^{n-1}}\right)
$$

(f) Explain how one can apply this together with Problem 1(c) to show that, whenever $S^{G}=\mathbb{C}\left[f_{1}, \ldots, f_{n}\right]$ is a polynomial algebra with homogeneous generators $f_{1}, \ldots, f_{n}$ having $\operatorname{deg}\left(f_{i}\right)=d_{i}$, then

$$
|G|=d_{1} d_{2} \cdots d_{n}
$$

(g) Explain why for two nested subgroups $H \subset G$ in $G L_{n}(\mathbb{C})$, one can express their index as follows:

$$
[G: H]=\lim _{t \rightarrow 1} \frac{\operatorname{Hilb}\left(S^{H}, t\right)}{\operatorname{Hilb}\left(S^{G}, t\right)}
$$

4. (Exterior algebra variations on Molien's formula)

One can think of $S=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ as the symmetric algebra $\operatorname{Sym}\left(V^{*}\right)$ on the vector space $V^{*}=\mathbb{C} x_{1}+\cdots+\mathbb{C} x_{n}$. Similarly, one has the exterior algebra

$$
\wedge V^{*}=\oplus_{d=0}^{n} \wedge^{d} V^{*}
$$

and their tensor product

$$
\operatorname{Sym}\left(V^{*}\right) \otimes_{\mathbb{C}} \wedge V^{*}
$$

(a) Assume $g$ has eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ when it acts on $\wedge^{1} V^{*}=V^{*}=\mathbb{C} x_{1}+\cdots+$ $\mathbb{C} x_{n}$. Explain why $g$ acts on $\wedge^{d} V^{*}$ with eigenvalues

$$
\left\{\lambda_{i_{1}} \lambda_{i_{2}} \cdots \lambda_{i_{d}}: 1 \leq i_{1}<\cdots<i_{d} \leq n\right\} .
$$

(b) Explain why

$$
\operatorname{det}(1+u g)=\prod_{i=1}^{n}\left(1+u \lambda_{i}\right)=\sum_{d=0}^{n} u^{d} \cdot \operatorname{Tr}\left(\left.g\right|_{\wedge^{d} V^{*}}\right)
$$

(c) Explain why

$$
\begin{aligned}
\operatorname{Hilb}\left(\left(\wedge V^{*}\right)^{G}, u\right) & :=\sum_{d=0}^{n} u^{d} \cdot \operatorname{dim}_{\mathbb{C}}\left(\wedge^{d} V^{*}\right)^{G} \\
& =\frac{1}{|G|} \sum_{g \in G} \operatorname{det}(1+u g)
\end{aligned}
$$

(d) Explain why

$$
\begin{aligned}
\operatorname{Hilb}\left(\left(S \otimes_{\mathbb{C}} \wedge V^{*}\right)^{G}, u, t\right) & :=\sum_{d \geq 0} \sum_{e \geq 0} u^{e} t^{d} \operatorname{dim}_{\mathbb{C}}\left(S_{d} \otimes \wedge^{e} V^{*}\right)^{G} \\
& =\frac{1}{|G|} \sum_{g \in G} \frac{\operatorname{det}(1+u g)}{\operatorname{det}(1-t g)}
\end{aligned}
$$

5. (Solomon's theorem and the Shephard-Todd formula)
L. Solomon gave a beautiful derivation of the Shephard-Todd formula

$$
\begin{equation*}
\sum_{w \in W} q^{\operatorname{dim}\left(V^{w}\right)}=\prod_{i=1}^{n}\left(q+\left(d_{i}-1\right)\right) \tag{1}
\end{equation*}
$$

for a complex reflection group $W$ with $S^{W}=\mathbb{C}\left[f_{1}, \ldots, f_{n}\right]$ and degrees $\operatorname{deg}\left(f_{i}\right)=d_{i}$, where $V^{w}=\left\{v \in V=\mathbb{C}^{n}: w(v)=v\right\}$.

He derived it from the following structural result on the $W$-invariant polynomial coefficient differential forms $\left(S \otimes_{\mathbb{C}} \wedge V^{*}\right)^{W}$, where one considers $\wedge^{1} V^{*} \cong V^{*}$ to have a basis $d x_{1}, \ldots, d x_{n}$ carrying the same $W$-action as on $x_{1}, \ldots, x_{n}$. There is a natural structure of an $S$-module on these differential forms $S \otimes_{\mathbb{C}} \wedge V^{*}$ defined by

$$
f \cdot\left(\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} g_{i_{1}, \ldots, i_{k}} \cdot d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}\right):=\sum f g_{i_{1}, \ldots, i_{k}} \cdot d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}
$$

It is easily seen that this endows the $W$-invariant differential forms $\left(S \otimes_{\mathbb{C}} \wedge V\right)^{W}$ with an $S^{W}$-module structure: if $f$ in $S$ and $\sum_{I} g_{I} \cdot d x_{I}$ in $S \otimes_{\mathbb{C}} \wedge V^{*}$ are both $W$-invariant, then $\sum_{I} f g_{I} \cdot d x_{I}$ is also.
Theorem 1.1. (Solomon [3])
The $W$-invariant forms $\left(S \otimes_{\mathbb{C}} \wedge V^{*}\right)^{W}$ are a free $S^{W}$-module, on basis elements

$$
\left\{d f_{i_{1}} \wedge \cdots \wedge d f_{i_{k}}: 1 \leq i_{1}<\cdots<i_{k} \leq n\right\}
$$

formed by taking all possible wedges of the exterior derivatives

$$
d f_{i}:=\sum_{j=1}^{n} \frac{\partial f_{i}}{\partial x_{j}} d x_{j}
$$

of the basic invariant polynomials $f_{1}, \ldots, f_{n}$.
(a) Explain how Problem 4(d) together with Solomon's theorem gives this formula:

$$
\frac{1}{|W|} \sum_{w \in W} \frac{\operatorname{det}(1+u w)}{\operatorname{det}(1-t w)}=\prod_{i=1}^{n} \frac{1+t^{d_{i}-1} u}{1-t^{d_{i}}}
$$

(b) After substituting $u=q(1-t)-1$, show one can rewrite (a) as follows:

$$
\sum_{\substack{w \in W}} \prod_{\substack{\text { eigenvalues } \\ \lambda \text { of } w}} \frac{1+(q(1-t)-1) \lambda}{1-t \lambda}=|W| \prod_{i=1}^{n} \frac{\left(1-t^{d_{i}-1}\right)+q t^{d_{i}-1}(1-t)}{1-t^{d_{i}}}
$$

(c) Show how formula (1) follows from (b) by taking the limit as $t$ approaches 1.

6*. (How to prove $S^{G}=\mathbb{F}\left[f_{1}, \ldots, f_{n}\right]$ is polynomial?)
There is a converse to the statement in Problem 3(f), often used to prove that some group $G$ has $S^{G}$ polynomial. We give below a version that we will use in many examples, but we will not prove it here, as it requires a little commutative algebra; see [2, Prop. 5.5.5].

Lemma 1.2. Let $G$ be a finite subgroup of $G L_{n}(\mathbb{F})$ acting on $S=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ by linear substitutions, and suppose one has $f_{1}, \ldots, f_{n}$ homogeneous polynomials of degrees $d_{1}, \ldots, d_{n}$ with these three properties:

- $f_{1}, \ldots, f_{n}$ lie in $S^{G}$, that is, they are $G$-invariant,
- $|G|=d_{1} \cdots d_{n}$, and
- Each variable $x_{i}$ is integral ${ }^{2}$ over the subalgebra $\mathbb{F}\left[f_{1}, \ldots, f_{n}\right]$.

Then the $G$-invariant subalgebra $S^{G}$ is a polynomial algebra, namely

$$
S^{G}=\mathbb{F}\left[f_{1}, \ldots, f_{n}\right]
$$

Let us apply this to several examples.

## Dihedral groups.

(a) Consider the dihedral group $G=I_{2}(m)$ of order $2 m$ with presentation

$$
I_{2}(m) \cong\left\langle s, r: s^{2}=r^{m}=e, s r s=r^{-1}\right\rangle
$$

represented inside $G L_{2}(\mathbb{R})$ as the symmetries of a regular $m$-sided polygon in $\mathbb{R}^{2}$, with $s$ being a reflection, and $r$ a rotation through $\frac{2 \pi}{m}$.

Show that one can extend scalars to $\mathbb{C}^{2}$ to diagonalize $r$ so that one has simultaneously

- $r$ scaling $x$ by $\zeta$, scaling $y$ by $\zeta^{-1}$, where $\zeta:=e^{\frac{2 \pi i}{m}}$,
- $s$ swapping $x, y$.
(b) Prove that the latter version of $G=I_{2}(m)$ inside $G L_{2}(\mathbb{C})$ has

$$
\begin{array}{r}
S^{G} \\
\text { with degrees: }
\end{array}=\underset{( }{\mathbb{C}}\left[\begin{array}{ccc}
x y, & x^{m}+y^{m} \\
2, & m
\end{array}\right) \text {. }
$$

(Hint: Apply Lemma 1.2, using the polynomial

$$
\left.F(t)=\left(t^{m}-x^{m}\right)\left(t^{m}-y^{m}\right)=t^{2 m}-\left(x^{m}+y^{m}\right) t^{m}+(x y)^{m} .\right)
$$

[^1]
## Symmetric groups.

(c) Explain why the symmetric group $G=\mathfrak{S}_{n}$ inside $G L_{n}(\mathbb{C})$ has

$$
\left.\begin{array}{rl}
S^{G} & =\underset{\mathbb{C}}{\mathbb{C}} \\
e_{1}, & e_{2} \\
\text { with degrees: } & , \ldots, \\
1, & 2, \\
1, & e_{n}
\end{array}\right] .
$$

where $e_{i}$ are the $i^{\text {th }}$ elementary symmetric functions

$$
\begin{aligned}
e_{1} & =x_{1}+x_{2}+\cdots+x_{n} \\
e_{2} & =x_{1} x_{2}+x_{1} x_{3}+\cdots+x_{n-1} x_{n}=\sum_{1 \leq i<j \leq n} x_{i} x_{j} \\
& \vdots \\
e_{n} & =x_{1} x_{2} \cdots x_{n} .
\end{aligned}
$$

(Hint: Apply Lemma 1.2, using the polynomial $F(t)=\prod_{i=1}^{n}\left(t-x_{i}\right)$.)

## Wreath product groups.

(d) More generally, explain why the wreath product group

$$
G=G(d, 1, n)=(\mathbb{Z} / d \mathbb{Z}) \prec \mathfrak{S}_{n}
$$

whose elements are the matrices in $\mathbb{C}^{n \times n}$ having one nonzero entry in each row and column, with that entry a $d^{\text {th }}$ root of unity, has

$$
\begin{array}{r}
S^{G} \\
\text { cees: }
\end{array}=\mathbb{C}\left[\begin{array}{cccc}
e_{1}\left(\mathbf{x}^{d}\right), & e_{2}\left(\mathbf{x}^{d}\right) & , \ldots, & e_{n}\left(\mathbf{x}^{d}\right)
\end{array}\right]
$$

where $f\left(\mathbf{x}^{d}\right):=f\left(x_{1}^{d}, \ldots, x_{n}^{d}\right)$, and $e_{i}$ are elementary symmetric functions as before. (Hint: Apply Lemma 1.2, using the polynomial $F(t)=\prod_{i=1}^{n}\left(t^{d}-x_{i}^{d}\right)$.)

The Shephard-Todd imprimitive groups $G(d e, e, n)$.
(e) Recall that the subgroup of matrices $G(d e, e, n)$ inside $G(d e, 1, n)$ is defined by the property that the product of their nonzero entries is not just a $(d e)^{t h}$ root, but actually a $d^{t h}$ root of unity. Show that this group $G=G(d e, e, n)$ has

$$
\left.\begin{array}{rl}
S^{G} & =\mathbb{C}\left[\begin{array}{cccc}
e_{1}\left(\mathbf{x}^{d e}\right), & e_{2}\left(\mathbf{x}^{d e}\right) & , \ldots, & e_{n-1}\left(\mathbf{x}^{d e}\right), \\
\text { with degrees: } & e_{n}\left(\mathbf{x}^{d}\right)
\end{array}\right] \\
d e, & 2 d e,
\end{array}, \ldots, \quad(n-1) d e, \quad n d\right) .
$$

(Hint: Apply Lemma 1.2 using the similar polynomial $F(t)=\prod_{i=1}^{n}\left(t^{d e}-x_{i}^{d e}\right)$ as in part (d).)
(f) Explain the coincidence of degrees between the group $G(m, m, 2)$ and the dihedral group $I_{2}(m)$ by showing that these two groups are conjugate within $G L_{2}(\mathbb{C})$.
7. (The Dickson polynomials and invariants of $G L_{n}\left(\mathbb{F}_{q}\right)$ )

Let $q$ be a power of a prime, and $\mathbb{F}_{q}$ the finite field with $q$ elements. Consider the finite general linear group $G=G L_{n}\left(\mathbb{F}_{q}\right)$ acting acting on $S=\mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$ by linear substitutions. Our goal will be to show that the monic polynomial in $t$ having coefficients in $S$ defined by

$$
F_{n}(t):=\prod_{\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{F}_{q}^{n}}\left(t-\left(c_{1} x_{1}+\cdots c_{n} x_{n}\right)\right)
$$

has the property that its (nonzero) coefficients of powers of $t$ give a set of polynomial generators for the $G$-invariants $S^{G}$.
(a) Explain why for $n=1$ one has $F_{1}(t)=\prod_{c_{1} \in \mathbb{F}_{q}}\left(t-c_{1} x_{1}\right)=t^{q}-t^{1} x_{1}^{q-1}$.
(Hint: Recall from finite field theory why $\prod_{c_{1} \in \mathbb{F}_{q}}\left(t-c_{1}\right)=t^{q}-t$.)
(b) To gain more intuition, explicitly compute the coefficients of $t^{4}, t^{3}, t^{2}, t^{1}, t^{0}$ in

$$
F_{2}(t)=t\left(t-x_{1}\right)\left(t-x_{2}\right)\left(t-\left(x_{1}+x_{2}\right)\right)
$$

when working over $\mathbb{F}_{2}$, that is, $n=q=2$. Note that $\pm$ signs don't matter!
For a ring $R$ containing $\mathbb{F}_{q}$ as a subring, say that a polynomial $F(t)$ in $R[t]$ is an Ore polynomial (in $t$ ) if it has the form $\sum_{i} r_{i} t^{q^{i}}$ for some coefficients $r_{i}$ in $R$.
(c) Explain why any Ore polynomial $F(t)$ has $F(a x+b y)=a F(x)+b F(y)$ for all $a, b$ in $\mathbb{F}_{q}$ and indeterminates $x, y$.
(d) Explain why for any Ore polynomial $F(t)$ in $R[t]$ the polynomial in $R[x][t]$

$$
G(t)=\prod_{c \in \mathbb{F}_{q}} F(t-c x)
$$

is again an Ore polynomial in $t$.
(e) Use (d) to explain why

$$
F_{n}(t)=t^{q^{n}}-\sum_{i=0}^{n-1} t^{q^{i}} D_{n, i}(\mathbf{x})
$$

for some $D_{n, 0}, D_{n, 1}, \ldots, D_{n, n-1}$ in $S^{G}$, called (up to $\pm$ signs) Dickson polynomials ${ }^{3}$
(f) Explain why

$$
\begin{aligned}
& S^{G}=\mathbb{C}\left[\quad D_{n, n-1}, \quad D_{n, n-2} \quad, \ldots, \quad D_{n, 1}, \quad D_{n, 0}\right] \\
& \text { with degrees: }\left(q^{n}-q^{n-1}, q^{n}-q^{n-2}, \quad, \ldots, q^{n}-q^{1}, q^{n}-q^{0}\right) \text {. }
\end{aligned}
$$

(Hint: Apply Lemma 1.2 to the polynomial $F_{n}(t)$.)

[^2]
## 2. AbStract polytopes and Regular complex polytopes

## 8*. Polytopes as arrangements of affine subspaces

Recall that for vectors $\left\{v_{i}\right\}_{i \in I}$, their $\mathbb{C}$-linear and $\mathbb{C}$-affine spans are defined as $\operatorname{Lin}\left\{v_{i}\right\}_{i \in I}=\left\{\right.$ finite sums $\sum_{i} c_{i} v_{i}$ with $\left.c_{i} \in \mathbb{C}\right\}$, and
$\operatorname{Aff}\left\{v_{i}\right\}_{i \in I}=\left\{\right.$ finite sums $\sum_{i} c_{i} v_{i}$ with $c_{i} \in \mathbb{C}$ and $\left.\sum_{i} c_{i}=1\right\}$.
The affine span of a subset of vectors is called an affine subspace. Given a finite collection $\mathcal{P}$ of complex affine subspaces inside $V=\mathbb{C}^{n}$, let us say that $\mathcal{P}$ is an abstract polytope if it satisfies these axioms:
(i) $\mathcal{P}$ contains the $(-1)$-dimensional empty affine subspace $\varnothing$ and the $n$-dimensional ambient space $V=\mathbb{C}^{n}$.
(ii) For any two nested subspaces $F \subset F^{\prime \prime}$ of $\mathcal{P}$ with $\operatorname{dim} F^{\prime \prime}-\operatorname{dim} F \geq 2$, there are at least two intermediate subspaces $F_{1}^{\prime}, F_{2}^{\prime}$ of $\mathcal{P}$ with $F \subset F_{1}^{\prime}, F_{2}^{\prime}, \subset F^{\prime \prime}$.
(iii) For any two nested subspaces $F \subset F^{\prime \prime}$ of $\mathcal{P}$ with $\operatorname{dim} F^{\prime \prime}-\operatorname{dim} F \geq 3$, the open interval $\left(F, F^{\prime \prime}\right):=\left\{F^{\prime} \in \mathcal{P}: F \subsetneq F^{\prime} \subsetneq F^{\prime \prime}\right\}$ ordered by inclusion is a connected poset.
Given an abstract polytope $\mathcal{P}$, call the subspaces $F$ of $\mathcal{P}$ faces of $\mathcal{P}$. Call a sequence of nested subpsaces $F_{1} \subset \cdots \subset F_{\ell}$ in $\mathcal{P}$ a flag from $F_{1}$ to $F_{\ell}$, and call it a maximal flag if $\operatorname{dim}\left(F_{i+1}\right)=\operatorname{dim}\left(F_{i}\right)+1$ for $i=1,2, \ldots, \ell-1$.
(a) In an abstract polytope $\mathcal{P}$, show every face lies in a maximal flag from $\varnothing$ to $V$.
(b) Show that in an abstract polytope $\mathcal{P}$, every closed interval

$$
\left[F, F^{\prime \prime}\right]:=\left\{F^{\prime} \in \mathcal{P}: F \subseteq F^{\prime} \subseteq F^{\prime \prime}\right\}
$$

regarded as a poset is again isomorphic to the poset of faces of an abstract polytope. (Hint: First explain how one can reduce to the case where (a) $F^{\prime \prime}=V=\mathbb{C}^{n}$, (b) $F$ is a vertex, and (c) the only face of $\mathcal{P}$ containing the origin is $V=\mathbb{C}^{n}$ itself, that is, the proper faces are all truly affine and not linear. In this case, let $U$ be any linear subspace complementary to the line $\mathbb{C} F$ spanned by the vertex $F$, so that $V=\mathbb{C} F \oplus U$, and show that the collection of subspaces $\left\{F^{\prime} \cap U: F^{\prime} \in\left[F, F^{\prime \prime}\right]\right\}$ forms an abstract polytope inside $U$ whose face poset is isomorphic to $\left[F, F^{\prime \prime}\right]$ )

Say that two maximal flags from $F$ to $F^{\prime \prime}$ are adjacent (at dimension d) if they differ in only one face $F^{\prime}$ and $\operatorname{dim}\left(F^{\prime}\right)=d$, and say that a closed interval $\left[F, F^{\prime \prime}\right]$ is gallery-connected if for every pair of maximal flags from $F$ to $F^{\prime \prime}$ can be connected by a sequence of flags in which consecutive flags in the sequence are adjacent.
(c) In an abstract polytope $\mathcal{P}$, show closed intervals $\left[F, F^{\prime \prime}\right]$ are gallery-connected.
(Hint: Induct on $\operatorname{dim}\left(F^{\prime \prime}\right)-\operatorname{dim}(F)$, using part (b) and Axiom (iii)).


Remark 2.1. One can show that an $n$-dimensional convex polytope in $\mathbb{R}^{n}$ gives rise to an abstract polytope $\mathcal{P}$ satisfying the axioms (i),(ii),(iii) above in the following way. One first complexifies, that is, one extends scalars from $\mathbb{R}^{n}$ to $V=\mathbb{C}^{n}$. Then one defines $\mathcal{P}$ to be the collection of (complexifications of) all affine subspaces spanned by faces of the polytope in the usual sense of convexity, that is the intersections of the convex polytope with the boundary hyperplanes of any of its supporting half-spaces.
$9^{*}$.(Regular real and complex polytopes) Given an abstract polytope $\mathcal{P}$ in $V=\mathbb{C}^{n}$ in the sense of Problem 8, define its (linear) symmetry group

$$
W=\operatorname{Aut}(P):=\left\{w \in \operatorname{Aut}_{\mathbb{C}}(V)=G L_{n}(\mathbb{C}): w(F) \in \mathcal{P} \text { for all } F \in \mathcal{P}\right\}
$$

Say that $\mathcal{P}$ is a regular complex polytope ${ }^{4}$ if, in addition to the three axioms (i),(ii),(iii) above, it satisfies this axiom:
(iv) $W$ acts transitively on the collection of maximal flags from $\varnothing$ to $V$ in $\mathcal{P}$.

Our goal will be to show that this axiom (iv) not only shows that $W$ is a reflection group, but also gives an adequate substitute for some of the properties enjoyed by real convex polytopes as a consequence of their convexity! An important role in this regard is played by the vertices of $\mathcal{P}$ which are defined to be the 0 -dimensional faces of $\mathcal{P}$, and the notion of the barycenter or centroid $b_{F}$ of a face $F$ in $\mathcal{P}$

$$
b_{F}:=\frac{1}{t}\left(F_{0}^{(1)}+F_{0}^{(2)}+\cdots+F_{0}^{(t)}\right)
$$

where $\left\{F_{0}^{(1)}, F_{0}^{(2)}, \ldots, F_{0}^{(t)}\right\}$ is the set of vertices lying on $F$.
(a) Explain why

- $b_{\varnothing}=0$, the zero vector in $V$,
- $\left\{b_{0}\right\}=F_{0}$ for every vertex $F_{0}$,
- $b_{F}$ lies on the face $F$ when $\operatorname{dim}(F) \geq 0$, and
- any $w$ in $W$ that sends $F$ to itself must fix $b_{F}$.

Now fix a base maximal flag $\mathcal{F}_{0}$ of faces from $\varnothing$ to $V$

$$
\varnothing=: F_{-1} \subset F_{0} \subset F_{1} \subset \cdots \subset F_{n-1} \subset F_{n}:=V
$$

and name their barycenters $b_{-1}, b_{0}, b_{1}, b_{2}, \ldots, b_{n-1}$, so that $b_{-1}=0$ and $b_{0}=F_{0}$.
(b) For $j=0,1,2, \ldots, n-1$, show both that

- $\left\{b_{0}, b_{1}, \ldots, b_{j}\right\}$ are $\mathbb{C}$-linearly independent, and
- therefore Aff $\left\{b_{0}, b_{1}, \ldots, b_{j}\right\}=F_{j}$.
(Hint: Induct on $j$. In the base case $j=0$, show that $b_{0}=0$ would force $F_{0}=0$ and then use Axiom (iv) to show that every vertex of $\mathcal{P}$ would be 0 , contradicting Axiom (ii). In the inductive step, if $b_{j}$ lies in $\operatorname{Lin}\left\{b_{0}, b_{1}, \ldots, b_{j-1}\right\}$ let $m$ be the smallest index in $0 \leq m \leq j-1$ such that $b_{j}$ lies in $\operatorname{Lin}\left\{b_{0}, b_{1}, \ldots, b_{m}\right\}$ but not in $\operatorname{Lin}\left\{b_{0}, b_{1}, \ldots, b_{m-1}\right\}$. Show this forces $F_{m}=\operatorname{Aff}\left\{b_{0}, b_{1}, \ldots, b_{m-1}, b_{j}\right\}$, and deduce

[^3]from this that every $w$ in $W$ that preserves $F_{0}, F_{1}, \ldots, F_{m-1}, F_{j}$ must also preserve $F_{m}$. How does this contradict Axioms (ii) and (iv)?)
(c) Deduce $W$ acts simply transitively on the maximal flags from $\varnothing$ to $V$, that is, there is a unique group element $w$ taking the base flag $\mathcal{F}_{0}$ to any other such flag $\mathcal{F}$. In particular, there are $|W|$ such maximal flags.
(Hint: Part (b) showed $\left\{b_{0}, b_{1}, \ldots, b_{n-1}\right\}$ form a $\mathbb{C}$-linear basis for $V=\mathbb{C}^{n}$.)
(d) Show that for each $i=0,1,2, \ldots, n-1$, the subgroup $W_{i}$ of $W$ preserving the flag $\mathcal{F}_{0} \backslash\left\{F_{i}\right\}$
$$
F_{-1} \subset F_{0} \subset \cdots \subset F_{i-1} \subset F_{i+1} \subset F_{i+2} \subset \cdots \subset F_{n}
$$
is a cyclic group $W_{i}=\left\langle r_{i}\right\rangle$ generated by some reflection $r_{i}$.
(Hint: $W_{i}$ must fix pointwise the barycenters $b_{0}, b_{1}, \ldots, b_{i-1}, b_{i+1}, b_{i+2}, \ldots, b_{n-1}$, and hence also fixes pointwise the hyperplane $H_{i}$ which they span $\mathbb{C}$-linearly. Use this together with finiteness of $W$ to show the homomorphism det : $W_{i} \rightarrow \mathbb{C}^{\times}$is injective, and hence $W_{i}$ is cyclic.)
(e) Explain why for any two maximal flags $w\left(\mathcal{F}_{0}\right)$ and $w^{\prime}\left(\mathcal{F}_{0}\right)$ that are adjacent at dimension $i$, there is a power $r_{i}^{k}$ in the cyclic group $W_{i}$ such that $w^{\prime}=w r_{i}^{k}$. Use this together with Problem 8(c) to show that $W=\left\langle r_{0}, r_{1}, \ldots, r_{n-1}\right\rangle$, so that $W$ is a reflection group, called a Shephard group.

Our next goal is to say something about the nature of the relations among the generating reflections $S=\left\{r_{0}, r_{1}, \ldots, r_{n-1}\right\}$ for a Shephard group. Given two indices $i, j$ satisfying $0 \leq i<j \leq n-1$, assume that

- $r_{i}$ sends $F_{i}$ to $F_{i}^{\prime}$, while preserving the other faces $\mathcal{F}_{0} \backslash\left\{F_{i}\right\}$,
- $r_{j}$ sends $F_{j}$ to $F_{j}^{\prime}$, while preserving the other faces $\mathcal{F}_{0} \backslash\left\{F_{j}\right\}$.
(f) Explain why if $|j-i| \geq 2$ then $r_{j}$ preserves $F_{i}^{\prime}$, and $r_{i}$ preserves $F_{j}^{\prime}$. Why does this show that $r_{i}, r_{j}$ commute?
(g) Show that $r_{i}, r_{i+1}$ can never commute for $i=0,1,2, \ldots, n-2$.
(Hint: Explain why $F_{i}^{\prime}:=r_{i}\left(F_{i}\right) \neq F_{i}$ and $F_{i+1}^{\prime}:=r_{i+1}\left(F_{i+1}\right) \neq F_{i+1}$. Then show that if $r_{i}, r_{i+1}$ commute, one would have both of $F_{i+1}, F_{i+1}^{\prime}$ containing both of $F_{i}, F_{i}^{\prime}$, and why this is a contradiction.)

Remark 2.2. Part (g) explains why a regular (real) polytope has Coxeter system ( $W, S$ ) which is irreducible, while part (f) explains why its Coxeter diagram is unbranched, that is, no node has degree 3 or higher.

Conversely, for any Coxeter system $(W, S)$ with an irreducible unbranched Coxeter diagram and $W$ finite, there is a construction due to Wythoff that allows one to produce a real regular convex polytope having $W$ as its symmetry group.

## 3. REGULAR ELEMENTS

Recall that an element $c$ in a complex reflection subgroup $W$ acting on $V=\mathbb{C}^{n}$ is a regular element if it has an eigenvector $v$ in $V$ that lie on none of the reflecting hyperplanes for reflections in $W$.
$10^{*}$.( The regular elements in the symmetric group $\left.\mathfrak{S}_{n}\right)$
(a) Explain how you can decide whether a permutation $w$ in $\mathfrak{S}_{n}$ is a power of an $n$-cycle based on its cycle type. Similarly explain how you can decide whether $w$ is a power of an $(n-1)$-cycle.
(b) Prove that the only regular elements in $\mathfrak{S}_{n}$ are the powers of the $n$-cycles and the powers of the $(n-1)$-cycles.
11. (The regular elements in hyperoctahedral group $\mathfrak{S}_{n}^{ \pm}$)

Recall that the hyperoctahedral group $W=\mathfrak{S}_{n}^{ \pm}=G(2,1, n)$ is the (real) reflection group of all signed permutation matrices.
(a) Show the reflecting hyperplanes for $W$ are

- $x_{i}=0$ for $1 \leq i \leq n$
- $x_{i}=x_{j}$ for $1 \leq i<j \leq n$
- $x_{i}=-x_{j}$ for $1 \leq i<j \leq n$

One standard choice of simple reflections $S=\left\{s_{1}, \ldots, s_{n}\right\}$ making $(W, S)$ a Coxeter system is to let $s_{i}$ for $i=1,2, \ldots, n-1$ be the adjacent transposition $(i, i+1)$ as usual, and let $s_{n}$ change the sign in the $n^{\text {th }}$ coordinate, that is, reflecting through hyperplane $x_{n}=0$. Their product is a Coxeter element

$$
c=s_{1} s_{2} \cdots s_{n}=\left(\begin{array}{ccccc}
1 & 2 & \cdots & n-1 & n \\
2 & 3 & \cdots & n & -1
\end{array}\right)
$$

in a two-line notation where $\binom{i}{ \pm j}$ means $w\left(e_{i}\right)= \pm e_{j}$.
(b) Show that $c$ is a regular element directly, by exhibiting a $c$-eigenvector $v$ that avoids all the reflecting hyperplanes in (a).

We wish to define the cycle type of an element $w$ in $W=\mathfrak{S}_{n}^{ \pm}$, which parametrizes its $W$-conjugacy class. First decompose $\{1,2, \ldots, n\}$ into blocks called cycles for $w$ by saying $i, j$ lie in the same cycle of $w$ if some power of $w$ sends $e_{i}$ to $\pm e_{j}$.

Then say a cycle of $w$ is even-sign (resp. odd-sign) if the number of negative signs in the two-line notation for the cycle (i.e. the number of ordered pairs $(i, j)$ in the cycle for which $w\left(+e_{i}\right)=-e_{j}$ ) is even (resp. odd). Lastly say that $w$ has cycle type $\left(\lambda_{+}, \lambda_{-}\right)$where $\lambda_{+}, \lambda_{-}$are number partitions whose parts are the sizes of the even-, odd-sign cycles of $w$. In particular, $\left|\lambda_{+}\right|+\left|\lambda_{-}\right|=n$
(c) Show that cycle type exactly parametrizes $W$-conjugacy class.
(d) How do you recognize whether $w$ in $W$ is conjugate to a power of the Coxeter element $c$ ?
(e) Show the regular elements in $W$ are exactly the $W$-conjugates of powers of $c$.

## 4. Noncrossing And NONNESTING PARTITIONS

12*. (Noncrossing partitions in type $A_{n-1}$ Let $W=\mathfrak{S}_{n}$ denote the symmetric group on $n$ letters acting on $V=\mathbb{R}^{n}$ by permuting coordinates, generated by its set $T$ of reflections, that is the set of all transpositions $t=(i j)$ for $1 \leq i<j \leq n$.
(a) For $w$ a permutation in $W$, let $c(w)$ denote the number of cycles in the cycle decomposition of $w$, counting fixed points each as one cycle. Show that if $t=(i j)$ then

$$
c(w t)= \begin{cases}c(w)-1 & \text { if } i, j \text { lie in different cycles of } w \\ c(w)+1 & \text { if } i, j \text { lie in the same cycle of } w\end{cases}
$$

(b) Show that the (absolute) length function

$$
\ell_{T}(w):=\min \left\{\ell: w=t_{1} t_{2} \cdots t_{\ell} \text { for some } t_{i} \in T\right\}
$$

has these equivalent reformulations:

$$
\ell_{T}(w)=n-c(w)=\operatorname{codim}_{\mathbb{R}}\left(V^{w}\right)
$$

where $V^{w}=\left\{v \in V=\mathbb{R}^{n}: w(v)=v\right\}$.
(c) Define a binary relation $<$ on $W$ by taking the reflexive, transitive closure of the relation $w<w t$ for $w \in W, t \in T$ with $\ell_{T}(w)<\ell_{T}(w t)$. Show that $\leq$ is a partial order on $W$ having the identity element $e$ as its unique minimum element.
(d) Show that $u \leq v$ if and only if

$$
\ell_{T}(u)+\ell_{T}\left(u^{-1} v\right)=\ell_{T}(v)
$$

Show that $\ell_{T}$ gives a rank function for $\leq$ on $W$ in the sense that every maximal totally ordered subset (chain) in the interval from $e$ to $w$ has length $\ell_{T}(w)$.

Recall the definition of the poset of noncrossing partitions $N C(n)$. It is a subposet of the refinement order $\Pi_{n}$ on all partitions of the $n$-element set $[n]:=\{1,2, \ldots, n\}$, and consists of those partitions whose blocks have disjoint convex hulls when $[n]$ labels (in clockwise order) the vertices of a convex $n$-gon.
(e) Let $c$ be the $n$-cycle $(123 \cdots n-1 n)$ in $W$. Show that $w \leq c$ in the partial order on $W$ if and only if the cycles of $w$ form a noncrossing partition of $[n]$ in which each cycle is directed clockwise around the $n$-gon.

(f) Show that $N C(n) \cong[e, c]_{<}$where $[e, c]_{<}$denotes the interval from $e$ to $w$ in the partial order on $W$ described above.

13*.(Nonnesting partitions in type $A_{n-1}$ )
Recall the definition of the poset of nonnesting partitions $N N(n)$. Given a partition $\pi$ of the set $\{1,2, \ldots, n\}$, call a bump of $\pi$ a pair $(i, j)$ in the same block of $\pi$ with no integers $k$ having $i<k<j$ in the same block. One can picture $\pi$ by drawing $1,2, \ldots, n$ along a horizontal line, and drawing the bumps $(i, j)$ of $\pi$ as semicircular arcs above $i, j$. For example, the figure below depicts in this way two set partitions of $\{1,2,3,4,5,6,7,8,9\}$, namely

$$
\begin{aligned}
& \pi_{1}=\{\{1,5,8\},\{2,3,7,9\},\{4,6\}\} \text { and } \\
& \pi_{2}=\{\{1,5,8\},\{2\},\{3,6\},\{4,7,9\}\}
\end{aligned}
$$



Then $N N(n)$ is a subposet of the refinement order $\Pi_{n}$ on all partitions of [ $n$ ], and consists of those partitions having no pair of bumps $(i, j) \neq\left(i^{\prime}, j^{\prime}\right)$ which are nested: $i \leq i^{\prime} \leq j^{\prime} \leq j$. For example, $\pi_{1}$ above is nesting, because its bumps $\{2,3\},\{1,5\}$ are nested, or because its bumps $\{4,6\},\{3,7\}$ are nested. However, $\pi_{2}$ is nonnesting, so an element of $N N(n)$.

Consider the usual crystallographic root system $\Phi$ of type $A_{n-1}$, along with one of its usual choices of positive roots $\Phi^{+}$:

$$
\begin{aligned}
\Phi & :=\left\{e_{i}-e_{j}: 1 \leq i \neq j \leq n\right\} \\
\Phi^{+} & :=\left\{e_{i}-e_{j}: 1 \leq i<j \leq n\right\}
\end{aligned}
$$

Let $\mathbb{N} \Phi^{+}$denote the set of all nonnegative integral combinations of the positive roots.
(a) Show that a partition $\pi$ of $[n]$ is the transitive closure of the relation determined by its collection of bumps, and hence that $\pi$ is uniquely determined by its bumps. Show that the collection of bumps $(i, j)$ of a partition $\pi$ always corresponds to a linearly independent set of roots $e_{i}-e_{j}$ in $\Phi^{+}$.
(b) Show that the relation on $\Phi^{+}$defined by

$$
\alpha^{\prime} \leq \alpha \text { if } \alpha-\alpha^{\prime} \in \mathbb{N} \Phi^{+}
$$

defines a partial order on $\Phi^{+}$. We will call this the (positive) root poset. Draw this poset for $n=2,3,4,5$.


Figure 1. T
he Shi arrangement for $n=3$ (or type $A_{2}$ ), with the positive cone shaded. Figure taken from [1].
(c) Show that two bumps $(i, j),\left(i^{\prime}, j^{\prime}\right)$ are nested if and only if their corresponding roots $\alpha=e_{i}-e_{j}, \alpha^{\prime}=e_{i^{\prime}}-e_{j^{\prime}}$ satisfy $\alpha^{\prime}<\alpha$.

Consequently, the map that sends a nonnesting partition $\pi$ to the roots corresponding to its bumps gives a bijection between $N N(n)$ and the set of all antichains (= collections of pairwise incomparable elements) in the positive root poset.
(d) Biject $N N(n)$ to Dyck paths with number of bumps going to number of peaks? Corollary: Narayana numbers count $N N(n)$ by numbers of blocks or by bumps.

Recall that an order filter in a poset $P$ is a subset $F \subseteq P$ with the property that $x \in F$ and $y>x$ in $P$ implies $y \in F$.
(e) For any poset $P$ show that the map sending an antichain $A$ to the set $F:=$ $\{x \in P: x \geq a$ for some $a \in A\}$ gives a bijection between the antichains in $P$ and the filters in $P$.

Consider the Shi arrangement of hyperplanes in $V=\mathbb{R}^{n}$, namely the hyperplanes of the form $\langle x, \alpha\rangle=0,1$ as $\alpha$ ranges through $\Phi^{+}$. Removing these hyperplanes from $V$ leaves open connected components called regions. This arrangement is depicted for $n=3$ in Figure ??, after modding out by the 1-dimensional subspace $x_{1}=\cdots x_{n}$ which is parallel to all of the hyperplanes. Here the positive cone containing the regions where $\langle x, \alpha\rangle>0$ is shown shaded.
(f) Given a region $R$ of the Shi arrangement lying in the positive cone, let $F$ be the collection of positive roots $\alpha \in \Phi^{+}$satisfying $\langle x, \alpha\rangle>1$ for every $x \in R$. Show that $F$ is a filter in the positive root order. Explain how this gives an injective map from the set of such regions to antichains in $\Phi^{+}$and nonnesting partitions. (This map turns out to be bijective, but this is not obvious.)

## 5. $q$-ANALOGUES AND CYCLIC SIEVING PHENOMENA

14*. (q-binomial coefficient warm-up) Recall the $q$-analogues

$$
\begin{aligned}
{[n]_{q} } & :=1+q+q^{2}+\cdots+q^{n-1} \\
{[n]!_{q} } & :=[n]_{q}[n-1]_{q} \cdots[2]_{q}[1]_{q} \\
{\left[\begin{array}{c}
n \\
k
\end{array}\right]_{q} } & :=\frac{[n]!_{q}}{[k]!_{q}}[n-k]!_{q}
\end{aligned}
$$

(a) Prove the $q$-Pascal recurrences

$$
\begin{aligned}
& {\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=q^{k}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{q}+\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{q}} \\
& {\left[\begin{array}{c}
n \\
k
\end{array}\right]_{q}=\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{q}+q^{n-k}\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{q} .}
\end{aligned}
$$

(b) Prove that

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\sum_{\lambda} q^{|\lambda|}
$$

as $\lambda=\left(n-k \geq \lambda_{1} \geq \lambda_{2} \geq \cdots \lambda_{k} \geq 0\right)$ runs through all number partitions having at most $k$ nonzero parts with each part of size at most $n-k$, or equivalently, the Ferrers diagram for $\lambda$ fits inside a $k \times(n-k)$ rectangle.
(c) Prove that when $q$ is a power of a prime, so the cardinality of a finite field $\mathbb{F}_{q}$,

$$
\left.\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\mid\left\{k \text {-dimensional } \mathbb{F}_{q} \text {-subspaces of } V=\left(\mathbb{F}_{q}\right)^{n}\right\} \right\rvert\, \text {. }
$$

(Hint: this can be done either using part (a) or part (b)).

15*.( What happens to $q$-binomials when one plugs in roots of unity for $q$ ?)
Let $\zeta$ be a primitive $d^{t h}$ root of unity in $\mathbb{C}$, such as $\zeta=e^{\frac{2 \pi i}{d}}$.
(a) Show that when $a, b$ are positive integers having $a \equiv b \bmod d$, one has

$$
\lim _{q \rightarrow \zeta} \frac{[a]_{q}}{[b]_{q}}= \begin{cases}\frac{a}{b} & \text { if } a \equiv b \equiv 0 \bmod d \\ 1 & \text { if } a \equiv b \not \equiv 0 \bmod d\end{cases}
$$

(b) Prove that if $n, k$ have quotients $n^{\prime}, k^{\prime}$ and remainders $n^{\prime \prime}, k^{\prime \prime}$ upon division by $d$, meaning that

$$
\begin{aligned}
n & =n^{\prime} d+n^{\prime \prime}, \\
k & =k^{\prime} d+k^{\prime \prime}
\end{aligned}
$$

where $0 \leq n^{\prime \prime}, k^{\prime \prime} \leq d-1$, then

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q=\zeta}=\binom{n^{\prime}}{k^{\prime}} \cdot\left[\begin{array}{l}
n^{\prime \prime} \\
k^{\prime \prime}
\end{array}\right]_{q=\zeta}
$$

16*. (Cyclic sieving phenomena for subsets and multisets)
Recall that

- a finite set $X$ with
- an action of a cyclic group $C=\langle c\rangle \cong \mathbb{Z} / d \mathbb{Z}$ permuting $X$, and
- a polynomial $X(q)$ in $\mathbb{Z}[q]$
give a triple $(X, X(q), C)$ exhibiting the cyclic sieving phenomenon (or CSP) if all elements $c^{k}$ in $C$ have the size of their fixed point set $X^{c^{k}}=\left\{x \in X: c^{k}(x)=x\right\}$ predicted by a evaluating $X(q)$ at powers of a primitive $d^{\text {th }}$ root-of-unity $\zeta$ :

$$
\left|X^{c^{k}}\right|=[X(q)]_{q=\zeta^{k}} .
$$

(a) Check directly that one has a CSP for the triple

$$
\begin{aligned}
X & =\{k \text {-element subsets of }\{1,2, \ldots, n\}\} \\
X(q) & =\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} \\
C & =\langle c\rangle \cong \mathbb{Z} / n \mathbb{Z}
\end{aligned}
$$

where $c$ is the $n$-cycle $c=(1,2,3, \ldots, n)$ inside $\mathfrak{S}_{n}$, acting via

$$
c\left\{i_{1}, \ldots, i_{k}\right\}=\left\{i_{1}+1, \ldots, i_{k}+1\right\} \bmod n
$$

(Hint: Problem 13 makes the root-of-unity evaluations easy, and it's not hard to analyze how many subsets are fixed by a power of $c$.)
(b) Similarly check directly that one has a CSP for the triple

$$
\begin{aligned}
X & =\{k \text {-element multisubsets of }\{1,2, \ldots, n\}\} \\
X(q) & =\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right]_{q} \\
C & =\langle c\rangle \cong \mathbb{Z} / n \mathbb{Z}
\end{aligned}
$$

where the $n$-cycle $c=(1,2,3, \ldots, n)$ acts similarly.

## References

[1] Root Systems and Generalized Associahedra, from IAS/Park City Summer Math Institute on Geometric Combinatorics, 2004.
[2] L. Smith, Polynomial invariants of finite groups, A.K. Peters 1995.
[3] L. Solomon, Invariants of finite reflection groups. Nagoya Math. J. 22 (1963), 57-64.


[^0]:    ${ }^{1}$ The author thanks the organizers of this summer school for the opportunity to present these exercises, and the attendees of the school for many edits and suggestions improving the exercises. He also thanks Jia Huang, Alex Miller and Vivien Ripoll for particularly helpful readings and corrections.

[^1]:    ${ }^{2}$ Recall that this means there exists some monic polynomial $F_{i}(t)=t^{N}+c_{N-1} t^{N-1}+\cdots+c_{0}$ in $t$ with coefficients $c_{k}$ in $\mathbb{F}\left[f_{1}, \ldots, f_{n}\right]$ that vanishes when one plugs in $t=x_{i}$, that is, $F_{i}\left(x_{i}\right)=0$.

[^2]:    ${ }^{3}$ The Dickson polynomial $D_{n, k}$ has an explicit formula (see e.g., Smith [2, Thm. 8.1.6]), making it analogous to the elementary symmetric function $e_{n-k}$ :

    $$
    \begin{aligned}
    & D_{n, k}= \pm \sum_{\substack{k \text {-dimensional } \\
    \text { subspaces } S \subset\left(\mathbb{F}_{q}^{n}\right)}} \prod_{\substack{\text { linear forms } \\
    \ell(\mathbf{x}) \notin S}} \ell(\mathbf{x}) \\
    & e_{n-k}=\sum_{\substack{k \text {-element subsets } \\
    S \subset\{1,2, \ldots, n\}}} \prod_{i \notin S} x_{i} .
    \end{aligned}
    $$

[^3]:    ${ }^{4}$ For example, when $\mathcal{P}$ comes from the complexification of the affine spans of the faces of an $n$-dimensional convex polytope in $\mathbb{R}^{n}$, as discussed at the end of Problem 8 , this extra axiom (iv) is the usual extra condition one requires for the convex polytope to be called a regular polytope.

