Reflection group counting and q-counting

Vic Reiner
Univ. of Minnesota reiner@math.umn.edu

Summer School on
Algebraic and Enumerative Combinatorics
S. Miguel de Seide, Portugal July 2-13, 2012

Outline

(1) Lecture 1

- Things we count
- What is a finite reflection group?
- Taxonomy of reflection groups
(2) Lecture 2
- Back to the Twelvefold Way
- Transitive actions and CSPs
(3) Lecture 3
- Multinomials, flags, and parabolic subgroups
- Fake degrees
(4) Lecture 4
- The Catalan and parking function family
(5) Bibliography

Twelve-fold way

Question

How many ways to place a set N of n balls (distinguishable or indistinguishable) into a set X of x boxes (distinguishable or indistinguishable)?

Equivalently, how many functions $N \xrightarrow{ } X$
with labelled/unlabelled source N and target X ?
What if we insist that f be injective or surjective?

Twelve-fold way

Question

How many ways to place a set N of n balls (distinguishable or indistinguishable) into a set X of x boxes (distinguishable or indistinguishable)?

Equivalently, how many functions $N \xrightarrow{f} X$ with labelled/unlabelled source N and target X ?

What if we insist that f be injective or surjective?

Twelve-fold way

Question

How many ways to place a set N of n balls (distinguishable or indistinguishable) into a set X of x boxes (distinguishable or indistinguishable)?

Equivalently, how many functions $N \xrightarrow{f} X$ with labelled/unlabelled source N and target X ?

What if we insist that f be injective or surjective?

$$
N \xrightarrow{f} X
$$

balls N	boxes X	any f	injective f	surjective f
dist.	dist.	x^{n}	$(x)(x-1)(x-2) \cdots(x-(n-1))$	x ! S(n,x)
indist.	dist.	$\binom{x+n-1}{n}$	$\binom{x}{n}$	$\binom{n-1}{n-x}$
dist.	indist.	$S(n, 1)$ $+S(n, 2)$ $+\cdots$ $+S(n, x)$	1 if $n \leq x$ 0 else	$\mathrm{S}(\mathrm{n}, \mathrm{x})$
indist.	indist.	$p_{1}(n)$ $+p_{2}(n)$ $+\ldots$ $+p_{x}(n)$	1 if $n \leq x$ 0 else	$p_{x}(n)$

Some other popular counts

- composition numbers 2^{n-1},
- multinomials $\binom{n}{k_{1}, k_{2}, \ldots, k_{n}}$,
- triangular numbers $\binom{n}{2}$,
- Stirling numbers of the 1 st kind $s(n, k)$,
- tableaux numbers f^{λ},
- parking functions $(n+1)^{n-1}$,

Catalan numbers $\frac{1}{n+1}\binom{2 n}{n}$,
Kirkman-Cayley numbers $\frac{1}{k+1}\binom{n+k+1}{k}\binom{n-1}{k}$,
Narayana numbers $\frac{1}{n}\binom{n}{k}\binom{n}{k-1}$,

Some other popular counts

- composition numbers 2^{n-1},
- multinomials $\left(k_{k_{1}, k_{2}, \ldots, k_{\ell}}^{n}\right)$,
- triangular numbers $\binom{n}{2}$,
- Stirling numbers of the 1 st kind $s(n, k)$,
- tableaux numbers f^{λ},
- parking functions $(n+1)^{n-1}$,

Catalan numbers $\frac{1}{n+1}\binom{2 n}{n}$,
Kirkman-Cayley numbers $\frac{1}{k+1}\binom{n+k+1}{k}\binom{n-1}{k}$,
Narayana numbers $\frac{1}{n}\binom{n}{k}\binom{n}{k-1}$,

Some other popular counts

- composition numbers 2^{n-1},
- multinomials $\binom{n}{k_{1}, k_{2}, \ldots, k_{\ell}}$,
- triangular numbers $\binom{n}{2}$,
- Stirling numbers of the 1 st kind $s(n, k)$,
- tableaux numbers f^{λ},
- parking functions $(n+1)^{n-1}$,

Catalan numbers $\frac{1}{n+1}\binom{2 n}{n}$,
Kirkman-Cayley numbers $\frac{1}{k+1}\binom{n+k+1}{k}\binom{n-1}{k}$,
Narayana numbers $\frac{1}{n}\binom{n}{k}\binom{n}{k-1}$,

Some other popular counts

- composition numbers 2^{n-1},
- multinomials $\binom{n}{k_{1}, k_{2}, \ldots, k_{\ell}}$,
- triangular numbers $\binom{n}{2}$,
- Stirling numbers of the 1st kind $s(n, k)$,
- tableaux numbers f^{λ},
- narking functions $(n+1)^{n-1}$,

Catalan numbers $\frac{1}{n+1}\binom{2 n}{n}$,
Kirkman-Cayley numbers $\frac{1}{k+1}\binom{n+k+1}{k}\binom{n-1}{k}$,
Narayana numbers $\frac{1}{n}\binom{n}{k}\binom{n}{k-1}$,

Some other popular counts

- composition numbers 2^{n-1},
- multinomials $\binom{n}{k_{1}, k_{2}, \ldots, k_{\ell}}$,
- triangular numbers $\binom{n}{2}$,
- Stirling numbers of the 1 st kind $s(n, k)$,
- tableaux numbers f^{λ},
- parking functions $(n+1)^{n-1}$,

Kirkman-Cayley numbers $\frac{1}{k+1}\binom{n+k+1}{k}\binom{n-1}{k}$,
Narayana numbers $\frac{1}{n}\binom{n}{k}\binom{n}{k-1}$,

Some other popular counts

- composition numbers 2^{n-1},
- multinomials $\binom{n}{k_{1}, k_{2}, \ldots, k_{\ell}}$,
- triangular numbers $\binom{n}{2}$,
- Stirling numbers of the 1 st kind $s(n, k)$,
- tableaux numbers f^{λ},
- parking functions $(n+1)^{n-1}$,

Catalan numbers $\frac{1}{n+1}\binom{2 n}{n}$,
Kirkman-Cayley numbers $\frac{1}{k+1}\binom{n+k+1}{k}\binom{n-1}{k}$,
Narayana numbers $\frac{1}{n}\binom{n}{k}\binom{n}{k-1}$

Some other popular counts

- composition numbers 2^{n-1},
- multinomials $\binom{n}{k_{1}, k_{2}, \ldots, k_{\ell}}$,
- triangular numbers $\binom{n}{2}$,
- Stirling numbers of the 1 st kind $s(n, k)$,
- tableaux numbers f^{λ},
- parking functions $(n+1)^{n-1}$,
- Catalan numbers $\frac{1}{n+1}\binom{2 n}{n}$,

Some other popular counts

- composition numbers 2^{n-1},
- multinomials $\binom{n}{k_{1}, k_{2}, \ldots, k_{\ell}}$,
- triangular numbers $\binom{n}{2}$,
- Stirling numbers of the 1 st kind $s(n, k)$,
- tableaux numbers f^{λ},
- parking functions $(n+1)^{n-1}$,
- Catalan numbers $\frac{1}{n+1}\binom{2 n}{n}$,

Kirkman-Cayley numbers $\frac{1}{k+1}\binom{n+k+1}{k}\binom{n-1}{k}$,
Narayana numbers $\frac{1}{n}\binom{n}{k}\binom{n}{k-1}$,

Some other popular counts

- composition numbers 2^{n-1},
- multinomials $\binom{n}{k_{1}, k_{2}, \ldots, k_{\ell}}$,
- triangular numbers $\binom{n}{2}$,
- Stirling numbers of the 1 st kind $s(n, k)$,
- tableaux numbers f^{λ},
- parking functions $(n+1)^{n-1}$,
- Catalan numbers $\frac{1}{n+1}\binom{2 n}{n}$,

Kirkman-Cayley numbers $\frac{1}{k+1}\binom{n+k+1}{k}\binom{n-1}{k}$,
Narayana numbers $\frac{1}{n}\binom{n}{k}\binom{n}{k-1}$,

Some other popular counts

- composition numbers 2^{n-1},
- multinomials $\binom{n}{k_{1}, k_{2}, \ldots, k_{\ell}}$,
- triangular numbers $\binom{n}{2}$,
- Stirling numbers of the 1 st kind $s(n, k)$,
- tableaux numbers f^{λ},
- parking functions $(n+1)^{n-1}$,
- Catalan numbers $\frac{1}{n+1}\binom{2 n}{n}$,

Kirkman-Cayley numbers $\frac{1}{k+1}\binom{n+k+1}{k}\binom{n-1}{k}$,
Narayana numbers $\frac{1}{n}\binom{n}{k}\binom{n}{k-1}$,

Motivation and goals

These numbers count various objects associated to the symmetric group \mathfrak{S}_{n} on n letters, often carrying natural \mathfrak{S}_{n}-actions.

Each generalizes naturally to other finite reflection groups, in particular, to Coxeter groups/systems (W, S) with W finite.

This often leads to q-analogues with good properties.

Moral

Pay attention to Prof. Brenti's lectures!

Motivation and goals

These numbers count various objects associated to the symmetric group \mathfrak{S}_{n} on n letters, often carrying natural \mathfrak{S}_{n}-actions.

Each generalizes naturally to other finite reflection groups, in particular, to Coxeter groups/systems (W, S) with W finite.

This often leads to q-analogues with good properties.

Moral

Pay attention to Prof. Brenti's lectures!

Motivation and goals

These numbers count various objects associated to the symmetric group \mathfrak{S}_{n} on n letters, often carrying natural \mathfrak{S}_{n}-actions.

Each generalizes naturally to other finite reflection groups, in particular, to Coxeter groups/systems (W, S) with W finite.

This often leads to q-analogues with good properties.
Mora
Pay attention to Prof. Brenti's lectures!

Motivation and goals

These numbers count various objects associated to the symmetric group \mathfrak{S}_{n} on n letters, often carrying natural \mathfrak{S}_{n}-actions.

Each generalizes naturally to other finite reflection groups, in particular, to Coxeter groups/systems (W, S) with W finite.

This often leads to q-analogues with good properties.
Moral
Pay attention to Prof. Brenti's lectures!

