Reflection group counting and q-counting

Vic Reiner Univ. of Minnesota

reiner@math.umn.edu

Summer School on Algebraic and Enumerative Combinatorics S. Miguel de Seide, Portugal July 2-13, 2012

Outline

Lecture 1

- Things we count
- What is a finite reflection group?
- Taxonomy of reflection groups
- 2 Lecture 2
 - Back to the Twelvefold Way
 - Transitive actions and CSPs
- Lecture 3
 - Multinomials, flags, and parabolic subgroups
 - Fake degrees
- 4 Lecture 4
 - The Catalan and parking function family
- Bibliography

伺 とく ヨ とく ヨ と

Definition

An element *r* in $GL_n(\mathbb{F})$ fr some field \mathbb{F} is a reflection if

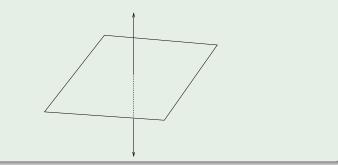
- it has finite order, and
- its fixed space

$$V' = \{v \in V : r(v) = v\}$$

when acting on $V = \mathbb{F}^n$ is a hyperplane, that is, a linear subspace of codimension 1.

▲ 伊 ▶ ▲ 三 ▶ ▲

Orthogonal reflections r through a hyperplane H in \mathbb{R}^n .



Unitary reflections r = Matrices in $\mathbb{C}^{n \times n}$ diagonalizable to

Γζ	0	0	• • •	0
0	1	0	• • •	0 0
ζ 0 0	0	1		0
: 0	÷		·	0 1
0	0	0	• • •	1]

with ζ a root-of-unity in \mathbb{C} .

▲ロト ▲圖ト ▲ 国ト ▲ 国ト

э

Transvections r = Matrices in $\mathbb{F}^{n \times n}$ with char(\mathbb{F}) = p similar to

[1	0	0	• • •	0
1	1	0	• • •	0
1 1 0	0	1	• • •	0 0 0
: 0	÷		·	0 1
0	0	0	• • •	1

Not diagonalizable! But can occur only in characteristic *p*.

▲ロト ▲圖ト ▲ 国ト ▲ 国ト

э

Transvections r = Matrices in $\mathbb{F}^{n \times n}$ with char(\mathbb{F}) = p similar to

[1	0	0		0]
「1 1	1	0	• • •	0 0 0
0	0	1	•••	0
: 0	÷		•••	0 1
0	0	0		1

Not diagonalizable! But can occur only in characteristic *p*.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Transvections r = Matrices in $\mathbb{F}^{n \times n}$ with char(\mathbb{F}) = p similar to

[1	0	0	• • •	0]
1	1	0	• • •	0 0 0
0	0	1	•••	
÷	÷			0 1
0	0	0	• • •	1

Not diagonalizable! But can occur only in characteristic *p*.

▲ @ ▶ ▲ ■ ▶ ▲

-

Theorem (Shephard-Todd, Chevalley (1955))

The W-invariant subalgebra $S^W = \mathbb{C}[f_1, \ldots, f_n]$ is a polynomial algebra if and only if W is generated by (unitary) reflections.

Such groups *W* are called complex reflection groups or unitary groups generated by reflections.

Same holds replacing \mathbb{C} by fields \mathbb{F} of characteristic zero, or even \mathbb{F} in which |W| is invertible.

< □ > < 同 > < 回 > < 回 >

Theorem (Shephard-Todd, Chevalley (1955))

The W-invariant subalgebra $S^W = \mathbb{C}[f_1, \ldots, f_n]$ is a polynomial algebra if and only if W is generated by (unitary) reflections.

Such groups *W* are called complex reflection groups or unitary groups generated by reflections.

Same holds replacing \mathbb{C} by fields \mathbb{F} of characteristic zero, or even \mathbb{F} in which |W| is invertible.

< ロ > < 同 > < 回 > < 回 > .

Theorem (Shephard-Todd, Chevalley (1955))

The *W*-invariant subalgebra $S^W = \mathbb{C}[f_1, \ldots, f_n]$ is a polynomial algebra if and only if *W* is generated by (unitary) reflections.

Such groups W are called complex reflection groups or unitary groups generated by reflections.

Same holds replacing \mathbb{C} by fields \mathbb{F} of characteristic zero, or even \mathbb{F} in which |W| is invertible.

< ロ > < 同 > < 回 > < 回 > .

Theorem (Shephard-Todd, Chevalley (1955))

The *W*-invariant subalgebra $S^W = \mathbb{C}[f_1, \ldots, f_n]$ is a polynomial algebra if and only if *W* is generated by (unitary) reflections.

Such groups W are called complex reflection groups or unitary groups generated by reflections.

Same holds replacing \mathbb{C} by fields \mathbb{F} of characteristic zero, or even \mathbb{F} in which |W| is invertible.

< ロ > < 同 > < 回 > < 回 > < □ > <

Theorem (Shephard-Todd, Chevalley (1955))

The *W*-invariant subalgebra $S^W = \mathbb{C}[f_1, \ldots, f_n]$ is a polynomial algebra if and only if *W* is generated by (unitary) reflections.

Such groups W are called complex reflection groups or unitary groups generated by reflections.

Same holds replacing \mathbb{C} by fields \mathbb{F} of characteristic zero, or even \mathbb{F} in which |W| is invertible.

< ロ > < 同 > < 回 > < 回 > .

Proposition

When $S^W = \mathbb{F}[f_1, \ldots, f_n]$, although there are many choices of the basic invariants f_1, \ldots, f_n ,

- they can always be chosen homogeneous, and
- their degrees d₁, d₂,..., d_n are uniquely determined as a multiset.

For example, they are determined by the Hilbert series

$$\begin{aligned} \operatorname{Hilb}(S^{W},q) &:= \sum_{d \geq 0} q^{d} \cdot \dim_{\mathbb{F}}(S^{W})_{d} \\ &= \frac{1}{(1-q^{d_{1}})(1-q^{d_{2}})\cdots(1-q^{d_{n}})}. \end{aligned}$$

Proof.

Proposition

When $S^W = \mathbb{F}[f_1, \ldots, f_n]$, although there are many choices of the basic invariants f_1, \ldots, f_n ,

- they can always be chosen homogeneous, and
- their degrees d₁, d₂,..., d_n are uniquely determined as a multiset.
- For example, they are determined by the Hilbert series

$$\begin{split} \operatorname{Hilb}(S^W,q) &:= \sum_{d \geq 0} q^d \cdot \dim_{\mathbb{F}}(S^W)_d \\ &= \frac{1}{(1-q^{d_1})(1-q^{d_2})\cdots(1-q^{d_n})}. \end{split}$$

Proof.

Proposition

When $S^W = \mathbb{F}[f_1, \ldots, f_n]$, although there are many choices of the basic invariants f_1, \ldots, f_n ,

- they can always be chosen homogeneous, and
- their degrees d₁, d₂,..., d_n are uniquely determined as a multiset.

For example, they are determined by the Hilbert series

$$egin{aligned} \operatorname{Hilb}(S^W,q) &:= \sum_{d\geq 0} q^d \cdot \dim_{\mathbb{F}}(S^W)_d \ &= rac{1}{(1-q^{d_1})(1-q^{d_2})\cdots(1-q^{d_n})}. \end{aligned}$$

Proof.

Proposition

When $S^W = \mathbb{F}[f_1, \ldots, f_n]$, although there are many choices of the basic invariants f_1, \ldots, f_n ,

- they can always be chosen homogeneous, and
- their degrees d₁, d₂,..., d_n are uniquely determined as a multiset.

For example, they are determined by the Hilbert series

$$\begin{aligned} \operatorname{Hilb}(\boldsymbol{S}^{\boldsymbol{W}},\boldsymbol{q}) &:= \sum_{d\geq 0} \boldsymbol{q}^{d} \cdot \dim_{\mathbb{F}}(\boldsymbol{S}^{\boldsymbol{W}})_{d} \\ &= \frac{1}{(1-q^{d_{1}})(1-q^{d_{2}})\cdots(1-q^{d_{n}})}. \end{aligned}$$

Proof.

Proposition

When $S^W = \mathbb{F}[f_1, \ldots, f_n]$, although there are many choices of the basic invariants f_1, \ldots, f_n ,

- they can always be chosen homogeneous, and
- their degrees d₁, d₂,..., d_n are uniquely determined as a multiset.

For example, they are determined by the Hilbert series

$$\begin{aligned} \operatorname{Hilb}(S^{W},q) &:= \sum_{d \geq 0} q^{d} \cdot \dim_{\mathbb{F}}(S^{W})_{d} \\ &= \frac{1}{(1-q^{d_{1}})(1-q^{d_{2}})\cdots(1-q^{d_{n}})}. \end{aligned}$$

Proof.

Definition

For *W* a subgroup of $GL_n(\mathbb{F})$ having S^W polynomial, define the degrees of *W* to be the multiset (d_1, \ldots, d_n) of degrees of any homogenous invariants f_1, \ldots, f_n for which $S^W = \mathbb{F}[f_1, \ldots, f_n]$.

Very important for us! Let's see some examples ...

< 同 > < 回 > < 回 > -

The symmetric group $W = \mathfrak{S}_n$ inside $GL_n(\mathbb{R}) \subset GL_n(\mathbb{C})$ acts on $S = \mathbb{R}[x_1, \ldots, x_n]$ or $\mathbb{C}[x_1, \ldots, x_n]$ by permuting variables.

$$S^W = \mathbb{C}[e_1,\ldots,e_n]$$

where e_i are the elementary symmetric polynomials:

$$e_1 = x_1 + x_2 + \dots + x_n$$

 $e_1 = x_1 x_2 + x_1 x_3 + \dots + x_{n-1} x_n$

$$e_n = x_1 x_2 \cdots x_n$$

So $W = \mathfrak{S}_n$ has degrees $(d_1, d_2, ..., d_n) = (1, 2, ..., n)$.

・ロト ・聞 ト ・ 国 ト ・ 国 ト ・

The symmetric group $W = \mathfrak{S}_n$ inside $GL_n(\mathbb{R}) \subset GL_n(\mathbb{C})$ acts on $S = \mathbb{R}[x_1, \ldots, x_n]$ or $\mathbb{C}[x_1, \ldots, x_n]$ by permuting variables.

$$S^W = \mathbb{C}[e_1, \ldots, e_n]$$

where e_i are the elementary symmetric polynomials:

$$e_1 = x_1 + x_2 + \dots + x_n$$

 $e_1 = x_1 x_2 + x_1 x_3 + \dots + x_{n-1} x_n$
 \vdots
 $e_n = x_1 x_2 \cdots x_n$

So $W = \mathfrak{S}_n$ has degrees $(d_1, d_2, ..., d_n) = (1, 2, ..., n)$.

・ロト ・聞 ト ・ 国 ト ・ 国 ト ・

The hyperoctahedral group $W = \mathfrak{S}_n^{\pm}$ inside $GL_n(\mathbb{R})$ consists of all possible permutations and sign changes, that is, all $n \times n$ monomial matrices with one nonzero entry, equal to ± 1 , in each row and column.

$$S^W = \mathbb{C}[e_1(\mathbf{x}^2), \ldots, e_n(\mathbf{x}^2)]$$

where

$$f(\mathbf{x}^2) := f(x_1^2, \ldots, x_n^2).$$

So $W = \mathfrak{S}_n^{\pm}$ has degrees $(d_1, d_2, ..., d_n) = (2, 4, ..., 2n)$.

(See exercises.)

< 回 > < 回 > < 回 >

The hyperoctahedral group $W = \mathfrak{S}_n^{\pm}$ inside $GL_n(\mathbb{R})$ consists of all possible permutations and sign changes, that is, all $n \times n$ monomial matrices with one nonzero entry, equal to ± 1 , in each row and column.

$$S^W = \mathbb{C}[e_1(\mathbf{x}^2), \ldots, e_n(\mathbf{x}^2)]$$

where

$$f(\mathbf{x}^2) := f(x_1^2, \ldots, x_n^2).$$

So $W = \mathfrak{S}_n^{\pm}$ has degrees $(d_1, d_2, ..., d_n) = (2, 4, ..., 2n)$.

(See exercises.)

< 回 > < 回 > < 回 >

The hyperoctahedral group $W = \mathfrak{S}_n^{\pm}$ inside $GL_n(\mathbb{R})$ consists of all possible permutations and sign changes, that is, all $n \times n$ monomial matrices with one nonzero entry, equal to ± 1 , in each row and column.

$$S^W = \mathbb{C}[e_1(\mathbf{x}^2), \ldots, e_n(\mathbf{x}^2)]$$

where

$$f(\mathbf{x}^2) := f(x_1^2, \ldots, x_n^2).$$

So $W = \mathfrak{S}_n^{\pm}$ has degrees $(d_1, d_2, ..., d_n) = (2, 4, ..., 2n)$.

(See exercises.)

< 同 > < 回 > < 回 >

Examples of degrees-general linear groups

The finite general linear group $W = GL_n(\mathbb{F}_q)$ acts on $S = \mathbb{F}_q[x_1, \ldots, x_n]$ by \mathbb{F}_q -linear subsitutions of variables.

Theorem (L.E. Dickson 1911)

$$\mathcal{S}^{W} = \mathbb{F}_{q}[D_{n,0}, D_{n,1}, \dots, D_{n,n-1}]$$

where $D_{n,i}$ are the coefficients in the expansion

$$\prod_{(c_1,\ldots,c_n)\in\mathbb{F}_q^n}(t-(c_1x_1+\cdots c_nx_n))=\sum_{i=0}^n t^{q^i}\cdot D_{n,i}(\mathbf{x}).$$

(See exercises.)

Here the Dickson polynomial $D_{n,i}$ has degree $q^n - q^i$, so $W = GL_n(\mathbb{F}_q)$ has degrees $(q^n - q^{n-1}, \dots, q^n - q^1, q^n - q^0)$.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Examples of degrees-general linear groups

The finite general linear group $W = GL_n(\mathbb{F}_q)$ acts on $S = \mathbb{F}_q[x_1, \ldots, x_n]$ by \mathbb{F}_q -linear subsitutions of variables.

Theorem (L.E. Dickson 1911)

$$\mathcal{S}^{W} = \mathbb{F}_{q}[D_{n,0}, D_{n,1}, \dots, D_{n,n-1}]$$

where $D_{n,i}$ are the coefficients in the expansion

$$\prod_{(c_1,\ldots,c_n)\in\mathbb{F}_q^n}(t-(c_1x_1+\cdots c_nx_n))=\sum_{i=0}^n t^{q^i}\cdot D_{n,i}(\mathbf{x}).$$

(See exercises.) Here the Dickson polynomial $D_{n,i}$ has degree $q^n - q^i$, so $W = GL_n(\mathbb{F}_q)$ has degrees $(q^n - q^{n-1}, \dots, q^n - q^1, q^n - q^0)$.

< ロ > < 同 > < 回 > < 回 > < □ > <

Not known in general, although one has this result:

Theorem (Serre 1967)

If S^W is polynomial, then W is generated by reflections (but one needs transvections, in general).

The converse fails, e.g. finite symplectic, orthogonal groups are generated by reflections, but have S^W not polynomial.

The cases where W acts irreducibly and S^W is polynomial were classified by Kemper and Malle in 1997.

伺下 イヨト イヨ

Not known in general, although one has this result:

Theorem (Serre 1967)

If S^W is polynomial, then W is generated by reflections (but one needs transvections, in general).

The converse fails, e.g. finite symplectic, orthogonal groups are generated by reflections, but have S^W not polynomial.

The cases where W acts irreducibly and S^W is polynomial were classified by Kemper and Malle in 1997.

Not known in general, although one has this result:

Theorem (Serre 1967)

If S^W is polynomial, then W is generated by reflections (but one needs transvections, in general).

The converse fails, e.g. finite symplectic, orthogonal groups are generated by reflections, but have S^W not polynomial.

The cases where W acts irreducibly and S^W is polynomial were classified by Kemper and Malle in 1997.

Not known in general, although one has this result:

Theorem (Serre 1967)

If S^W is polynomial, then W is generated by reflections (but one needs transvections, in general).

The converse fails, e.g. finite symplectic, orthogonal groups are generated by reflections, but have S^W not polynomial.

The cases where W acts irreducibly and S^W is polynomial were classified by Kemper and Malle in 1997.

Here is a taste of the numerology of reflection groups.

Theorem

A finite subgroup W of $GL_n(\mathbb{F})$ with \mathbb{S}^W polynomial and degrees (d_1, \ldots, d_n) has $|W| = d_1 \cdots d_n$.

Proof.

Molien's theorem on $Hilb(S^W, q)$ (at least for $\mathbb{F} = \mathbb{C}$); See the exercises!

Example

- $W = \mathfrak{S}_n$ has $|W| = n! = 1 \cdot 2 \cdots n$,
- $W = \mathfrak{S}_n^{\pm}$ has $|W| = 2^n \cdot n! = 2 \cdot 4 \cdots 2n$,
- $W = GL_n(\mathbb{F}_q)$ has $|W| = (q^n 1)(q^n q^1) \cdots (q^n q^{n-1}).$

◆□ ▶ ◆쪧 ▶ ◆臣 ▶ ◆臣 ▶ .

Here is a taste of the numerology of reflection groups.

Theorem

A finite subgroup W of $GL_n(\mathbb{F})$ with S^W polynomial and degrees (d_1, \ldots, d_n) has $|W| = d_1 \cdots d_n$.

Proof.

Molien's theorem on $Hilb(S^W, q)$ (at least for $\mathbb{F} = \mathbb{C}$); See the exercises!

Example

- $W = \mathfrak{S}_n$ has $|W| = n! = 1 \cdot 2 \cdots n$,
- $W = \mathfrak{S}_n^{\pm}$ has $|W| = 2^n \cdot n! = 2 \cdot 4 \cdots 2n$,
- $W = GL_n(\mathbb{F}_q)$ has $|W| = (q^n 1)(q^n q^1) \cdots (q^n q^{n-1}).$

< 日 > < 同 > < 回 > < 回 > : < 回 > : < 回 > : < 回 > : < 回 > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □

Here is a taste of the numerology of reflection groups.

Theorem

A finite subgroup W of $GL_n(\mathbb{F})$ with \mathbb{S}^W polynomial and degrees (d_1, \ldots, d_n) has $|W| = d_1 \cdots d_n$.

Proof.

Molien's theorem on $Hilb(S^W, q)$ (at least for $\mathbb{F} = \mathbb{C}$); See the exercises!

Example

- $W = \mathfrak{S}_n$ has $|W| = n! = 1 \cdot 2 \cdots n$,
- $W = \mathfrak{S}_n^{\pm}$ has $|W| = 2^n \cdot n! = 2 \cdot 4 \cdots 2n$,
- $W = GL_n(\mathbb{F}_q)$ has $|W| = (q^n 1)(q^n q^1) \cdots (q^n q^{n-1}).$

< ロ > < 同 > < 回 > < 回 > .

Here is a taste of the numerology of reflection groups.

Theorem

A finite subgroup W of $GL_n(\mathbb{F})$ with S^W polynomial and degrees (d_1, \ldots, d_n) has $|W| = d_1 \cdots d_n$.

Proof.

Molien's theorem on $Hilb(S^W, q)$ (at least for $\mathbb{F} = \mathbb{C}$); See the exercises!

Example

- $W = \mathfrak{S}_n$ has $|W| = n! = 1 \cdot 2 \cdots n$,
- $W = \mathfrak{S}_n^{\pm}$ has $|W| = 2^n \cdot n! = 2 \cdot 4 \cdots 2n$,
- $W = GL_n(\mathbb{F}_q)$ has $|W| = (q^n 1)(q^n q^1) \cdots (q^n q^{n-1})$.

< ロ > < 同 > < 回 > < 回 > .

Here is a taste of the numerology of reflection groups.

Theorem

A finite subgroup W of $GL_n(\mathbb{F})$ with S^W polynomial and degrees (d_1, \ldots, d_n) has $|W| = d_1 \cdots d_n$.

Proof.

Molien's theorem on $Hilb(S^W, q)$ (at least for $\mathbb{F} = \mathbb{C}$); See the exercises!

Example

- $W = \mathfrak{S}_n$ has $|W| = n! = 1 \cdot 2 \cdots n$,
- $W = \mathfrak{S}_n^{\pm}$ has $|W| = 2^n \cdot n! = 2 \cdot 4 \cdots 2n$,
- $W = GL_n(\mathbb{F}_q)$ has $|W| = (q^n 1)(q^n q^1) \cdots (q^n q^{n-1}).$

(日)

Here is a taste of the numerology of reflection groups.

Theorem

A finite subgroup W of $GL_n(\mathbb{F})$ with S^W polynomial and degrees (d_1, \ldots, d_n) has $|W| = d_1 \cdots d_n$.

Proof.

Molien's theorem on $Hilb(S^W, q)$ (at least for $\mathbb{F} = \mathbb{C}$); See the exercises!

Example

- $W = \mathfrak{S}_n$ has $|W| = n! = 1 \cdot 2 \cdots n$,
- $W = \mathfrak{S}_n^{\pm}$ has $|W| = 2^n \cdot n! = 2 \cdot 4 \cdots 2n$,
- $W = GL_n(\mathbb{F}_q)$ has $|W| = (q^n 1)(q^n q^1) \cdots (q^n q^{n-1}).$

(日)