Reflection group counting and q-counting

Vic Reiner
Univ. of Minnesota reiner@math.umn.edu

Summer School on
Algebraic and Enumerative Combinatorics
S. Miguel de Seide, Portugal July 2-13, 2012

Outline

(1) Lecture 1

- Things we count
- What is a finite reflection group?
- Taxonomy of reflection groups
(2) Lecture 2
- Back to the Twelvefold Way
- Transitive actions and CSPs
(3) Lecture 3
- Multinomials, flags, and parabolic subgroups
- Fake degrees
(4) Lecture 4
- The Catalan and parking function family
(5) Bibliography

Shephard and Todd's classification

Shephard and Todd's proof that finite reflection subgroups W of $G L_{n}(\mathbb{C})$ have S^{W} polynomial relied on

- easy reduction to the case where W acts irreducibly, and
- classification of the irreducibles.

Theorem (Shephard and Todd 1955)
 The finite subgroups W of $G L_{n}(\mathbb{C})$ generated by reflections that act irreducibly are among
 - one infinite family: the monomial groups $G(d e, e, n)$, and
 - a list of 34 exceptional groups

Let's discuss who is there a bit...

Shephard and Todd's classification

Shephard and Todd's proof that finite reflection subgroups W of $G L_{n}(\mathbb{C})$ have S^{W} polynomial relied on

- easy reduction to the case where W acts irreducibly,
- classification of the irreducibles.

> Theorem (Shephard and Todd 1955)
> The finite subgroups W of $G L_{n}(\mathbb{C})$ generated by reflections that act irreducibly are among
> - one infinite family: the monomial groups $G(d e, e, n)$, and
> - a list of 34 exceptional groups

Let's discuss who is there a bit...

Shephard and Todd's classification

Shephard and Todd's proof that finite reflection subgroups W of $G L_{n}(\mathbb{C})$ have S^{W} polynomial relied on

- easy reduction to the case where W acts irreducibly, and
- classification of the irreducibles.

> Theorem (Shephard and Todd 1955)
> The finite subgroups W of $G L_{n}(\mathbb{C})$ generated by reflections that act irreducibly are among
> - one infinite family: the monomial groups $G(d e, e, n)$, and
> - a list of 34 exceptional groups

Let's discuss who is there a bit...

Shephard and Todd's classification

Shephard and Todd's proof that finite reflection subgroups W of $G L_{n}(\mathbb{C})$ have S^{W} polynomial relied on

- easy reduction to the case where W acts irreducibly, and
- classification of the irreducibles.

Theorem (Shephard and Todd 1955)

The finite subgroups W of $G L_{n}(\mathbb{C})$ generated by reflections that act irreducibly are among

Let's discuss who is there a bit...

Shephard and Todd's classification

Shephard and Todd's proof that finite reflection subgroups W of $G L_{n}(\mathbb{C})$ have S^{W} polynomial relied on

- easy reduction to the case where W acts irreducibly, and
- classification of the irreducibles.

Theorem (Shephard and Todd 1955)

The finite subgroups W of $G L_{n}(\mathbb{C})$ generated by reflections that act irreducibly are among

- one infinite family: the monomial groups $G(d e, e, n)$,

Let's discuss who is there a bit...

Shephard and Todd's classification

Shephard and Todd's proof that finite reflection subgroups W of $G L_{n}(\mathbb{C})$ have S^{W} polynomial relied on

- easy reduction to the case where W acts irreducibly, and
- classification of the irreducibles.

Theorem (Shephard and Todd 1955)

The finite subgroups W of $G L_{n}(\mathbb{C})$ generated by reflections that act irreducibly are among

- one infinite family: the monomial groups $G(d e, e, n)$,and
- a list of 34 exceptional groups

Let's discuss who is there a bit...

Shephard and Todd's classification

Shephard and Todd's proof that finite reflection subgroups W of $G L_{n}(\mathbb{C})$ have S^{W} polynomial relied on

- easy reduction to the case where W acts irreducibly, and
- classification of the irreducibles.

Theorem (Shephard and Todd 1955)

The finite subgroups W of $G L_{n}(\mathbb{C})$ generated by reflections that act irreducibly are among

- one infinite family: the monomial groups $G(d e, e, n)$, and
- a list of 34 exceptional groups

Let's discuss who is there a bit...

The wreath products $G(d, 1, n) \cong \mathbb{Z}_{d} \backslash \mathfrak{S}_{n}$

Definition

For integers $d, n \geq 1$, the group $G(d, 1, n)$ is the group of $n \times n$ monomial matrices having exactly one nonzero entry, a $d^{\text {th }}$ root-of-unity, in each row and column.

$G(d, 1, n)$ is isomorphic to the wreath product $\mathbb{Z}_{d}<S_{n}$ of a cyclic group \mathbb{Z}_{d} of order d with the symmetric group \mathfrak{S}_{n}.

Example

is an element of $G(4,1,3)$

The wreath products $G(d, 1, n) \cong \mathbb{Z}_{d} \backslash \mathfrak{S}_{n}$

Definition

For integers $d, n \geq 1$, the group $G(d, 1, n)$ is the group of $n \times n$ monomial matrices having exactly one nonzero entry, a $d^{\text {th }}$ root-of-unity, in each row and column.
$G(d, 1, n)$ is isomorphic to the wreath product $\mathbb{Z}_{d}<\mathfrak{S}_{n}$ of a cyclic group \mathbb{Z}_{d} of order d with the symmetric group \mathfrak{S}_{n}.

Example

is an element of $G(4,1,3)$

The wreath products $G(d, 1, n) \cong \mathbb{Z}_{d} \backslash \mathfrak{S}_{n}$

Definition

For integers $d, n \geq 1$, the group $G(d, 1, n)$ is the group of $n \times n$ monomial matrices having exactly one nonzero entry, a $d^{\text {th }}$ root-of-unity, in each row and column.
$G(d, 1, n)$ is isomorphic to the wreath product $\mathbb{Z}_{d}<\mathfrak{S}_{n}$ of a cyclic group \mathbb{Z}_{d} of order d with the symmetric group \mathfrak{S}_{n}.

Example

$$
w=\left[\begin{array}{ccc}
+i & 0 & 0 \\
0 & 0 & -1 \\
0 & -i & 0
\end{array}\right]
$$

is an element of $G(4,1,3)$

All the infinite family: $G(d e, e, n)$ inside $G(d e, 1, n)$

The map $G(d, 1, n) \xrightarrow{\varphi} \mathbb{C}^{\times}$sending w to its product of nonzero entries is a homomorphism, with image the $d^{\text {th }}$ roots-of-unity.

Definition

\square of $G(d e, 1, n)$ consisting of those elements w for which $\varphi(w)$ is not just a $(d e)^{\text {th }}$ root-of-unity, but actually a $d^{\text {th }}$ root of unity.

Example

has $\varphi(w)=(+i)(-i)(-1)=-1$, a $2^{\text {nd }}$-root-of-unity,
and hence lies inside the subgroup $G(4,2,3)$ of $G(4,1.3$

All the infinite family: $G(d e, e, n)$ inside $G(d e, 1, n)$

The map $G(d, 1, n) \xrightarrow{\varphi} \mathbb{C}^{\times}$sending w to its product of nonzero entries is a homomorphism, with image the $d^{\text {th }}$ roots-of-unity.

Definition

For integers $d, e, n \geq 1$, the group $G(d e, e, n)$ is the subgroup of $G(d e, 1, n)$ consisting of those elements w for which $\varphi(w)$ is not just a $(d e)^{\text {th }}$ root-of-unity, but actually a $d^{\text {th }}$ root of unity.

All the infinite family: $G(d e, e, n)$ inside $G(d e, 1, n)$

The map $G(d, 1, n) \xrightarrow{\varphi} \mathbb{C}^{\times}$sending w to its product of nonzero entries is a homomorphism, with image the $d^{\text {th }}$ roots-of-unity.

Definition

For integers $d, e, n \geq 1$, the group $G(d e, e, n)$ is the subgroup of $G(d e, 1, n)$ consisting of those elements w for which $\varphi(w)$ is not just a $(d e)^{\text {th }}$ root-of-unity, but actually a $d^{\text {th }}$ root of unity.

Example

$$
w=\left[\begin{array}{ccc}
+i & 0 & 0 \\
0 & 0 & -1 \\
0 & -i & 0
\end{array}\right]
$$

has $\varphi(w)=(+i)(-i)(-1)=-1$, a $2^{\text {nd }}$-root-of-unity, and hence lies inside the subgroup $G(4,2,3)$ of $G(4,1,3)$.

Taxonomy of reflection groups

Symmetric and hyperoctahedral groups

Symmetric and hyperoctahedral groups

We discussed them already, but

- the symmetric group $\mathfrak{S}_{n}=G(1,1, n)$,
- it is the Weyl group of type A_{n-1}, and
- the symmetry group of the reaular ($n-1$)-simplex, while
- the hyperoctahedral group $\mathfrak{S}_{n}^{ \pm}=G(2,1, n)$,
- is the Weyl group of type B_{n} or C_{n}, and
- the symmetry group of
- the regular n-dimensional cross-polytope/hyperoctahedron,
- and also of the regular n-cube.

Symmetric and hyperoctahedral groups

We discussed them already, but

- the symmetric group $\mathfrak{S}_{n}=G(1,1, n)$,
- it is the Weyl group of type A_{n-1}, and
- the symmetry group of the regular $(n-1)$-simplex,
- the hyperoctahedral group $\mathfrak{S}_{n}^{ \pm}=G(2,1, n)$,
- is the Weyl group of type B_{n} or C_{n}, and
- the symmetry group of
- the regular n-dimensional cross-polytope/hyperoctahedron,
- and also of the regular n-cube.

Symmetric and hyperoctahedral groups

We discussed them already, but

- the symmetric group $\mathfrak{S}_{n}=G(1,1, n)$,
- it is the Weyl group of type A_{n-1}, and
- the symmetry group of the regular $(n-1)$-simplex, while
- the hyperoctahedral group $\mathfrak{S}_{n}^{ \pm}=G(2,1, n)$,
- is the Weyl group of type B_{n} or C_{n}, and
- the symmetry group of
- the regular n-dimensional cross-polytope/hyperoctahedron,
- and also of the regular n-cube.

Simplices, cross-polytopes, cubes

Symmetric and hyperoctahedral groups

Why are they reflection groups?
The transpositions (i, j) swapping coordinates x_{i} and x_{j} in \mathbb{R}^{n} are orthogonal reflections through the hyperplane $x_{i}=x_{j}$. These are the reflections in \mathfrak{S}_{n}, and they generate it.

The sign change $x_{i} \mapsto-x_{i}$ in coordinate i is an orthogonal reflection through the hyperplane $x_{i}=0$.
Together with transpositions, these sign changes generate $\mathfrak{S}_{n}^{ \pm}$.

Symmetric and hyperoctahedral groups

Why are they reflection groups?
The transpositions (i, j) swapping coordinates x_{i} and x_{j} in \mathbb{R}^{n} are orthogonal reflections through the hyperplane $x_{i}=x_{j}$. These are the reflections in \mathfrak{S}_{n}, and they generate it.

The sign change $x_{i} \mapsto-x_{i}$ in coordinate i is an orthogonal reflection through the hyperplane $x_{i}=0$. Together with transpositions, these sign changes generate $\mathfrak{S}_{n}^{\text {t }}$.

Symmetric and hyperoctahedral groups

Why are they reflection groups?
The transpositions (i, j) swapping coordinates x_{i} and x_{j} in \mathbb{R}^{n} are orthogonal reflections through the hyperplane $x_{i}=x_{j}$. These are the reflections in \mathfrak{S}_{n}, and they generate it.

The sign change $x_{i} \mapsto-x_{i}$ in coordinate i is an orthogonal reflection through the hyperplane $x_{i}=0$.
Together with transpositions, these sign changes generate $\mathfrak{S}_{n}^{ \pm}$.

Wreath products $\mathbb{Z}_{d} \backslash \mathfrak{S}_{n}$

Wreath products $\mathbb{Z}_{d} \backslash \mathfrak{S}_{n}$

Although we already discussed them a bit,

- $\mathbb{Z}_{d} \imath \mathfrak{S}_{n}=G(d, 1, n)$,
- it is generated by the transpositions (i, j) and the unitary reflections that scale a single coordinate x_{i} by a $d^{\text {th }}$ root-of-unity, and
- it is the symmetry group of the n-dimensional regular complex polytopes(!) generalizing
- cross-polytopes, and
- cubes.

Wreath products $\mathbb{Z}_{d} \backslash \mathfrak{S}_{n}$

Although we already discussed them a bit,

- $\mathbb{Z}_{d} \backslash \mathfrak{S}_{n}=G(d, 1, n)$,
- it is generated by the transpositions (i, j) and the unitary reflections that scale a single coordinate x_{i} by a $d^{\text {th }}$ root-of-unity,
- it is the symmetry group of the n-dimensional regular complex polytopes(!) generalizing
- cross-polytopes, and
- cubes.

Wreath products $\mathbb{Z}_{d} \backslash \mathfrak{S}_{n}$

Although we already discussed them a bit,

- $\mathbb{Z}_{d} \backslash \mathfrak{S}_{n}=G(d, 1, n)$,
- it is generated by the transpositions (i, j) and the unitary reflections that scale a single coordinate x_{i} by a $d^{\text {th }}$ root-of-unity, and
- it is the symmetry group of the n-dimensional regular complex polytopes(!) generalizing
- cross-polytopes, and
- cubes.

Complex polytopes!?

Think of an n-dimensional convex polytope P in $V=\mathbb{R}^{n}$ as the arrangement \mathcal{P} of affine subspaces spanned by its faces.

- vertices $\leftrightarrow 0$-dimensional subspaces
- edges $\leftrightarrow 1$-dimensional subspaces

Complex polytopes!?

Think of an n-dimensional convex polytope P in $V=\mathbb{R}^{n}$ as the arrangement \mathcal{P} of affine subspaces spanned by its faces.

- vertices $\leftrightarrow 0$-dimensional subspaces
- edges $\leftrightarrow 1$-dimensional subspaces

Complex polytopes!?

Think of an n-dimensional convex polytope P in $V=\mathbb{R}^{n}$ as the arrangement \mathcal{P} of affine subspaces spanned by its faces.

- vertices $\leftrightarrow 0$-dimensional subspaces
- edges $\leftrightarrow 1$-dimensional subspaces

Complex polytopes!?

Think of an n-dimensional convex polytope P in $V=\mathbb{R}^{n}$ as the arrangement \mathcal{P} of affine subspaces spanned by its faces.

- vertices $\leftrightarrow 0$-dimensional subspaces
- edges $\leftrightarrow 1$-dimensional subspaces
- $P \leftrightarrow \mathbb{R}^{n}$

Complex polytopes!?

Think of an n-dimensional convex polytope P in $V=\mathbb{R}^{n}$ as the arrangement \mathcal{P} of affine subspaces spanned by its faces.

- vertices $\leftrightarrow 0$-dimensional subspaces
- edges $\leftrightarrow 1$-dimensional subspaces
- $P \leftrightarrow \mathbb{R}^{n}$

Complex polytopes!?

A few of the properties of the arrangement \mathcal{P} of face subspaces of a convex polytope P are captured in these polytope axioms:
(1) The empty affine subspace \varnothing, and $V=\mathbb{R}^{n}$ are both in \mathcal{P}.
(2) Nested subspaces $F \subset F^{\prime \prime}$ with $\operatorname{dim} F^{\prime \prime}-\operatorname{dim} F \geq 2$ have the open interval

$$
\left(F, F^{\prime \prime}\right):=\left\{F^{\prime} \in \mathcal{P}: F \subsetneq F^{\prime} \subsetneq F^{\prime \prime}\right\}
$$

containing at least two intermediate subspaces.
(3) Nested subspaces $F \subset F^{\prime \prime}$ of \mathcal{P} with $\operatorname{dim} F^{\prime \prime}-\operatorname{dim} F \geq 3$ have connected open interval ($F, F^{\prime \prime}$), considered as a poset under inclusion.

Complex polytopes!?

A few of the properties of the arrangement \mathcal{P} of face subspaces of a convex polytope P are captured in these polytope axioms:
(1) The empty affine subspace \varnothing, and $V=\mathbb{R}^{n}$ are both in \mathcal{P}.
(C) Nested subspaces $F \subset F^{\prime \prime}$ with dim $F^{\prime \prime}$ the open interval
containing at least two intermediate subspaces.
(3) Nested subspaces $F \subset F^{\prime \prime}$ of \mathcal{P} with $\operatorname{dim} F^{\prime \prime}-\operatorname{dim} F \geq 3$ have connected open interval $\left(F, F^{\prime \prime}\right)$, considered as a poset under inclusion.

Complex polytopes!?

A few of the properties of the arrangement \mathcal{P} of face subspaces of a convex polytope P are captured in these polytope axioms:
(1) The empty affine subspace \varnothing, and $V=\mathbb{R}^{n}$ are both in \mathcal{P}.
(2) Nested subspaces $F \subset F^{\prime \prime}$ with $\operatorname{dim} F^{\prime \prime}-\operatorname{dim} F \geq 2$ have the open interval

$$
\left(F, F^{\prime \prime}\right):=\left\{F^{\prime} \in \mathcal{P}: F \subsetneq F^{\prime} \subsetneq F^{\prime \prime}\right\}
$$

containing at least two intermediate subspaces.

Complex polytopes!?

A few of the properties of the arrangement \mathcal{P} of face subspaces of a convex polytope P are captured in these polytope axioms:
(1) The empty affine subspace \varnothing, and $V=\mathbb{R}^{n}$ are both in \mathcal{P}.
(2) Nested subspaces $F \subset F^{\prime \prime}$ with $\operatorname{dim} F^{\prime \prime}-\operatorname{dim} F \geq 2$ have the open interval

$$
\left(F, F^{\prime \prime}\right):=\left\{F^{\prime} \in \mathcal{P}: F \subsetneq F^{\prime} \subsetneq F^{\prime \prime}\right\}
$$

containing at least two intermediate subspaces.
(3) Nested subspaces $F \subset F^{\prime \prime}$ of \mathcal{P} with $\operatorname{dim} F^{\prime \prime}-\operatorname{dim} F \geq 3$ have connected open interval ($F, F^{\prime \prime}$), considered as a poset under inclusion.

Regular polytopes

One needs only one more axiom for such configurations \mathcal{P} to capture the nature of regular polytopes:

- The linear symmetry group

$$
W=\left\{w \in G L_{n}(\mathbb{R}): w(\mathcal{P})=\mathcal{P}\right\}
$$

acts transitively on the collection of maximal flags

$$
\varnothing \subsetneq F_{1} \subsetneq F_{2} \subsetneq \cdots \subsetneq F_{n-1} \subsetneq \mathbb{R}^{n} .
$$

Theorem
An arrangement of affine subspaces \mathcal{P} in \mathbb{R}^{n} satisfying these four axioms has symmetry group W generated by reflections.

Proof.

See the exercises!
In fact, such arrangements in \mathbb{R}^{n} all come from real regular
polytopes, and

Regular polytopes

One needs only one more axiom for such configurations \mathcal{P} to capture the nature of regular polytopes:

- The linear symmetry group

$$
W=\left\{w \in G L_{n}(\mathbb{R}): w(\mathcal{P})=\mathcal{P}\right\}
$$

acts transitively on the collection of maximal flags

$$
\varnothing \subsetneq F_{1} \subsetneq F_{2} \subsetneq \cdots \subsetneq F_{n-1} \subsetneq \mathbb{R}^{n} .
$$

Theorem

An arrangement of affine subspaces \mathcal{P} in \mathbb{R}^{n} satisfying these four axioms has symmetry group W generated by reflections.

Proof.
See the exercises!
In fact, such arrangements in \mathbb{R}^{n} all come from real regular polytopes, and

Regular polytopes

One needs only one more axiom for such configurations \mathcal{P} to capture the nature of regular polytopes:

- The linear symmetry group

$$
W=\left\{w \in G L_{n}(\mathbb{R}): w(\mathcal{P})=\mathcal{P}\right\}
$$

acts transitively on the collection of maximal flags

$$
\varnothing \subsetneq F_{1} \subsetneq F_{2} \subsetneq \cdots \subsetneq F_{n-1} \subsetneq \mathbb{R}^{n}
$$

Theorem

An arrangement of affine subspaces \mathcal{P} in \mathbb{R}^{n} satisfying these four axioms has symmetry group W generated by reflections.

Proof.

See the exercises!
In fact, such arrangements in \mathbb{R}^{n} all come from real regular polytopes, and ...

Regular complex polytopes

Theorem (Shephard 1952)
 Any arrangement of affine subspaces \mathcal{P} in \mathbb{C}^{n} satisfying the same four axioms has symmetry group W generated by (unitary) reflections.

Proof.
 See the exercises!
 Such \mathcal{P} are called regular complex polytyopes,
 their associated symmetry groups called Shephard groups.
 They have a nice classification, and cover more than half of the exceptional complex reflection groups.

Regular complex polytopes

Theorem (Shephard 1952)

Any arrangement of affine subspaces \mathcal{P} in \mathbb{C}^{n} satisfying the same four axioms has symmetry group W generated by (unitary) reflections.

Proof.

See the exercises!
Such \mathcal{P} are called regular complex polytyopes,
their associated symmetry groups called Shephard groups.
They have a nice classification, and cover more than half of the exceptional complex reflection groups.

Regular complex polytopes

Theorem (Shephard 1952)

Any arrangement of affine subspaces \mathcal{P} in \mathbb{C}^{n} satisfying the same four axioms has symmetry group W generated by (unitary) reflections.

Proof.

See the exercises!
Such \mathcal{P} are called regular complex polytyopes, their associated symmetry groups called Shephard groups.

They have a nice classification, and cover more than half of the exceptional complex reflection groups.

Regular complex polytopes

Theorem (Shephard 1952)

Any arrangement of affine subspaces \mathcal{P} in \mathbb{C}^{n} satisfying the same four axioms has symmetry group W generated by (unitary) reflections.

Proof.

See the exercises!

Such \mathcal{P} are called regular complex polytyopes, their associated symmetry groups called Shephard groups.

They have a nice classification, and cover more than half of the exceptional complex reflection groups.

We are working our way upward ...

Next up: Real reflection groups and Weyl groups

We are working our way upward ...

Next up: Real reflection groups and Weyl groups

Real reflection groups

Theorem (Coxeter 1934)

W a finite subgroup of $G L_{n}(\mathbb{R})$ is generated by (orthogonal) reflections if and only if it has a Coxeter presentation (W, S) :

$$
W=\left\langle S:\left(s_{i} s_{j}\right)^{m_{i, j}}=e\right\rangle
$$

with $m_{i, j} \in\{2,3, \ldots\}$ and $m_{i, i}=2$.
\square
Proof.
(Idea...) First show the reflecting hyperplanes for reflections in W decompose $V=\mathbb{R}^{n}$ into simplicial cones, called chambers.
The reflections S through walls of a particular chamber give such generators and relations.

Real reflection groups

Theorem (Coxeter 1934)

W a finite subgroup of $G L_{n}(\mathbb{R})$ is generated by (orthogonal) reflections if and only if it has a Coxeter presentation (W, S) :

$$
W=\left\langle S:\left(s_{i} s_{j}\right)^{m_{i, j}}=e\right\rangle
$$

with $m_{i, j} \in\{2,3, \ldots\}$ and $m_{i, i}=2$.

Proof.

(Idea...) First show the reflecting hyperplanes for reflections in W decompose $V=\mathbb{R}^{n}$ into simplicial cones, called chambers. The reflections S through walls of a particular chamber give such generators and relations.

Example: the symmetric group

Example

For the symmetric group $W=\mathfrak{S}_{n}$, acting (irreducibly) on $\mathbb{R}^{n-1} \cong \mathbb{R}^{n} / \mathbb{R}[1,1, \ldots, 1]$, one can take as simple reflections

$$
S=\left\{s_{1}, \ldots, s_{n-1}\right\}
$$

the adjacent transpositions s_{i} swapping $x_{i} \leftrightarrow x_{i+1}$.

Weyl groups

Definition

The Weyl groups W are the finite crystallographic reflection groups in $G L_{n}(\mathbb{R})$: those that preserve a lattice, like \mathbb{Z}^{n}, inside $V=\mathbb{R}^{n}$.

Weyl groups

Definition

The Weyl groups W are the finite crystallographic reflection groups in $G L_{n}(\mathbb{R})$: those that preserve a lattice, like \mathbb{Z}^{n}, inside $V=\mathbb{R}^{n}$.

Weyl groups

Weyl groups are special because they come equipped with semisimple Lie groups/algebras, giving extra connections with

- representation theory of the Lie group/algebra,
- flag manifold, Grassmannian geometry/topology,
- affine reflection groups and Coxeter systems, and
- representation theory of
- affine Hecke algebras,
- double affine Hecke algebras (DAHAs).

Weyl groups

Weyl groups are special because they come equipped with semisimple Lie groups/algebras, giving extra connections with

- representation theory of the Lie group/algebra,
- flag manifold, Grassmannian geometry/topology,
- affine reflection groups and Coxeter systems, and
- representation theory of
- affine Hecke algebras,
- double affine Hecke algebras (DAHAs).

Weyl groups

Weyl groups are special because they come equipped with semisimple Lie groups/algebras, giving extra connections with

- representation theory of the Lie group/algebra,
- flag manifold, Grassmannian geometry/topology,
- affine reflection groups and Coxeter systems, and
- representation theory of
- affine Hecke algehras
- double affine Hecke algebras (DAHAs).

Weyl groups

Weyl groups are special because they come equipped with semisimple Lie groups/algebras, giving extra connections with

- representation theory of the Lie group/algebra,
- flag manifold, Grassmannian geometry/topology,
- affine reflection groups and Coxeter systems, and
- representation theory of
- affine Hecke algebras,
- double affine Hecke algebras (DAHAs)

Weyl groups

Weyl groups are special because they come equipped with semisimple Lie groups/algebras, giving extra connections with

- representation theory of the Lie group/algebra,
- flag manifold, Grassmannian geometry/topology,
- affine reflection groups and Coxeter systems, and
- representation theory of
- affine Hecke algebras,
- double affine Hecke algebras (DAHAs).

Only one left ...

Well-generated complex reflection groups

Definition

A complex reflection group W in $G L_{n}(\mathbb{C})$ is well-generated if it can be generated by n reflections.

Example
 Real ref'n groups are well-gen'd, by their simple reflections S.

Example

Shephard aroups are well-gen'd; see exercises.

Well-generated complex reflection groups

Definition

A complex reflection group W in $G L_{n}(\mathbb{C})$ is well-generated if it can be generated by n reflections.

Example

Real ref'n groups are well-gen'd, by their simple reflections S.

Example
 Shephard groups are well-gen'd; see exercises.

Well-generated complex reflection groups

Definition

A complex reflection group W in $G L_{n}(\mathbb{C})$ is well-generated if it can be generated by n reflections.

Example

Real ref'n groups are well-gen'd, by their simple reflections S.

Example

Shephard groups are well-gen'd; see exercises.

Who is well-generated among $G(d e, e, n)$?

Example

$G(d, 1, n)$ is Shephard, hence well-gen'd.

Example

$G(e, e, n)$ is well-gen'd by $\left\{s_{1}, \ldots, s_{n-1}\right\}$ together with one extra reflection sending

that is, in the plane spanned by basis $\left\{e_{1}, e_{2}\right\}$, acting by

$$
\left[\begin{array}{cc}
0 & \zeta^{-1} \\
\zeta & 0
\end{array}\right]
$$

Who is not well-gen'd among $G(d e, e, n)$?

Proposition
For $d, e, n \geq 2$, the group $G(d e, e, n)$ is not well-generated.

Example

$G(4,2,2)$ acts on $V=\mathbb{C}^{2}$, but requires at least 3 elements to generate it, e.g. these 3 :

Who is not well-gen'd among $G(d e, e, n)$?

Proposition

For $d, e, n \geq 2$, the group $G(d e, e, n)$ is not well-generated.

Example

$G(4,2,2)$ acts on $V=\mathbb{C}^{2}$, but requires at least 3 elements to generate it, e.g. these 3:

$$
\left\{\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
+i & 0 \\
0 & -i
\end{array}\right]\right\}
$$

Well-generated groups are mysterious

Well-generated complex reflection groups seem very well-behaved from several viewpoints, for example, with regard to the Catalan combinatorics to be discussed later.

We do not really understand this!
Many beautiful facts with uniform statements have been
checked to hold for the non-real well-generated groups only in a case-by-case fashion, using the Shephard-Todd classification.

Well-generated groups are mysterious

Well-generated complex reflection groups seem very well-behaved from several viewpoints, for example, with regard to the Catalan combinatorics to be discussed later.

We do not really understand this!

> Many beautiful facts with uniform statements have been checked to hold for the non-real well-generated groups only in a case-by-case fashion, using the Shephard-Todd classification.

Well-generated groups are mysterious

Well-generated complex reflection groups seem very well-behaved from several viewpoints, for example, with regard to the Catalan combinatorics to be discussed later.

We do not really understand this!
Many beautiful facts with uniform statements have been checked to hold for the non-real well-generated groups only in a case-by-case fashion, using the Shephard-Todd classification.

Review: the taxonomy

