Reflection group counting and q-counting

Vic Reiner Univ. of Minnesota

reiner@math.umn.edu

Summer School on Algebraic and Enumerative Combinatorics S. Miguel de Seide, Portugal July 2-13, 2012

Outline

Lecture 1

- Things we count
- What is a finite reflection group?
- Taxonomy of reflection groups
- 2 Lecture 2
 - Back to the Twelvefold Way
 - Transitive actions and CSPs
- Lecture 3
 - Multinomials, flags, and parabolic subgroups
 - Fake degrees
- Lecture 4
 - The Catalan and parking function family
- Bibliography

伺 ト イヨ ト イヨト

Question

How many ways to place a set N of n balls (distinguishable or indistinguishable) into a set X of x boxes (distinguishable or indistinguishable)?

Equivalently, how many functions $N \xrightarrow{t} X$ with labelled/unlabelled source N and target X?

What if we insist that *f* be injective or surjective?

Question

How many ways to place a set N of n balls (distinguishable or indistinguishable) into a set X of x boxes (distinguishable or indistinguishable)?

Equivalently, how many functions $N \xrightarrow{f} X$ with labelled/unlabelled source N and target X?

What if we insist that *f* be injective or surjective?

Question

How many ways to place a set N of n balls (distinguishable or indistinguishable) into a set X of x boxes (distinguishable or indistinguishable)?

Equivalently, how many functions $N \xrightarrow{t} X$ with labelled/unlabelled source N and target X?

What if we insist that *f* be injective or surjective?

 $N \xrightarrow{f} X$

balls N	boxes X	any f	injective f	surjective f
dist.	dist.	x ⁿ	$(x)(x-1)(x-2)\cdots(x-(n-1))$	x! S(n,x)
indist.	dist.	$\binom{x+n-1}{n}$	$\begin{pmatrix} x \\ n \end{pmatrix}$	$\binom{n-1}{n-x}$
dist.	indist.	$S(n,1) \ +S(n,2) \ +\cdots \ +S(n,x)$	1 if <i>n≤x</i> 0 else	S(n,x)
indist.	indist.	$\begin{array}{c} p_1(n) \\ +p_2(n) \\ +\cdots \\ +p_x(n) \end{array}$	1 if $n \le x$ 0 else	$p_x(n)$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

■ _ _ のへ (や

- composition numbers 2^{*n*-1},
- multinomials $\binom{n}{k_1,k_2,...,k_\ell}$,
- triangular numbers $\binom{n}{2}$,
- Stirling numbers of the 1st kind *s*(*n*, *k*),
- tableaux numbers f^{λ} ,
- parking functions $(n+1)^{n-1}$,
- Catalan numbers $\frac{1}{n+1} \binom{2n}{n}$, Kirkman-Cayley numbers $\frac{1}{k+1} \binom{n+k+1}{k} \binom{n-1}{k}$, Narayana numbers $\frac{1}{n} \binom{n}{k} \binom{n}{k-1}$,

composition numbers 2ⁿ⁻¹,

- multinomials $\binom{n}{k_1,k_2,...,k_\ell}$,
- triangular numbers $\binom{n}{2}$,
- Stirling numbers of the 1st kind *s*(*n*, *k*),
- tableaux numbers f^{λ} ,
- parking functions $(n+1)^{n-1}$,
- Catalan numbers $\frac{1}{n+1} \binom{2n}{n}$, Kirkman-Cayley numbers $\frac{1}{k+1} \binom{n+k+1}{k} \binom{n-1}{k}$, Narayana numbers $\frac{1}{n} \binom{n}{k} \binom{n}{k-1}$,

伺 ト イ ヨ ト イ ヨ ト

- composition numbers 2^{*n*-1},
- multinomials $\binom{n}{k_1,k_2,\ldots,k_\ell}$,
- triangular numbers $\binom{n}{2}$,
- Stirling numbers of the 1st kind *s*(*n*, *k*),
- tableaux numbers f^{λ} ,
- parking functions $(n+1)^{n-1}$,
- Catalan numbers $\frac{1}{n+1} \binom{2n}{n}$, Kirkman-Cayley numbers $\frac{1}{k+1} \binom{n+k+1}{k} \binom{n-1}{k}$, Narayana numbers $\frac{1}{n} \binom{n}{k} \binom{n}{k-1}$,

「「マート・ビート」

- composition numbers 2ⁿ⁻¹,
- multinomials $\binom{n}{k_1,k_2,...,k_\ell}$,
- triangular numbers $\binom{n}{2}$,
- Stirling numbers of the 1st kind *s*(*n*, *k*),
- tableaux numbers f^{λ} ,
- parking functions $(n+1)^{n-1}$,
- Catalan numbers $\frac{1}{n+1} \binom{2n}{n}$, Kirkman-Cayley numbers $\frac{1}{k+1} \binom{n+k+1}{k} \binom{n-1}{k}$, Narayana numbers $\frac{1}{n} \binom{n}{k} \binom{n}{k-1}$,

「「マート・ビート」

- composition numbers 2^{*n*-1},
- multinomials $\binom{n}{k_1,k_2,...,k_\ell}$,
- triangular numbers $\binom{n}{2}$,
- Stirling numbers of the 1st kind s(n, k),
- tableaux numbers f^{λ} ,
- parking functions $(n+1)^{n-1}$,
- Catalan numbers $\frac{1}{n+1} \binom{2n}{n}$, Kirkman-Cayley numbers $\frac{1}{k+1} \binom{n+k+1}{k} \binom{n-1}{k}$, Narayana numbers $\frac{1}{n} \binom{n}{k} \binom{n}{k-1}$,

伺 とく ヨ とく ヨ とう

- composition numbers 2ⁿ⁻¹,
- multinomials $\binom{n}{k_1,k_2,...,k_\ell}$,
- triangular numbers $\binom{n}{2}$,
- Stirling numbers of the 1st kind s(n, k),
- tableaux numbers f^{λ} ,
- parking functions $(n+1)^{n-1}$,
- Catalan numbers $\frac{1}{n+1} \binom{2n}{n}$, Kirkman-Cayley numbers $\frac{1}{k+1} \binom{n+k+1}{k} \binom{n-1}{k}$, Narayana numbers $\frac{1}{n} \binom{n}{k} \binom{n}{k-1}$,

伺 とく ヨ とく ヨ とう

- composition numbers 2^{*n*-1},
- multinomials $\binom{n}{k_1,k_2,...,k_\ell}$,
- triangular numbers $\binom{n}{2}$,
- Stirling numbers of the 1st kind s(n, k),
- tableaux numbers f^{λ} ,
- parking functions $(n+1)^{n-1}$,
- Catalan numbers $\frac{1}{n+1} \binom{2n}{n}$, Kirkman-Cayley numbers $\frac{1}{k+1} \binom{n+k+1}{k} \binom{n-1}{k}$, Narayana numbers $\frac{1}{n} \binom{n}{k} \binom{n}{k-1}$,

- composition numbers 2^{n-1} ,
- multinomials $\binom{n}{k_1,k_2,...,k_\ell}$,
- triangular numbers $\binom{n}{2}$,
- Stirling numbers of the 1st kind s(n, k),
- tableaux numbers f^{λ} ,
- parking functions $(n+1)^{n-1}$,
- Catalan numbers $\frac{1}{n+1} \binom{2n}{n}$, Kirkman-Cayley numbers $\frac{1}{k+1} \binom{n+k+1}{k} \binom{n-1}{k}$, Narayana numbers $\frac{1}{n} \binom{n}{k} \binom{n}{k-1}$,

- composition numbers 2^{*n*-1},
- multinomials $\binom{n}{k_1,k_2,...,k_\ell}$,
- triangular numbers $\binom{n}{2}$,
- Stirling numbers of the 1st kind s(n, k),
- tableaux numbers f^{λ} ,
- parking functions $(n+1)^{n-1}$,
- Catalan numbers $\frac{1}{n+1} \binom{2n}{n}$, Kirkman-Cayley numbers $\frac{1}{k+1} \binom{n+k+1}{k} \binom{n-1}{k}$, Narayana numbers $\frac{1}{n} \binom{n}{k} \binom{n}{k-1}$,

- composition numbers 2^{*n*-1},
- multinomials $\binom{n}{k_1,k_2,...,k_\ell}$,
- triangular numbers $\binom{n}{2}$,
- Stirling numbers of the 1st kind s(n, k),
- tableaux numbers f^{λ} ,
- parking functions $(n+1)^{n-1}$,
- Catalan numbers $\frac{1}{n+1} \binom{2n}{n}$, Kirkman-Cayley numbers $\frac{1}{k+1} \binom{n+k+1}{k} \binom{n-1}{k}$, Narayana numbers $\frac{1}{n} \binom{n}{k} \binom{n}{k-1}$,

Each generalizes naturally to other finite reflection groups, in particular, to Coxeter groups/systems (W, S) with W finite.

This often leads to *q*-analogues with good properties.

Moral

Pay attention to Prof. Brenti's lectures!

< 同 > < 三 > < 三

Each generalizes naturally to other finite reflection groups, in particular, to Coxeter groups/systems (W, S) with W finite.

This often leads to *q*-analogues with good properties.

Moral

Pay attention to Prof. Brenti's lectures!

< 回 > < 回 > < 回 >

Each generalizes naturally to other finite reflection groups, in particular, to Coxeter groups/systems (W, S) with W finite.

This often leads to *q*-analogues with good properties.

Moral

Pay attention to Prof. Brenti's lectures!

< 同 > < 回 > < 回 >

Each generalizes naturally to other finite reflection groups, in particular, to Coxeter groups/systems (W, S) with W finite.

This often leads to *q*-analogues with good properties.

Moral

Pay attention to Prof. Brenti's lectures!