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The middle column of the 12-fold way

balls N boxes X any f injective f surjective f

dist. dist. xn
(x)(x − 1)(x − 2) · · · (x − (n − 1)) x! S(n,x)

indist. dist.
(

x+n−1
n

) (

x
n

) (

n−1
n−x

)

dist. indist.

S(n,1)
+S(n,2)

+···
+S(n,x)

1 if n≤x
0 else

S(n,x)

indist. indist.

p1(n)
+p2(n)
+···

+px(n)

1 if n≤x
0 else

px(n)

The nontrivial entries both count sets with transitive Sn-action:

•
(

n
k

)

counts k-subsets, and

• n(n − 1)(n − 2) · · · (n − (k − 1)) counts ordered k-subsets

taken from the n-set {1,2, . . . ,n}.
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Their traditional q-analogues

Both have some traditional q-analogues,

part of the usual list, whose q → 1 limits recover certain counts:

[n]q := 1 + q + q2 + · · ·+ qn−1 q→1
→ n

[n]!q := [n]q [n − 1]q · · · [2]q[1]q
q→1
→ n!

[n]q [n − 1]q · · · [n − (k − 1)]q
q→1
→ n(n − 1) · · · (n − (k − 1))

[

n

k

]

q

:=
[n]!q

[k ]!q [n−k ]!q

q→1
→

(

n
k

)
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They have more pleasant properties

All of these q-analogues

• are polynomials in q, lying in Z[q], and

• even have nonnegative coefficients, lying in N[q].

Example
[

4

2

]

q

=
[4]!q

[2]!q [2]!q
=

[4]q [3]q
[2]q [1]q

=
(1 + q + q2 + q3)(1 + q + q2)

1 + q

= (1 + q2)(1 + q + q2)

= 1 + q + 2q2 + q3 + q4
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And a cyclic sieving phenomenon

Consider a finite set X permuted by a

cyclic group C = 〈c〉 = {e, c, c2, . . . , cm−1} ∼= Zm,

and a generating function X (q) lying in Z[q].

Definition

Say (X ,X (q),C) exhibits the cyclic sieving phenomenon (CSP)

if each cd in C, has the cardinality of its fixed point set

X cd
= {x ∈ X : cd (x) = x} predicted by

|X cd

| = [X (q)]q=ζd

where ζ = e
2πi
m .

In other words, the mth root-of-unity evaluations of X (q) encode

all the information about the C-orbit sizes on X
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The prototype CSP

Theorem (R.-Stanton-White 2004)

This triple (X ,X (q),C) exhibits the CSP:

X := k-subsets of {1,2, . . . ,n}

X (q) :=

[

n

k

]

q

C = 〈c〉 ∼= Zn or Zn−1

where c is either an n-cycle or (n − 1)-cycle in Sn

Proof.

Exercises do a brute force proof; we’ll discuss a better one.
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The prototype CSP

Example

n = 4, k = 2 and C = 〈c〉 = Z4 with c = (1,2,3,4):

{1,2}
c // {2,3}

c

��
{1,4}

c

OO

{3,4}
c

oo

, {1,3}

c

��
{2,4}

OO

X (q) =

[

4

2

]

q

= 1 + q + 2q2 + q3 + q4

X (i0) = 1 + 1 + 2 + 1 + 1 = 6 = |X | = |X c0

|

X (i1) = 1 + i − 2 − i + 1 = 0 = |X c1

|

X (i2) = 1 − 1 + 2 − 1 + 1 = 2 = |X c2

|

X (i3) = 1 − i − 2 + i + 1 = 0 = |X c3

|.
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Note that this CSP can fail for C = 〈c〉 with c in Sn that are

neither n-cycles nor (n − 1)-cycles.

Example

n = 4, k = 1, and C = 〈c〉 = Z2 with c = (1,2)(3)(4):

{1}
c // {2}oo {3}c 11 {4}c 11

X (q) =

[

4

1

]

q

= 1 + q + q2 + q3

X ((−1)0) = 1 + 1 + 1 + 1 = 4 = |X | = |X c0

|

X ((−1)1) = 1 − 1 + 1 − 1 = 0 6= |X c1

|
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Another CSP

The same would work also for ordered k-subsets:

Theorem

This triple (X ,X (q),C) exhibits the CSP:

X := ordered k-subsets of {1,2, . . . ,n}

X (q) := [n]q[n − 1]q · · · [n − (k − 1)]q

C = 〈c〉 ∼= Zn or Zn−1

where c is either an n-cycle or (n − 1)-cycle in Sn

But this one is not as interesting, and there is something much

more general, due to the transitive Sn-action.
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Transitive actions are coset actions

Recall that for a group G permuting a set X transitively, the

elements x0 in X all have G-conjugate stabilizer subgroups

Gx0
:= {g ∈ G : g(x0) = x0}.

Fixing some x0 in X and defining H := Gx0
, the map

G −→ X

g 7−→ g(x)

induces a G-equivariant bijection

G/H → X

Corollary

Transitive G-actions are always coset actions of G on X = G/H.
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A q-analogue of [G : H]

In particular, when G acts transitively on X ,

with H the stabilizer of x0 in X , one has

|X | = [G : H].

But when G is a finite subgroup of GLn(F), we claim that there

is also an appropriate q-analogue.

Recall that G acts via linear substitutions on

S = F[x1, . . . , xn]

with graded G-invariant subring SG, having Hilbert series

Hilb(SG,q) :=
∑

d≥0

qd · dimF(S
G)d .
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It really is a q-analogue of [G : H]

Definition

For a finite subgroup G of GLn(F) acting transitively on X ,

with H the stabilizer of x0, define

X (q) :=
Hilb(SH ,q)

Hilb(SG,q)
.

Theorem

X (q) is a rational function in q with no pole at q = 1, and

X (1) = [G : H].

Proof.

See exercises!
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Unhappy that X (q) is rational, not polynomial?

Theorem

When SG = F[f1, . . . , fn] is a polynomial algebra,

then any subgroup H of G has X (q) := Hilb(SH ,q)
Hilb(SG ,q)

1 a polynomial in q, that is, lying in Z[q], and

2 if furthermore |G| is in F
×, then X (q) lies in N[q].

In particular, both hold when G is a complex reflection group.

Proof.

(Sketch)

The first assertion comes from Hilbert’s syzygy theorem, saying

SH will have a finite free SG-module resolution.

In the second case, SH will be Cohen-Macaulay, and hence

actually a free SG-module.
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And these X (q) have a general CSP!

Definition

For G a complex reflection group in GLn(C), say that c in G is a

regular element if there is some c-eigenvector v in V = C
n that

avoids all reflecting hyperplanes for G.

(Equivalently, G permutes the eigenvector v freely.)

Theorem (R.-Stanton-White 2004)

In the above setting and for any subgroup H of G, the triple

(X ,X (q),C) exhibits the CSP, where

• X = G/H

• X (q) = Hilb(SH ,q)
Hilb(SG ,q)

• C = 〈c〉 permuting X via c(gH) = cgH
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Regular elements in Sn

How does this generalize the CSP’s that we saw?

Firstly, who are the regular elements in Sn?

Let ζn := e
2πi
n .

Example

An n-cycle c = (1,2,3, . . . ,n) is a regular element, since it has

an eigenvector v = (1, ζn, ζ
2
n , . . . , ζ

n−1
n ) avoiding all reflection

hyperplanes xi = xj .

Example

An (n − 1)-cycle c = (1,2,3, . . . ,n − 1)(n) is a regular element,

since it has an eigenvector v = (1, ζn−1, ζ
2
n−1, . . . , ζ

n−2
n−1 ,0).

avoiding all xi = xj .
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Regular elements in Sn

Powers of regular elements are always regular.

Example

In Sn, the longest permutation w0 = (1,n)(2,n − 1) · · · is a

power of an n-cycle (n even) or of an (n − 1)-cycle (n is odd),

hence always a regular element.

(In finite real reflection groups, the longest element w0 is always

a regular element.)

Theorem

All regular elements in Sn are powers of n- and (n − 1)-cycles.

Proof.

See the exercises!
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Why were our traditional q-analogues appropriate?

k-subsets X of {1,2, . . . ,n}, have transitive action of G = Sn,

and x0 = {1,2, . . . , k} has H = Gx0
= Sk ×Sn−k , the Young

subgroup permuting {1,2, . . . , k}, {k + 1, k + 2, . . . ,n}.

SG = C[e1(x1, . . . , xn), . . . ,en(x1, . . . , xn)]

SH = C[e1(x1, . . . , xk ), . . . ,ek (x1, . . . , xk ),

e1(xk + 1, . . . , xn), . . . ,en−k (xk+1, . . . , xn)]

X (q) =
Hilb(SH ,q)

Hilb(SG,q)

=
1/((1 − q1) · · · (1 − qk )) · ((1 − q1) · · · (1 − qn−k ))

1/(1 − q1)(1 − q2) · · · (1 − qn)

=

[

n

k

]

q
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Why were our customary q-analogues correct?

Similarly, ordered k-subsets X of {1,2, . . . ,n}, have transitive

action of G = Sn, and x0 = (1,2, . . . , k) has

H = Gx0
= S1 × · · · ×S1 ×Sn−k , the Young subgroup

permuting {k + 1, k + 2, . . . ,n}.

SG = C[e1(x1, . . . , xn), . . . ,en(x1, . . . , xn)]

SH = C[x1, . . . , xk ,

e1(xk + 1, . . . , xn), . . . ,en−k (xk+1, . . . , xn)]

X (q) =
Hilb(SH ,q)

Hilb(SG,q)

=
1/((1 − q1)k · ((1 − q1) · · · (1 − qn−k ))

1/(1 − q1)(1 − q2) · · · (1 − qn)

= [n]q [n − 1]q · · · [n − (k − 1)]q
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What is magical about regular elements?

So what made this general CSP work?

Theorem

For any subgroup H of G a complex reflection group, and any

regular element c of G, the triple (X ,X (q),C) exhibits the CSP,

where

• X = G/H

• X (q) = Hilb(SH ,q)
Hilb(SG ,q)

• C = 〈c〉 permuting X via c(gH) = cgH

It is a shadow of Springer’s theory of regular elements,

generalizing work of Shephard-Todd and Chevalley on the

coinvariant algebra for G.
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The coinvariant algebra

Definition

The coinvariant algebra is the quotient S/(SG
+) of S by the ideal

generated by G-invariant elements SG
+ of positive degree.

Example

When SG = F[f1, . . . , fn], then SG
+ = (f1, . . . , fn) and

S/(SG
+) = F[x1, . . . , xn]/(f1, . . . , fn).

Example

In particular, the symmetric group Sn has

S/(SSn
+ ) = F[x1, . . . , xn]/(e1(x), . . . ,en(x)).
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The coinvariant algebra

Theorem (Shephard-Todd 1955, Chevalley 1955)

For G a complex reflection group inside GLn(C), one has an

isomorphism of G-representations

S/(SG
+)

∼= C[G]

where G acts via

• linear substitutions on S/(SG
+), and

• via the (left-)regular representation on C[G].

Thus S/(SG
+) is a natural graded version of C[G].
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Springer’s theorem

Springer enhanced this with a commuting cyclic action.

Given a regular element c in G, with eigenvector v avoiding the

reflecting hyperplanes, let c(v) = ζ · v for some ζ in C
×.

Theorem (Springer 1974)

For G any complex reflection group and letting C be the cyclic

group generated by any regular element c, one has an

isomorphism of G × C-representations

S/(SG
+)

∼= C[G]

where G acts as before, but now C acts

• via scalar substitutions xi
c
7→ ζxi on S/(SG

+), and

• via right-multiplication on C[G].
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How does this help?

Taking H-fixed subspaces in Springer’s G × C-isomorphism

S/(SG
+)

∼= C[G]

it becomes an isomorphism of C-representations:

(S/(SG
+))

H ∼= (C[G])H

‖ ‖

SH/(SG
+) C[G/H]

Any cd in C acts with same trace on the two extreme ends:

• One can show the trace on the left side SH/(SG
+) is X (ζd)

where X (q) = Hilb(SH ,q)
Hilb(SG,q)

, and

• the trace on the right size is |X cd
| where X = G/H.

This proves that general CSP theorem.
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(S/(SG
+))

H ∼= (C[G])H

‖ ‖

SH/(SG
+) C[G/H]

Any cd in C acts with same trace on the two extreme ends:

• One can show the trace on the left side SH/(SG
+) is X (ζd)

where X (q) = Hilb(SH ,q)
Hilb(SG,q)

, and

• the trace on the right size is |X cd
| where X = G/H.

This proves that general CSP theorem.
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