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Shephard and Todd’s classification

Shephard and Todd’s proof that finite reflection subgroups W of

GLn(C) have SW polynomial relied on

• easy reduction to the case where W acts irreducibly, and

• classification of the irreducibles.

Theorem (Shephard and Todd 1955)

The finite subgroups W of GLn(C) generated by reflections that

act irreducibly are among

• one infinite family: the monomial groups G(de,e,n),and

• a list of 34 exceptional groups

Let’s discuss who is there a bit...
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The wreath products G(d , 1, n) ∼= Zd ≀Sn

Definition

For integers d ,n ≥ 1, the group G(d ,1,n) is the group of

n × n monomial matrices having exactly one nonzero entry,

a d th root-of-unity, in each row and column.

G(d ,1,n) is isomorphic to the wreath product Zd ≀Sn

of a cyclic group Zd of order d with the symmetric group Sn.

Example

w =





+i 0 0

0 0 −1

0 −i 0





is an element of G(4,1,3)
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All the infinite family: G(de, e, n) inside G(de, 1, n)

The map G(d ,1,n)
ϕ

−→ C× sending w to its product of nonzero

entries is a homomorphism, with image the d th roots-of-unity.

Definition

For integers d ,e,n ≥ 1, the group G(de,e,n) is the subgroup

of G(de,1,n) consisting of those elements w for which ϕ(w) is

not just a (de)th root-of-unity, but actually a d th root of unity.

Example

w =





+i 0 0

0 0 −1

0 −i 0





has ϕ(w) = (+i)(−i)(−1) = −1, a 2nd -root-of-unity,

and hence lies inside the subgroup G(4,2,3) of G(4,1,3).
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Taxonomy of reflection groups
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Symmetric and hyperoctahedral groups
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Symmetric and hyperoctahedral groups

We discussed them already, but

• the symmetric group Sn = G(1,1,n),

• it is the Weyl group of type An−1, and

• the symmetry group of the regular (n − 1)-simplex, while

• the hyperoctahedral group S
±
n = G(2,1,n),

• is the Weyl group of type Bn or Cn, and

• the symmetry group of

the regular n-dimensional cross-polytope/hyperoctahedron,

and also of the regular n-cube.

V. Reiner Reflection group counting and q-counting



Symmetric and hyperoctahedral groups

We discussed them already, but

• the symmetric group Sn = G(1,1,n),

• it is the Weyl group of type An−1, and

• the symmetry group of the regular (n − 1)-simplex, while

• the hyperoctahedral group S
±
n = G(2,1,n),

• is the Weyl group of type Bn or Cn, and

• the symmetry group of

the regular n-dimensional cross-polytope/hyperoctahedron,

and also of the regular n-cube.

V. Reiner Reflection group counting and q-counting



Symmetric and hyperoctahedral groups

We discussed them already, but

• the symmetric group Sn = G(1,1,n),

• it is the Weyl group of type An−1, and

• the symmetry group of the regular (n − 1)-simplex, while

• the hyperoctahedral group S
±
n = G(2,1,n),

• is the Weyl group of type Bn or Cn, and

• the symmetry group of

the regular n-dimensional cross-polytope/hyperoctahedron,

and also of the regular n-cube.

V. Reiner Reflection group counting and q-counting



Simplices, cross-polytopes, cubes

1

2

3
4
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Symmetric and hyperoctahedral groups

Why are they reflection groups?

The transpositions (i , j) swapping coordinates xi and xj in Rn

are orthogonal reflections through the hyperplane xi = xj .

These are the reflections in Sn, and they generate it.

The sign change xi 7→ −xi in coordinate i is an orthogonal

reflection through the hyperplane xi = 0.

Together with transpositions, these sign changes generate S
±
n .
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Wreath products Zd ≀Sn

Although we already discussed them a bit,

• Zd ≀Sn = G(d ,1,n),

• it is generated by the transpositions (i , j) and the unitary

reflections that scale a single coordinate xi by a d th

root-of-unity, and

• it is the symmetry group of the n-dimensional
regular complex polytopes(!) generalizing

cross-polytopes, and
cubes.
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Complex polytopes!?

Think of an n-dimensional convex polytope P in V = Rn as the

arrangement P of affine subspaces spanned by its faces.

• vertices ↔ 0-dimensional subspaces

• edges ↔ 1-dimensional subspaces

• P ↔ Rn

V. Reiner Reflection group counting and q-counting



Complex polytopes!?

Think of an n-dimensional convex polytope P in V = Rn as the

arrangement P of affine subspaces spanned by its faces.

• vertices ↔ 0-dimensional subspaces

• edges ↔ 1-dimensional subspaces

• P ↔ Rn

V. Reiner Reflection group counting and q-counting



Complex polytopes!?

Think of an n-dimensional convex polytope P in V = Rn as the

arrangement P of affine subspaces spanned by its faces.

• vertices ↔ 0-dimensional subspaces

• edges ↔ 1-dimensional subspaces

• P ↔ Rn

V. Reiner Reflection group counting and q-counting



Complex polytopes!?

Think of an n-dimensional convex polytope P in V = Rn as the

arrangement P of affine subspaces spanned by its faces.

• vertices ↔ 0-dimensional subspaces

• edges ↔ 1-dimensional subspaces

• P ↔ Rn

V. Reiner Reflection group counting and q-counting



Complex polytopes!?

Think of an n-dimensional convex polytope P in V = Rn as the

arrangement P of affine subspaces spanned by its faces.

• vertices ↔ 0-dimensional subspaces

• edges ↔ 1-dimensional subspaces

• P ↔ Rn

V. Reiner Reflection group counting and q-counting



Complex polytopes!?

A few of the properties of the arrangement P of face subspaces

of a convex polytope P are captured in these polytope axioms:

1 The empty affine subspace ∅, and V = Rn are both in P.

2 Nested subspaces F ⊂ F ′′ with dim F ′′ − dim F ≥ 2 have

the open interval

(F ,F ′′) := {F ′ ∈ P : F ( F ′ ( F ′′}

containing at least two intermediate subspaces.

3 Nested subspaces F ⊂ F ′′ of P with dim F ′′ − dim F ≥ 3

have connected open interval (F ,F ′′), considered as a

poset under inclusion.
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Regular polytopes

One needs only one more axiom for such configurations P to

capture the nature of regular polytopes:

The linear symmetry group

W = {w ∈ GLn(R) : w(P) = P}

acts transitively on the collection of maximal flags

∅ ( F1 ( F2 ( · · · ( Fn−1 ( Rn.

Theorem

An arrangement of affine subspaces P in Rn satisfying these

four axioms has symmetry group W generated by reflections.

Proof.

See the exercises!

In fact, such arrangements in Rn all come from real regular

polytopes, and ...
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Regular complex polytopes

Theorem (Shephard 1952)

Any arrangement of affine subspaces P in Cn satisfying the

same four axioms has symmetry group W generated by

(unitary) reflections.

Proof.

See the exercises!

Such P are called regular complex polytyopes,

their associated symmetry groups called Shephard groups.

They have a nice classification, and cover more than half of the

exceptional complex reflection groups.
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We are working our way upward ...
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Next up: Real reflection groups and Weyl groups
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Real reflection groups

Theorem (Coxeter 1934)

W a finite subgroup of GLn(R) is generated by (orthogonal)

reflections if and only if it has a Coxeter presentation (W ,S):

W = 〈S : (sisj)
mi,j = e〉

with mi ,j ∈ {2,3, . . .} and mi ,i = 2.

Proof.

(Idea...) First show the reflecting hyperplanes for reflections in

W decompose V = Rn into simplicial cones, called chambers.

The reflections S through walls of a particular chamber give

such generators and relations.
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Example: the symmetric group

Example

For the symmetric group W = Sn,

acting (irreducibly) on Rn−1 ∼= Rn/R[1,1, . . . ,1],
one can take as simple reflections

S = {s1, . . . , sn−1}

the adjacent transpositions si swapping xi ↔ xi+1.

1

4

2
3

1

4

2
3

1

3

2

s2 s

s

3

1
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Weyl groups

Definition

The Weyl groups W are the finite crystallographic reflection

groups in GLn(R): those that preserve a lattice, like Zn, inside

V = Rn.
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Weyl groups

Weyl groups are special because they come equipped with

semisimple Lie groups/algebras, giving extra connections with

• representation theory of the Lie group/algebra,

• flag manifold, Grassmannian geometry/topology,

• affine reflection groups and Coxeter systems, and

• representation theory of

affine Hecke algebras,
double affine Hecke algebras (DAHAs).
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• representation theory of

affine Hecke algebras,
double affine Hecke algebras (DAHAs).
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Only one left ...

F[x1, . . . , xn ]
W polynomial

complex ref’n groups

well-gen’d groups

real ref’n groups

hhhhhh

Shephard groups

VVVVVV

Weyl groups

lllll

regular polytopes

VVVVVV
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wreath products Zd ≀ Sn
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symmetric, hyperoctahedral
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Well-generated complex reflection groups

Definition

A complex reflection group W in GLn(C) is well-generated if it

can be generated by n reflections.

Example

Real ref’n groups are well-gen’d, by their simple reflections S.

Example

Shephard groups are well-gen’d; see exercises.
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Who is well-generated among G(de, e, n)?

Example

G(d ,1,n) is Shephard, hence well-gen’d.

Example

G(e,e,n) is well-gen’d by {s1, . . . , sn−1} together with one extra

reflection sending
ei 7−→ ζej

ej 7−→ ζ−1ei ,

that is, in the plane spanned by basis {e1,e2}, acting by

[

0 ζ−1

ζ 0

]

.

V. Reiner Reflection group counting and q-counting



Who is not well-gen’d among G(de, e, n)?

Proposition

For d ,e,n ≥ 2, the group G(de,e,n) is not well-generated.

Example

G(4,2,2) acts on V = C2, but requires at least 3 elements to

generate it, e.g. these 3:

{[

0 1

1 0

]

,

[

−1 0

0 1

]

,

[

+i 0

0 −i

]}

.
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Well-generated groups are mysterious

Well-generated complex reflection groups seem very

well-behaved from several viewpoints, for example, with regard

to the Catalan combinatorics to be discussed later.

We do not really understand this!

Many beautiful facts with uniform statements have been

checked to hold for the non-real well-generated groups only in a

case-by-case fashion, using the Shephard-Todd classification.
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Review: the taxonomy

F[x1, . . . , xn ]
W polynomial

complex ref’n groups

well-gen’d groups

real ref’n groups
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Shephard groups
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Weyl groups
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regular polytopes
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wreath products Zd ≀ Sn
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symmetric, hyperoctahedral
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