Reflection group counting and q-counting

Vic Reiner Univ. of Minnesota

reiner@math.umn.edu

Summer School on Algebraic and Enumerative Combinatorics S. Miguel de Seide, Portugal July 2-13, 2012

Outline

Lecture 1

- Things we count
- What is a finite reflection group?
- Taxonomy of reflection groups
- 2 Lecture 2
 - Back to the Twelvefold Way
 - Transitive actions and CSPs
- Lecture 3
 - Multinomials, flags, and parabolic subgroups
 - Fake degrees
- 4 Lecture 4
 - The Catalan and parking function family
- Bibliography

伺 ト イヨ ト イヨト

The twelve-fold way again

balls N	boxes X	any f	injective f	surjective f
dist.	dist.	x ⁿ	$(x)(x-1)(x-2)\cdots(x-(n-1))$	x! S(n,x)
indist.	dist.	$\binom{x+n-1}{n}$	$\begin{pmatrix} x \\ n \end{pmatrix}$	$\binom{n-1}{n-x}$
dist.	indist.	$S(n,1) \ +S(n,2) \ +\cdots \ +S(n,x)$	1 if $n \le x$ 0 else	S(n,x)
indist.	indist.	$p_1(n) + p_2(n) + \cdots + p_x(n)$	1 if $n \le x$ 0 else	$p_x(n)$

æ

-≣->

-

Let's begin our reflection group generalizations with

- Stirling numbers S(n, k) of the 2nd kind,
- Stirling numbers s(n, k) of the 1st kind,
- Signless Stirling numbers c(n, k) of the 1st kind,
- Composition numbers 2^{n-1} ,
- Solution numbers p(n).

∃ ► < ∃ ►</p>

Stirling numbers of the 2nd kind S(n,k) count set partitions of $\{1, 2, ..., n\}$ with *k* blocks.

These are rank numbers of the lattice Π_n of set partitions partially ordered via refinement:

▲ 伊 ▶ ▲ 三 ▶ ▲

Stirling numbers of the 2nd kind S(n,k) count set partitions of $\{1, 2, ..., n\}$ with *k* blocks.

These are rank numbers of the lattice Π_n of set partitions partially ordered via refinement:

This generalizes for any complex reflection group W to the lattice \mathcal{L}_W of all intersection subspaces of the reflecting hyperplanes, ordered via reverse inclusion, a geometric lattice.

Stirling numbers of the 1st kind

The Stirling numbers of the 1st kind s(n,k) are rank sums of Möbius function values $\mu(\hat{0}, x)$ in the partition lattice Π_n :

Theorem (Orlik-Solomon 1980)

The intersection lattice \mathcal{L}_W for a real reflection group W with degrees d_1, \ldots, d_n has

$$\sum_{X\in\mathcal{L}_W}\mu(\hat{0},X)x^{\dim X}=\prod_{i=1}^n\left(x-(d_i-1)\right).$$

For any complex reflection group W, the same holds replacing

- the exponents $d_i 1$ with
- the coexponents $d_i^* + 1$ to be explained later.

同 ト イ ヨ ト イ ヨ ト

Theorem (Orlik-Solomon 1980)

The intersection lattice \mathcal{L}_W for a real reflection group W with degrees d_1, \ldots, d_n has

$$\sum_{X\in\mathcal{L}_W}\mu(\hat{0},X)x^{\dim X}=\prod_{i=1}^n\left(x-(d_i-1)\right).$$

For any complex reflection group W, the same holds replacing

- the exponents $d_i 1$ with
- the coexponents $d_i^* + 1$ to be explained later.

Example: $W = \mathfrak{S}_n$

Example

$$\sum_{k=1}^{n} s(n, n-k) x^{k} = (x-0)(x-1)(x-2)\cdots(x-(n-1))$$

$$+1x^4-6x^3+11x^2-6x^1 = (x-0)(x-1)(x-2)(x-3)$$
 for $n = 4$.

V. Reiner Reflection group counting and *q*-counting

Signless Stirling numbers of the 1st kind

Definition

Recall the signless Stirling number of the 1st kind c(n,k) = |s(n,k)| counts permutations *w* in \mathfrak{S}_n with *k* cycles.

One has

$$\sum_{k=1}^{n} c(n,k) x^{k} = (x+0)(x+1)(x+2)\cdots(x+n-1).$$

Theorem (Shephard-Todd 1955, Solomon 1963)

For any complex reflection group W with degrees (d_1, \ldots, d_n) ,

$$\sum_{w \in W} x^{\dim V^w} = \prod_{i=1}^n \left(x + (d_i - 1) \right).$$

Signless Stirling numbers of the 1st kind

Definition

Recall the signless Stirling number of the 1st kind c(n,k) = |s(n,k)| counts permutations *w* in \mathfrak{S}_n with *k* cycles.

One has

$$\sum_{k=1}^{n} c(n,k) x^{k} = (x+0)(x+1)(x+2)\cdots(x+n-1).$$

Theorem (Shephard-Todd 1955, Solomon 1963)

For any complex reflection group W with degrees (d_1, \ldots, d_n) ,

$$\sum_{w\in W} x^{\dim V^w} = \prod_{i=1}^n \left(x + \left(\frac{d_i}{1} - 1 \right) \right).$$

< ロ > < 同 > < 回 > < 回 > < □ > <

э

Signless Stirling numbers of the 1st kind

There is another ranked poset relevant here:

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

3

Who was this ranked poset having c(n, k) as rank numbers?

Definition

In a complex reflection group W with set of reflections T, the absolute or reflection length is

 $\ell_{\mathcal{T}}(w) := \min\{\ell : w = t_1 t_2 \cdots t_\ell \text{ with } t_i \in \mathcal{T}\}.$

WARNING! For real reflection groups W, this is NOT the usual Coxeter group length $\ell(w) := \ell_S(w)$!

Example

For $W = \mathfrak{S}_n$, where *T* is the set of transpositions $t_{ij} = (i, j)$, and *S* is the subset of adjacent transpositions $s_i = (i, i + 1)$, one has

 $\ell_{S}(w) = \#\{ \text{ inversions of } w \}$ $\ell_{T}(w) = n - \#\{ \text{ cycles of } w \} = n - 1 - \dim(V^{w})$

Who was this ranked poset having c(n, k) as rank numbers?

Definition

In a complex reflection group W with set of reflections T, the absolute or reflection length is

 $\ell_{\mathsf{T}}(w) := \min\{\ell : w = t_1 t_2 \cdots t_\ell \text{ with } t_i \in \mathsf{T}\}.$

WARNING! For real reflection groups W, this is NOT the usual Coxeter group length $\ell(w) := \ell_S(w)$!

Example

For $W = \mathfrak{S}_n$, where *T* is the set of transpositions $t_{ij} = (i, j)$, and *S* is the subset of adjacent transpositions $s_i = (i, i + 1)$, one has

 $\ell_{S}(w) = \#\{ \text{ inversions of } w \}$ $\ell_{T}(w) = n - \#\{ \text{ cycles of } w \} = n - 1 - \dim(V^{w})$

Who was this ranked poset having c(n, k) as rank numbers?

Definition

In a complex reflection group W with set of reflections T, the absolute or reflection length is

 $\ell_{\mathcal{T}}(w) := \min\{\ell : w = t_1 t_2 \cdots t_\ell \text{ with } t_i \in \mathcal{T}\}.$

WARNING! For real reflection groups W, this is NOT the usual Coxeter group length $\ell(w) := \ell_S(w)$!

Example

For $W = \mathfrak{S}_n$, where *T* is the set of transpositions $t_{ij} = (i, j)$, and *S* is the subset of adjacent transpositions $s_i = (i, i + 1)$, one has

 $\ell_{S}(w) = \#\{ \text{ inversions of } w \}$ $\ell_{T}(w) = n - \#\{ \text{ cycles of } w \} = n - 1 - \dim(V^{w})$

Definition

Define the absolute order < on W by u < w if

$$\ell_T(u) + \ell_T(u^{-1}w) = \ell_T(w)$$

i.e., when factoring $w = u \cdot v$ one has $\ell_T(u) + \ell_T(v) = \ell_T(w)$.

Theorem (Carter 1972, Brady-Watt 2002)

For real reflection groups W acting on $V = \mathbb{R}^n$, the absolute order (W, <) is a ranked poset with rank $(w) = n - \dim V^w$.

Thus the (co-)rank generating function for (W, <) is

$$\prod_{i=1}^n \left(x + (d_i - 1)\right).$$

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

Definition

Define the absolute order < on W by u < w if

$$\ell_T(u) + \ell_T(u^{-1}w) = \ell_T(w)$$

i.e., when factoring $w = u \cdot v$ one has $\ell_T(u) + \ell_T(v) = \ell_T(w)$.

Theorem (Carter 1972, Brady-Watt 2002)

For real reflection groups W acting on $V = \mathbb{R}^n$, the absolute order (W, <) is a ranked poset with rank $(w) = n - \dim V^w$.

Thus the (co-)rank generating function for (W, <) is

$$\prod_{i=1}^n \left(x + \left(\frac{d_i}{-1}\right)\right).$$

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

There is also a natural order-preserving and rank-preserving poset map

$$\begin{array}{cccc} W, <) & \longrightarrow & \mathcal{L}_W \\ w & \longmapsto & V^w \end{array}$$

Theorem (Orlik-Solomon 1980)

This map $w \mapsto V^w$ surjects $(W, <) \twoheadrightarrow \mathcal{L}_W$ for any complex reflection group W.

Mapping absolute order to the intersection lattice

Example

For $W = \mathfrak{S}_n$, this map $w \mapsto V^w$ sends a permutation w to the partition π of $\{1, 2, ..., n\}$ whose blocks are the cycles of w.

Set partitions mod \mathfrak{S}_n are number partitions

 $W = \mathfrak{S}_n$ acts on the set partitions Π_n , with quotient poset the number partitions, ordered by refinement.

∃ ► < ∃</p>

Set partitions mod \mathfrak{S}_n are number partitions

 $W = \mathfrak{S}_n$ acts on the set partitions Π_n , with quotient poset the number partitions, ordered by refinement.

This corresponds to the quotient map of posets

$$\begin{array}{ccc} \mathcal{L}_{W} \longrightarrow & W \backslash \mathcal{L}_{W} \\ X \longmapsto & W.X \end{array}$$

where W.X is the W-orbit of the hyperplane intersection X

Thus $p_k(n)$ correspond to the rank numbers of $W \setminus \mathcal{L}_W$.

(過) (ヨ) (ヨ) (ヨ)

This corresponds to the quotient map of posets

$$\begin{array}{ccc} \mathcal{L}_W \longrightarrow & W \backslash \mathcal{L}_W \\ X \longmapsto & W.X \end{array}$$

where W.X is the *W*-orbit of the hyperplane intersection *X* Thus $p_k(n)$ correspond to the rank numbers of $W \setminus \mathcal{L}_W$.

伺 とく ヨ とく ヨ とう

The refinement poset on ordered compositions of n

 $\alpha = (\alpha_1, \ldots, \alpha_\ell)$

is isomorphic to the Boolean algebra $2^{\{1,2,\dots,n-1\}}$.

It naturally embeds into the lattice of set partitions Π_n :

$$\{1, 2, \dots, \alpha_1\} | \{\alpha_1 + 1, \alpha_1 + 2, \dots, \alpha_1 + \alpha_2\} | \cdots$$

Example

 $\alpha = (2, 4, 1, 2)$ is sent to the partition 12|3456|7|89

One can then map the set partition to the number partitions, forgetting the order in the composition.

(日)

The refinement poset on ordered compositions of n

$$\alpha = (\alpha_1, \ldots, \alpha_\ell)$$

is isomorphic to the Boolean algebra $2^{\{1,2,\dots,n-1\}}$.

It naturally embeds into the lattice of set partitions Π_n :

$$\{1, 2, \dots, \alpha_1\} | \{\alpha_1 + 1, \alpha_1 + 2, \dots, \alpha_1 + \alpha_2\} | \cdots$$

Example

 $\alpha = (2, 4, 1, 2)$ is sent to the partition 12|3456|7|89

One can then map the set partition to the number partitions, forgetting the order in the composition.

(日)

The refinement poset on ordered compositions of n

$$\alpha = (\alpha_1, \ldots, \alpha_\ell)$$

is isomorphic to the Boolean algebra $2^{\{1,2,\dots,n-1\}}$.

It naturally embeds into the lattice of set partitions Π_n :

$$\{1, 2, \dots, \alpha_1\} | \{\alpha_1 + 1, \alpha_1 + 2, \dots, \alpha_1 + \alpha_2\} | \cdots$$

Example

 $\alpha = (2, 4, 1, 2)$ is sent to the partition 12|3456|7|89

One can then map the set partition to the number partitions, forgetting the order in the composition.

(日)

The refinement poset on ordered compositions of n

$$\alpha = (\alpha_1, \ldots, \alpha_\ell)$$

is isomorphic to the Boolean algebra $2^{\{1,2,\dots,n-1\}}$.

It naturally embeds into the lattice of set partitions Π_n :

$$\{1, 2, \dots, \alpha_1\} | \{\alpha_1 + 1, \alpha_1 + 2, \dots, \alpha_1 + \alpha_2\} | \cdots$$

Example

 $\alpha = (2, 4, 1, 2)$ is sent to the partition 12|3456|7|89

One can then map the set partition to the number partitions, forgetting the order in the composition.

< 理 > < 国 > < 国 >

 $\bullet \equiv \bullet$

э

The composition poset $2^{\{1,2,...,n-1\}}$ generalizes for a real reflection groups *W*, with simple reflections *S*, to the Boolean algebra 2^{S} .

Mapping compositions \rightarrow set partitions \rightarrow partitions corresponds to

 $2^{S} \longrightarrow \mathcal{L}_{W} \longrightarrow W \setminus \mathcal{L}_{W}$ $J \longmapsto V^{J} := \bigcap_{s \in J} V^{s}$ $X \longmapsto W \cdot X$

・ロット (雪) (日) (日) (日)

The composition poset $2^{\{1,2,...,n-1\}}$ generalizes for a real reflection groups *W*, with simple reflections *S*, to the Boolean algebra 2^{S} .

Mapping compositions \rightarrow set partitions \rightarrow partitions corresponds to

・ 戸 ト ・ ヨ ト ・ ヨ ト

The remaining entry in the last column here

balls N	boxes X	any f	injective f	surjective f
dist.	dist.	x ⁿ	$(x)(x-1)(x-2)\cdots(x-(n-1))$	x! S(n,x)
indist.	dist.	$\binom{x+n-1}{n}$	$\begin{pmatrix} x \\ n \end{pmatrix}$	$\binom{n-1}{n-x}$
dist.	indist.	$S(n,1) \ +S(n,2) \ +\cdots \ +S(n,x)$	1 if <i>n≤x</i> 0 else	S(n,x)
indist.	indist.	$\begin{array}{c} p_1(n) \\ +p_2(n) \\ +\cdots \\ +p_x(n) \end{array}$	1 if $n \le x$ 0 else	$p_x(n)$

counts something equally natural.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

The remaining entry in the last column here

balls N	boxes X	any f	injective f	surjective f
dist.	dist.	x ⁿ	$(x)(x-1)(x-2)\cdots(x-(n-1))$	x! S(n,x)
indist.	dist.	$\binom{x+n-1}{n}$	$\begin{pmatrix} x \\ n \end{pmatrix}$	$\binom{n-1}{n-x}$
dist.	indist.	$S(n,1) \ +S(n,2) \ +\cdots \ +S(n,x)$	1 if <i>n≤x</i> 0 else	S(n,x)
indist.	indist.	$\begin{array}{c} p_1(n) \\ +p_2(n) \\ +\cdots \\ +p_x(n) \end{array}$	1 if $n \le x$ 0 else	$p_x(n)$

counts something equally natural.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Definition

An ordered set partition of $\{1, 2, ..., n\}$ is a set partition $\pi = (B_1, ..., B_\ell)$ with a linear ordering among the blocks B_i ,

Example

 $(\{2,5,6\},\{1,4\},\{3,7\})$ and $(\{3,7\},\{1,4\},\{2,5,6\})$ are different ordered set partitions of $\{1,2,3,4,5,6,7\}$.

There are k! S(n, k) ordered set partitions of $\{1, 2, ..., n\}$ with k blocks. These are the rank numbers for the refinement poset on ordered set partitions.

・ロト ・聞 ト ・ヨ ト ・ ヨ ト

Definition

An ordered set partition of $\{1, 2, ..., n\}$ is a set partition $\pi = (B_1, ..., B_\ell)$ with a linear ordering among the blocks B_i ,

Example

 $(\{2,5,6\},\{1,4\},\{3,7\})$ and $(\{3,7\},\{1,4\},\{2,5,6\})$ are different ordered set partitions of $\{1,2,3,4,5,6,7\}$.

There are k!S(n,k) ordered set partitions of $\{1, 2, ..., n\}$ with *k* blocks. These are the rank numbers for the refinement poset on ordered set partitions.

< ロ > < 同 > < 回 > < 回 > .

The geometry of ordered set partitions

They label the cones cut out by the reflecting hyperplanes.

Example

 $(\{2,5,6\},\{1,4\},\{3,7\}) \leftrightarrow \{x_2 = x_5 = x_6 \le x_1 = x_4 \le x_3 = x_7\} \\ (\{3,7\},\{1,4\},\{2,5,6\}) \leftrightarrow \{x_3 = x_7 \ge x_1 = x_4 \ge x_2 = x_5 = x_6\}$

Denote by Σ_W the poset of all such cones ordered via inclusion.

・ 同 ト ・ ヨ ト ・ ヨ ト

The geometry of ordered set partitions

They label the cones cut out by the reflecting hyperplanes.

Example

 $(\{2,5,6\},\{1,4\},\{3,7\}) \leftrightarrow \{x_2 = x_5 = x_6 \le x_1 = x_4 \le x_3 = x_7\} \\ (\{3,7\},\{1,4\},\{2,5,6\}) \leftrightarrow \{x_3 = x_7 \ge x_1 = x_4 \ge x_2 = x_5 = x_6\}$

Denote by Σ_W the poset of all such cones ordered via inclusion.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The last column of the 12-fold way is hiding a diagram

balls N	boxes X	surjective f ranks of refinment poset on	
dist.	dist.	x! S(n,x)	ordered set partitions Σ_W
indist.	dist.	$\binom{n-1}{n-x}$	compositions 2 ^S
dist.	indist.	S(n,x)	set partitions \mathcal{L}_{W}
indist.	indist.	$p_x(n)$	number partitions $W \setminus \mathcal{L}_W$

real and Shephard groups

complex reflection groups

The last column of the 12-fold way is hiding a diagram

balls N	boxes X	surjective f	ranks of refinment poset on
dist.	dist.	x! S(n,x)	ordered set partitions Σ_W
indist.	dist.	$\binom{n-1}{n-x}$	compositions 2 ^S
dist.	indist.	S(n,x)	set partitions \mathcal{L}_{W}
indist.	indist.	$p_x(n)$	number partitions $W \setminus \mathcal{L}_W$

real and Shephard groups complex reflection groups

Example			
$(2,3,2)\mapsto$	$\begin{pmatrix} \{1,2\},\\ \{3,4,5\},\\ \{6,7\} \end{pmatrix}\mapsto$	$\left\{ \substack{\{1,2\},\\\{3,4,5\},\\\{6,7\}} \right\} \mapsto$	322
$\left\{ \begin{matrix} s_1, \\ s_3, s_4, \\ s_6 \end{matrix} \right\} \mapsto$	$ \begin{cases} x_1 = x_2 \\ \leq x_3 = x_4 = x_5 \\ \leq x_6 = x_7 \end{cases} \mapsto$	$\left\{\begin{matrix} x_1=x_2,\\ x_3=x_4=x_5,\\ x_6=x_7\end{matrix}\right\}\mapsto$	$\mathfrak{S}_{7}.\left\{\substack{x_{1}=x_{2},\\x_{3}=x_{4}=x_{5},\\x_{6}=x_{7}} ight\}$

V. Reiner Reflection group counting and *q*-counting