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The twelve-fold way again

balls N boxes X any f injective f surjective f

dist. dist. xn
(x)(x − 1)(x − 2) · · · (x − (n − 1)) x! S(n,x)

indist. dist.
(

x+n−1
n

) (
x
n

) (
n−1
n−x

)

dist. indist.

S(n,1)
+S(n,2)

+···
+S(n,x)

1 if n≤x
0 else

S(n,x)

indist. indist.

p1(n)
+p2(n)
+···

+px(n)

1 if n≤x
0 else

px(n)
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Set partitions, number partitions, compositions

Let’s begin our reflection group generalizations with

1 Stirling numbers S(n, k) of the 2nd kind,

2 Stirling numbers s(n, k) of the 1st kind,

3 Signless Stirling numbers c(n, k) of the 1st kind,

4 Composition numbers 2n−1,

5 Partition numbers p(n).
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Stirling numbers of the 2nd kind

Stirling numbers of the 2nd kind S(n,k) count set partitions of

{1,2, . . . ,n} with k blocks.

These are rank numbers of the lattice Πn of set partitions

partially ordered via refinement:
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Partition lattice generalizes to intersection lattice

This generalizes for any complex reflection group W to the

lattice LW of all intersection subspaces of the reflecting

hyperplanes, ordered via reverse inclusion, a geometric lattice.

1|234

123|4
1|2|34

12|34
12|3|4

1|
23

|4
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Stirling numbers of the 1st kind

The Stirling numbers of the 1st kind s(n,k) are rank sums of

Möbius function values µ(0̂, x) in the partition lattice Πn:
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A theorem of Orlik and Solomon

Theorem (Orlik-Solomon 1980)

The intersection lattice LW for a real reflection group W with

degrees d1, . . . ,dn has

∑

X∈LW

µ(0̂,X )xdim X =

n∏

i=1

(x − (di − 1)) .

For any complex reflection group W, the same holds replacing

the exponents di − 1 with

the coexponents d∗
i + 1 to be explained later.
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Example: W = Sn

Example

n∑

k=1

s(n,n − k)xk = (x − 0)(x − 1)(x − 2) · · · (x − (n − 1))

+1x4−6x3+11x2−6x1 = (x − 0)(x − 1)(x − 2)(x − 3) for n = 4.
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Signless Stirling numbers of the 1st kind

Definition

Recall the signless Stirling number of the 1st kind

c(n, k) = |s(n, k)| counts permutations w in Sn with k cycles.

One has

n∑

k=1

c(n, k)xk = (x + 0)(x + 1)(x + 2) · · · (x + n − 1).

Theorem (Shephard-Todd 1955, Solomon 1963)

For any complex reflection group W with degrees (d1, . . . ,dn),

∑

w∈W

xdim V w

=

n∏

i=1

(x + (di − 1)) .
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Signless Stirling numbers of the 1st kind

There is another ranked poset relevant here:
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The absolute length and absolute order

Who was this ranked poset having c(n, k) as rank numbers?

Definition

In a complex reflection group W with set of reflections T , the

absolute or reflection length is

ℓT (w) := min{ℓ : w = t1t2 · · · tℓ with ti ∈ T}.

WARNING! For real reflection groups W ,

this is NOT the usual Coxeter group length ℓ(w) := ℓS(w) !

Example

For W = Sn, where T is the set of transpositions tij = (i , j), and

S is the subset of adjacent transpositions si = (i , i + 1), one has

ℓS(w) = #{ inversions of w}

ℓT (w) = n −#{ cycles of w} = n − 1 − dim(V w)
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The absolute length and absolute order

Definition

Define the absolute order < on W by u < w if

ℓT (u) + ℓT (u
−1w) = ℓT (w)

i.e., when factoring w = u · v one has ℓT (u) + ℓT (v) = ℓT (w).

Theorem (Carter 1972, Brady-Watt 2002)

For real reflection groups W acting on V = R
n, the absolute

order (W , <) is a ranked poset with rank(w) = n − dim V w .

Thus the (co-)rank generating function for (W , <) is

n∏

i=1

(x + (di − 1)) .
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Mapping absolute order to the intersection lattice

There is also a natural order-preserving and rank-preserving

poset map
(W , <) −→ LW

w 7−→ V w

Theorem (Orlik-Solomon 1980)

This map w 7→ V w surjects (W , <) ։ LW for any complex

reflection group W.
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Mapping absolute order to the intersection lattice

Example

For W = Sn, this map w 7→ V w sends a permutation w to the

partition π of {1,2, . . . ,n} whose blocks are the cycles of w .

(123)

��
��
��
��
�

..
..
..
..
.

HH
HH

HH
HH

HH
HH

HH
(132)

vv
vv
vv
vv
vv
vv
vv

��
��
��
��
�

..
..
..
..
.

(12)(3) (13)(2) (1)(23)

e

===========

�����������

123

��
��
��
��
�

++
++
++
++
+

12|3 13|2 23|1

e

+++++++++

���������

V. Reiner Reflection group counting and q-counting



Set partitions mod Sn are number partitions

W = Sn acts on the set partitions Πn,

with quotient poset the number partitions,

ordered by refinement.
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The intersection lattice and its W -orbits

This corresponds to the quotient map of posets

LW −→ W\LW

X 7−→ W .X

where W .X is the W -orbit of the hyperplane intersection X

Thus pk(n) correspond to the rank numbers of W\LW .
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Compositions to set partitions to partitions

The refinement poset on ordered compositions of n

α = (α1, . . . , αℓ)

is isomorphic to the Boolean algebra 2{1,2,...,n−1}.

It naturally embeds into the lattice of set partitions Πn:

{1,2, . . . , α1}|{α1 + 1, α1 + 2, . . . , α1 + α2}| · · ·

Example

α = (2,4,1,2) is sent to the partition 12|3456|7|89

One can then map the set partition to the number partitions,

forgetting the order in the composition.
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Compositions to set partitions to partitions
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Compositions are subsets of simple reflections

The composition poset 2{1,2,...,n−1} generalizes for a real

reflection groups W , with simple reflections S, to the Boolean

algebra 2S.

Mapping compositions → set partitions → partitions

corresponds to

2S −→ LW −→ W\LW

J 7−→ V J :=
⋂

s∈J V s

X 7−→ W .X
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Ordered set partitions

The remaining entry in the last column here

balls N boxes X any f injective f surjective f

dist. dist. xn
(x)(x − 1)(x − 2) · · · (x − (n − 1)) x! S(n,x)

indist. dist.
(

x+n−1
n

) (
x
n

) (
n−1
n−x

)

dist. indist.

S(n,1)
+S(n,2)

+···
+S(n,x)

1 if n≤x
0 else

S(n,x)

indist. indist.

p1(n)
+p2(n)
+···

+px(n)

1 if n≤x
0 else

px(n)

counts something equally natural.
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balls N boxes X any f injective f surjective f

dist. dist. xn
(x)(x − 1)(x − 2) · · · (x − (n − 1)) x! S(n,x)

indist. dist.
(

x+n−1
n

) (
x
n

) (
n−1
n−x

)

dist. indist.

S(n,1)
+S(n,2)

+···
+S(n,x)

1 if n≤x
0 else

S(n,x)

indist. indist.

p1(n)
+p2(n)
+···

+px(n)

1 if n≤x
0 else

px(n)

counts something equally natural.
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Ordered set partitions

Definition

An ordered set partition of {1,2, . . . ,n} is a set partition

π = (B1, . . . ,Bℓ) with a linear ordering among the blocks Bi ,

Example

({2,5,6}, {1,4}, {3,7}) and ({3,7}, {1,4}, {2,5,6}) are

different ordered set partitions of {1,2,3,4,5,6,7}.

There are k!S(n, k) ordered set partitions

of {1,2, . . . ,n} with k blocks. These are the rank numbers for

the refinement poset on ordered set partitions.
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The geometry of ordered set partitions

They label the cones cut out by the reflecting hyperplanes.

Example

({2,5,6}, {1,4}, {3,7}) ↔ {x2 = x5 = x6 ≤ x1 = x4 ≤ x3 = x7}

({3,7}, {1,4}, {2,5,6}) ↔ {x3 = x7 ≥ x1 = x4 ≥ x2 = x5 = x6}

1|234

123|4
1|2|34

12|34
12|3|4

1|
23

|4

Denote by ΣW the poset of all such cones ordered via inclusion.
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The last column of the 12-fold way is hiding a diagram

balls N boxes X surjective f ranks of refinment poset on ...

dist. dist. x! S(n,x) ordered set partitions ΣW

indist. dist.
(

n−1
n−x

)
compositions 2S

dist. indist. S(n,x) set partitions LW

indist. indist. px(n) number partitions W\LW

2S −→ ΣW
︸ ︷︷ ︸

real and Shephard groups

−→ LW −→ W\LW
︸ ︷︷ ︸

complex reflection groups

Example

(2,3,2) 7→

(
{1,2},
{3,4,5},
{6,7}

)

7→

{
{1,2},
{3,4,5},
{6,7}

}

7→ 322

{
s1,

s3,s4,
s6

}

7→

{
x1=x2

≤x3=x4=x5
≤x6=x7

}

7→
{

x1=x2,
x3=x4=x5,

x6=x7

}

7→ S7.
{

x1=x2,
x3=x4=x5,

x6=x7

}
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