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The twelve-fold way again

| balls N | boxes X | anyf | injective f | surjective f |
dist. dist. X" Wx—Nx—2)--x—m—1) | X! S(N,X)
indist. | dist. | (*"77) ) )
5(n,7) .
dist. indist. | +5(72) 1 nx S(n,x)
+S5(n,x)
p1(n) _
indist. | indist. | TRe(") 1 nex px(N)
+px(n)
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Set partitions, number partitions, compositions

Let’s begin our reflection group generalizations with
@ Stirling numbers S(n, k) of the 2nd kind,

@ Stirling numbers s(n, k) of the 1st kind,

© Signless Stirling numbers c(n, k) of the 1st kind,
© Composition numbers 271,

@ Partition numbers p(n).
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Stirling numbers of the 2nd kind

Stirling numbers of the 2nd kind S(n,k) count set partitions of
{1,2,...,n} with k blocks.
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Stirling numbers of the 2nd kind

Stirling numbers of the 2nd kind S(n,k) count set partitions of
{1,2,...,n} with k blocks.

These are rank numbers of the lattice 1, of set partitions
partially ordered via refinement:

1234 S(4,1) =1

T S

123]14  124|3 __134|2  1]234 12|34 14|23 _ 13[24 S(4,2) =7
\ \ \ 1234 _ 12| \ [ (4,2)

/

12314 13[2]4 ~ 1|23]4  1]284  14[2]3  1[24]3 S(4,3) =6
112|134 S(4,4) =1

V. Reiner Reflection group counting and g-counting



Partition lattice generalizes to intersection lattice

This generalizes for any complex reflection group W to the
lattice £y of all intersection subspaces of the reflecting
hyperplanes, ordered via reverse inclusion, a geometric lattice.
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Stirling numbers of the 1st kind

The Stirling numbers of thg 1st kind s(n,k) are rank sums of
Maébius function values 1.(0, x) in the partition lattice IMp:

123]14 +2 1243 +2 _ 1342 121|234 +2 1234 +1 14|23 +1__ 13]24 +1  s(4,2) = +11

| | | | t 2 | | / (4,2)
12314 —1  13[2)4 —1 ~ 1]23]4 —1  1|2|34 —1  14]2]3 —1  1]|24|3 —1 s(4,3) = —6
1)2(3]4 +1 s(4,4) = +1
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A theorem of Orlik and Solomon

Theorem (Orlik-Solomon 1980)

The intersection lattice Ly for a real reflection group W with
degrees ds, ..., d, has

n

S 0, X)x X =TT (x— (0~ 1)).

XeLy i=1
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A theorem of Orlik and Solomon

Theorem (Orlik-Solomon 1980)

The intersection lattice Ly for a real reflection group W with
degrees ds, ..., d, has

> (0, X)xamX H(x—(d,—1

XeLy

For any complex reflection group W, the same holds replacing
@ the exponents d; — 1 with
@ the coexponents df 41 to be explained later.
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Example: W =&,

n

s(n,n—k)xk = (x = 0)(x = 1)(x —=2)---(x = (n— 1))

1

+1x*—6x3+11x2—6x" = (x = 0)(x = 1)(x — 2)(x — 3) for n = 4

123[4 42

12|3|14 —1

124|3 +2 _ 134]2 421|234 +2 _ 12[34 +1 14|28 +1 13|24 +1  s(4,2) = +11

\ \ 284 +2 _ 12| \ / (4,2)
13[214 —1 1]23]4 —1  1]234 —1  14]2[3 —1  1]24]3 —1 s(4,8) = —6
1]2/3]4 +1 s(4,4) = +1
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Signless Stirling numbers of the 1st kind

Definition

Recall the signless Stirling number of the 1st kind
c(n, k) = |s(n, k)| counts permutations w in &, with k cycles.

One has

zn:c(n,k)xk:(x+0)(x+1)(x+2)m(x+n—1).
k=1
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Signless Stirling numbers of the 1st kind

Definition

Recall the signless Stirling number of the 1st kind
c(n, k) = |s(n, k)| counts permutations w in &, with k cycles.

One has

zn:c(n,k)xk:(x+0)(x+1)(x+2)m(x+n—1).
k=1

Theorem (Shephard-Todd 1955, Solomon 1963)

For any complex reflection group W with degrees (d,, . .., dp),
) n
> oxdmVE =T (x+ (g~ 1))
weW i=1
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Signless Stirling numbers of the 1st kind

There is another ranked poset relevant here:

c(4,1) =6

/
(123) (132) (124) (142) (134) (143) (234) (243) (12)(34) (14)(23)_(13)(24) c(4,2) =11

(12) ~ (18) 7 (14) (23) (24) (34) c(4,3) =6

s(4,4) =1
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The absolute length and absolute order

Who was this ranked poset having ¢(n, k) as rank numbers?

Definition

In a complex reflection group W with set of reflections T, the
absolute or reflection length is

KT(W) = min{E: wW="Htb---b with li e T}.
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The absolute length and absolute order

Who was this ranked poset having ¢(n, k) as rank numbers?

Definition

In a complex reflection group W with set of reflections T, the
absolute or reflection length is

KT(W) = min{E: wW="Htb---b with li e T}.

WARNING! For real reflection groups W,
this is NOT the usual Coxeter group length ¢(w) := ¢g(w) !
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The absolute length and absolute order

Who was this ranked poset having ¢(n, k) as rank numbers?

Definition

In a complex reflection group W with set of reflections T, the
absolute or reflection length is

KT(W) = min{E: wW="Htb---b with li e T}.

WARNING! For real reflection groups W,
this is NOT the usual Coxeter group length ¢(w) := ¢g(w) !

Example

For W = &, where T is the set of transpositions #; = (/,/), and
S is the subset of adjacent transpositions s; = (i, i+ 1), one has

ls(w) = #{ inversions of w}
{r(w)=n—#{cyclesof w} =n—1—dm(V")
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The absolute length and absolute order

Definition

Define the absolute order < on W by u < w if
(r(u) + Lr(u~'w) = (1(w)

i.e., when factoring w = v - vone has (7(u) + ¢7(v) = (1(w).
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The absolute length and absolute order

Definition
Define the absolute order < on W by u < w if

(r(u) + Lr(u~'w) = 7 (w)

i.e., when factoring w = v - vone has (7(u) + ¢7(v) = (1(w).

Theorem (Carter 1972, Brady-Watt 2002)

For real reflection groups W acting on V = R", the absolute
order (W, <) is a ranked poset with rank(w) = n — dim V",

Thus the (co-)rank generating function for (W, <) is

(x+(di—1)).

n
=1

I
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Mapping absolute order to the intersection lattice

There is also a natural order-preserving and rank-preserving
poset map
(W, <) — Lw
w o— Vv

Theorem (Orlik-Solomon 1980)

This map w — VY surjects (W, <) — Ly for any complex
reflection group W.
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Mapping absolute order to the intersection lattice

Example

For W = &, this map w — V" sends a permutation w to the
partition 7 of {1,2, ..., n} whose blocks are the cycles of w.

(123) (132) 123
12|13 132 23|1

/
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Set partitions mod &, are number partitions

W = &, acts on the set partitions I,

V. Reiner Reflection group counting and g-counting



Set partitions mod &, are number partitions

W = &, acts on the set partitions I,
with quotient poset the number partitions,
ordered by refinement.

1234 pi(4) =1
12314 1243 13412 1234 12\34 14|23 _ 13[24 31 pa(4) =2
N/
123[4 _ 13|2]4 ~ 1|23]4  1]2]34 14|23 1[24]3 p3(4) =1
\\\ //
1121314 1111 pa(4) =1
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The intersection lattice and its W-orbits

This corresponds to the quotient map of posets

Ly — W\Lyw
X — Ww.X

where W.X is the W-orbit of the hyperplane intersection X
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The intersection lattice and its W-orbits

This corresponds to the quotient map of posets

Ly — W\Lyw
X — Ww.X

where W.X is the W-orbit of the hyperplane intersection X

Thus px(n) correspond to the rank numbers of W\ L.
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Compositions to set partitions to partitions

The refinement poset on ordered compositions of n

a:(a1,...,ag)

is isomorphic to the Boolean algebra 2{1:2---n—1},
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Compositions to set partitions to partitions

The refinement poset on ordered compositions of n

o = (a1,...,ag)
is isomorphic to the Boolean algebra 2{1:2---n—1},

It naturally embeds into the lattice of set partitions IM,:

{1,2,...,&1”{&1 +1,a1+2,...,04 +a2}|---

V. Reiner Reflection group counting and g-counting



Compositions to set partitions to partitions

The refinement poset on ordered compositions of n
a=(aq,...,0p)

is isomorphic to the Boolean algebra 2{1:2---n—1},

It naturally embeds into the lattice of set partitions IM,:

{1,2,...,051}|{O£1 +1,0é1 +2,...,O[1 +a2}|

a=(2,4,1,2) is sent to the partition 12|3456|7|89
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Compositions to set partitions to partitions

The refinement poset on ordered compositions of n
a=(aq,...,0p)

is isomorphic to the Boolean algebra 2{1:2---n—1},

It naturally embeds into the lattice of set partitions IM,:

{1,2,...,@1}|{a1 +1,a1+2,...,04 +a2}|---

a=(2,4,1,2) is sent to the partition 12|3456|7|89

One can then map the set partition to the number partitions,
forgetting the order in the composition.
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Compositions to set partitions to partitions

1234

A A

(3,1) (2,2) (1,8)  123]4 124\3 1342 1]234 _ 12134 14)23_13)24 31

XX / \/

(2,1,1)  (1,2,1)  (1,1,2) 12[3]4 13|2]4 1]23]4 1[2|34 14[2|3 1]24|3

N7 T\

(1,1,1,1) 112|3|4 1111
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Compositions are subsets of simple reflections

The composition poset 2{1:2-1=-1} generalizes for a real
reflection groups W, with simple reflections S, to the Boolean
algebra 25.
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Compositions are subsets of simple reflections

The composition poset 2{1:2-1=-1} generalizes for a real

reflection groups W, with simple reflections S, to the Boolean
algebra 25.

Mapping compositions — set partitions — partitions
corresponds to

25 — Lw — W\Lw
J o W=,V

X — W.X
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Ordered set partitions

The remaining entry in the last column here

| balls N | boxes X | anyf |

injective f | surjective f |
dist. dist. X" Wx—Nx—2)--(x— (-1 | X! S(n,x)
indist. | dist. (X+(;—)1) (%) )
S(n,1
dist. indist. | T5(72) it n<x S(n,x)
+S(n X)
o o p1(n) "
indist. | indist. | TR 1 nsx px(N)
+px( )
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Ordered set partitions

The remaining entry in the last column here

| balls N | boxes X | anyf |

injective f | surjective f |
dist. dist. X" Wx—Nx—2)--(x— (-1 | X! S(n,x)
indist. | dist. (th:;) (%) )
S(n
dist. indist. | T5(72) it n<x S(n,x)
+S(n X)
o o p1(n) "
indist. | indist. | TR 1 nsx px(N)
+px( )

counts something equally natural.
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Ordered set partitions

An ordered set partition of {1,2,..., n} is a set partition
m = (By, ..., By) with a linear ordering among the blocks B;,

({2,5,6},{1,4}.{3,7}) and ({3,7},{1,4},{2,5,6}) are
different ordered set partitions of {1,2,3,4,5,6,7}.
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Ordered set partitions

An ordered set partition of {1,2,..., n} is a set partition
m = (By, ..., By) with a linear ordering among the blocks B;,

({2,5,6},{1,4},{3,7}) and ({3,7},{1,4},{2,5,6}) are
different ordered set partitions of {1,2,3,4,5,6,7}.

There are k!S(n, k) ordered set partitions
of {1,2,...,n} with k blocks. These are the rank numbers for
the refinement poset on ordered set partitions.
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The geometry of ordered set partitions

They label the cones cut out by the reflecting hyperplanes.

({2,5,6},{1,4},{3,7}) « {0 =x5 =X < Xy = X4 < X3 = X7}
({377}7{14}7{2576}) <_>{X3 =X7 2 X1 = X4 2> Xo = X5 :X6}
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The geometry of ordered set partitions

They label the cones cut out by the reflecting hyperplanes.

({2,5,6},{1,4},{3,7}) « {0 =x5 =X < Xy = X4 < X3 = X7}
({377}7{14}7{2576}) <_>{X3 =X7 2 X1 = X4 2> Xo = X5 :X6}

Denote by ¥ 1y the poset of all such cones ordered via inclusion.
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The last column of the 12-fold way is hiding a diagram

| balls N | boxes X | surjective f | ranks of refinment poset on ... |

dist. dist. x! S(n,x) ordered set partitions *y
indist. | dist. ) compositions 2°
dist. indist. S(n,x) set partitions Ly
indist. | indist. px(n) number partitions W\ Ly,
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The last column of the 12-fold way is hiding a diagram

| balls N | boxes X | surjective f | ranks of refinment poset on ...

dist. dist. x! S(n,x) ordered set partitions *y

indist. | dist. ) compositions 2°

dist. indist. S(n,x) set partitions Ly

indist. | indist. px(n) number partitions W\ Ly,
28 — ZW

— CW — W\EW
—

———
real and Shephard groups complex reflection groups

{1,2}, {1.2},
(2,3,2) <{37475}7>'—> {{&45}}%

{6,7}

X1=Xo

Sq,
{33754}!—) <X3=X4=X5 » > {
Se <Xe=X7

{6,7}

X1=Xg,
X3=X4=Xs5,
Xe=X7

322

X1=Xg,
} — &7 {X3=X4=X5,}
Xe=X7
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