Reflection group counting and q-counting

Vic Reiner Univ. of Minnesota

reiner@math.umn.edu

Summer School on Algebraic and Enumerative Combinatorics S. Miguel de Seide, Portugal July 2-13, 2012

Outline

Lecture 1

- Things we count
- What is a finite reflection group?
- Taxonomy of reflection groups
- 2 Lecture 2
 - Back to the Twelvefold Way
 - Transitive actions and CSPs
- Lecture 3
 - Multinomials, flags, and parabolic subgroups
 - Fake degrees
- 4 Lecture 4
 - The Catalan and parking function family
- Bibliography

伺 とく ヨ とく ヨ と

The middle column of the 12-fold way

balls N	boxes X	any f	injective f	surjective f
dist.	dist.	x ⁿ	$(x)(x-1)(x-2)\cdots(x-(n-1))$	x! S(n,x)
indist.	dist.	$\binom{x+n-1}{n}$	$\begin{pmatrix} x \\ n \end{pmatrix}$	$\binom{n-1}{n-x}$
dist.	indist.	$S(n,1) \ +S(n,2) \ +\cdots \ +S(n,x)$	1 if $n \le x$ 0 else	S(n,x)
indist.	indist.	$\begin{array}{c} p_1(n) \\ +p_2(n) \\ +\cdots \\ +p_x(n) \end{array}$	1 if $n \le x$ 0 else	$p_x(n)$

The nontrivial entries both count sets with transitive \mathfrak{S}_n -action:

• $\binom{n}{k}$ counts k-subsets, and

• $n(n-1)(n-2)\cdots(n-(k-1))$ counts ordered k-subsets

taken from the *n*-set $\{1, 2, \ldots, n\}$.

< 通 > < 回 > < 回 > -

The middle column of the 12-fold way

balls N	boxes X	any f	injective f	surjective f
dist.	dist.	x ⁿ	$(x)(x-1)(x-2)\cdots(x-(n-1))$	x! S(n,x)
indist.	dist.	$\binom{x+n-1}{n}$	$\begin{pmatrix} x \\ n \end{pmatrix}$	$\binom{n-1}{n-x}$
dist.	indist.	$S(n,1) \ +S(n,2) \ +\cdots \ +S(n,x)$	1 if $n \le x$ 0 else	S(n,x)
indist.	indist.	$\begin{array}{c} p_1(n) \\ +p_2(n) \\ +\cdots \\ +p_x(n) \end{array}$	1 if $n \le x$ 0 else	$p_x(n)$

The nontrivial entries both count sets with transitive \mathfrak{S}_n -action:

- $\binom{n}{k}$ counts k-subsets, and
- $n(n-1)(n-2)\cdots(n-(k-1))$ counts ordered k-subsets

taken from the *n*-set $\{1, 2, \ldots, n\}$.

伺 ト イ ヨ ト イ ヨ ト -

Both have some traditional *q*-analogues,

part of the usual list, whose $q \rightarrow 1$ limits recover certain counts:

$$[n]_q := 1 + q + q^2 + \dots + q^{n-1} \xrightarrow{q \to 1} n$$

$$[n]_{q} := [n]_q [n-1]_q \cdots [2]_q [1]_q \xrightarrow{q \to 1} n!$$

$$[n]_q [n-1]_q \cdots [n - (k-1)]_q \xrightarrow{q \to 1} n(n-1) \cdots (n - (k-1))$$

$$\begin{bmatrix}n\\k\end{bmatrix}_q := \frac{[n]_{!q}}{[k]_! q [n-k]_! q} \xrightarrow{q \to 1} \binom{n}{k}$$

Both have some traditional *q*-analogues,

part of the usual list, whose $q \rightarrow 1$ limits recover certain counts:

$$[n]_q := 1 + q + q^2 + \dots + q^{n-1} \xrightarrow{q \to 1} n$$

$$[n]_{q} := [n]_q [n-1]_q \dots [2]_q [1]_q \xrightarrow{q \to 1} n!$$

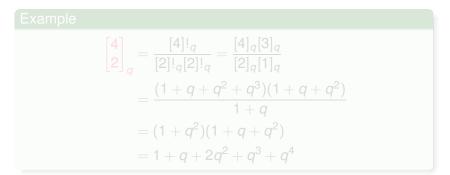
$$[n]_q [n-1]_q \dots [n-(k-1)]_q \xrightarrow{q \to 1} n(n-1) \dots (n-(k-1))$$

$$\begin{bmatrix}n\\k\end{bmatrix}_q := \frac{[n]_{!q}}{[k]!_q [n-k]!_q} \xrightarrow{q \to 1} \binom{n}{k}$$

伺 ト イヨ ト イヨト

All of these q-analogues

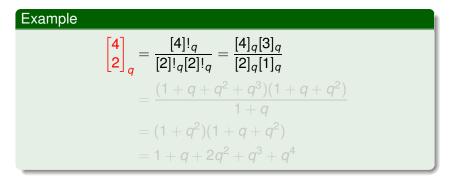
- are polynomials in q, lying in $\mathbb{Z}[q]$, and
- even have nonnegative coefficients, lying in $\mathbb{N}[q]$.



・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

All of these q-analogues

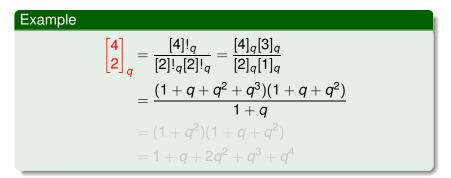
- are polynomials in q, lying in $\mathbb{Z}[q]$, and
- even have nonnegative coefficients, lying in $\mathbb{N}[q]$.



< 回 > < 回 > < 回 >

All of these q-analogues

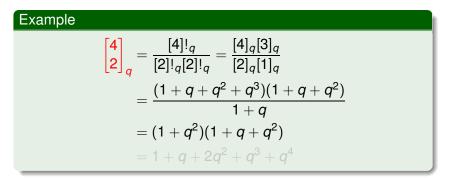
- are polynomials in q, lying in $\mathbb{Z}[q]$, and
- even have nonnegative coefficients, lying in $\mathbb{N}[q]$.



< ロ > < 同 > < 回 > < 回 > .

All of these q-analogues

- are polynomials in q, lying in $\mathbb{Z}[q]$, and
- even have nonnegative coefficients, lying in ℕ[q].



▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ .

All of these q-analogues

- are polynomials in q, lying in $\mathbb{Z}[q]$, and
- even have nonnegative coefficients, lying in $\mathbb{N}[q]$.

Example $\begin{bmatrix} 4\\2 \end{bmatrix}_{q} = \frac{[4]!_{q}}{[2]!_{q}[2]!_{q}} = \frac{[4]_{q}[3]_{q}}{[2]_{q}[1]_{q}}$ $= \frac{(1+q+q^{2}+q^{3})(1+q+q^{2})}{1+q}$ $= (1+q^{2})(1+q+q^{2})$ $= 1+q+2q^{2}+q^{3}+q^{4}$

・ 同 ト ・ ヨ ト ・ ヨ ト

And a cyclic sieving phenomenon

Consider a finite set X permuted by a cyclic group $C = \langle c \rangle = \{e, c, c^2, \dots, c^{m-1}\} \cong \mathbb{Z}_m$, and a generating function X(q) lying in $\mathbb{Z}[q]$.

Definition

Say (X, X(q), C) exhibits the cyclic sieving phenomenon (CSP) if each c^d in C, has the cardinality of its fixed point set $X^{c^d} = \{x \in X : c^d(x) = x\}$ predicted by

 $X^{c^d}| = [X(q)]_{q = \zeta^d}$

where $\zeta = e^{\frac{2\pi i}{m}}$.

In other words, the m^{th} root-of-unity evaluations of X(q) encode all the information about the *C*-orbit sizes on *X*

・ コ マ チ (雪 マ チ (雪 マ ー)

And a cyclic sieving phenomenon

Consider a finite set X permuted by a cyclic group $C = \langle c \rangle = \{e, c, c^2, \dots, c^{m-1}\} \cong \mathbb{Z}_m$, and a generating function X(q) lying in $\mathbb{Z}[q]$.

Definition

Say (X, X(q), C) exhibits the cyclic sieving phenomenon (CSP) if each c^d in C, has the cardinality of its fixed point set $X^{c^d} = \{x \in X : c^d(x) = x\}$ predicted by

$$X^{c^d}| = [X(q)]_{q=\zeta^d}$$

where $\zeta = e^{\frac{2\pi i}{m}}$.

In other words, the m^{th} root-of-unity evaluations of X(q) encode all the information about the *C*-orbit sizes on *X*

< 回 > < 回 > < 回 >

Theorem (R.-Stanton-White 2004)

This triple (X, X(q), C) exhibits the CSP:

 $X := k \text{-subsets of } \{1, 2, \dots, n\}$ $X(q) := \begin{bmatrix} n \\ k \end{bmatrix}_{q}$ $C = \langle c \rangle \cong \mathbb{Z}_{n} \text{ or } \mathbb{Z}_{n-1}$

where c is either an *n*-cycle or (n-1)-cycle in \mathfrak{S}_n

Proof.

Exercises do a brute force proof; we'll discuss a better one.

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Theorem (R.-Stanton-White 2004)

This triple (X, X(q), C) exhibits the CSP:

 $X := k \text{-subsets of } \{1, 2, \dots, n\}$ $X(q) := \begin{bmatrix} n \\ k \end{bmatrix}_{q}$ $C = \langle c \rangle \cong \mathbb{Z}_{n} \text{ or } \mathbb{Z}_{n-1}$

where c is either an *n*-cycle or (n-1)-cycle in \mathfrak{S}_n

Proof.

Exercises do a brute force proof; we'll discuss a better one.

< ロ > < 同 > < 回 > < 回 > .

$$n = 4, k = 2$$
 and $C = \langle c \rangle = \mathbb{Z}_4$ with $c = (1, 2, 3, 4)$:

$$\begin{array}{c|c} \{1,2\} & \xrightarrow{c} \{2,3\} , & \{1,3\} \\ c & \downarrow c & \downarrow c \\ \{1,4\} & \xleftarrow{c} \{3,4\} & \{2,4\} \end{array}$$

$$X(q) = \begin{bmatrix} 4\\2 \end{bmatrix}_{q} = 1 + q + 2q^{2} + q^{3} + q^{4}$$
$$X(i^{0}) = 1 + 1 + 2 + 1 + 1 = 6 = |X| = |X^{c^{0}}|$$
$$X(i^{1}) = 1 + i - 2 - i + 1 = 0 = |X^{c^{1}}|$$
$$X(i^{2}) = 1 - 1 + 2 - 1 + 1 = 2 = |X^{c^{2}}|$$
$$X(i^{3}) = 1 - i - 2 + i + 1 = 0 = |X^{c^{3}}|.$$

Example

n = 4, k = 2 and $C = \langle c \rangle = \mathbb{Z}_4$ with c = (1, 2, 3, 4):

$$\begin{array}{c|c} \{1,2\} & \xrightarrow{c} \{2,3\} \\ c & \downarrow c \\ \{1,4\} & \xleftarrow{c} \{3,4\} \end{array}$$

$$X(q) = \begin{bmatrix} 4 \\ 2 \end{bmatrix}_{q} = 1 + q + 2q^{2} + q^{3} + q^{4}$$
$$X(i^{0}) = 1 + 1 + 2 + 1 + 1 = 6 = |X| = |X^{c^{0}}|$$
$$X(i^{1}) = 1 + i - 2 - i + 1 = 0 = |X^{c^{1}}|$$
$$X(i^{2}) = 1 - 1 + 2 - 1 + 1 = 2 = |X^{c^{2}}|$$
$$X(i^{3}) = 1 - i - 2 + i + 1 = 0 = |X^{c^{3}}|.$$

$$n = 4, k = 2$$
 and $C = \langle c \rangle = \mathbb{Z}_4$ with $c = (1, 2, 3, 4)$:

$$\begin{array}{c|c} \{1,2\} & \xrightarrow{c} \{2,3\} \\ c & \downarrow c \\ \{1,4\} & \xleftarrow{c} \{3,4\} \end{array}$$

$$X(q) = \begin{bmatrix} 4 \\ 2 \end{bmatrix}_{q} = 1 + q + 2q^{2} + q^{3} + q^{4}$$
$$X(i^{0}) = 1 + 1 + 2 + 1 + 1 = 6 = |X| = |X^{c^{0}}|$$
$$X(i^{1}) = 1 + i - 2 - i + 1 = 0 = |X^{c^{1}}|$$
$$X(i^{2}) = 1 - 1 + 2 - 1 + 1 = 2 = |X^{c^{2}}|$$
$$X(i^{3}) = 1 - i - 2 + i + 1 = 0 = |X^{c^{3}}|.$$

$$n = 4, k = 2$$
 and $C = \langle c \rangle = \mathbb{Z}_4$ with $c = (1, 2, 3, 4)$:

$$\begin{array}{c|c} \{1,2\} & \xrightarrow{c} \{2,3\} \\ c & \downarrow c \\ \{1,4\} & \xleftarrow{c} \{3,4\} \end{array}$$

$$X(q) = \begin{bmatrix} 4 \\ 2 \end{bmatrix}_{q} = 1 + q + 2q^{2} + q^{3} + q^{4}$$
$$X(i^{0}) = 1 + 1 + 2 + 1 + 1 = 6 = |X| = |X^{c^{0}}|$$
$$X(i^{1}) = 1 + i - 2 - i + 1 = 0 = |X^{c^{1}}|$$
$$X(i^{2}) = 1 - 1 + 2 - 1 + 1 = 2 = |X^{c^{2}}|$$
$$X(i^{3}) = 1 - i - 2 + i + 1 = 0 = |X^{c^{3}}|.$$

$$n = 4, k = 2$$
 and $C = \langle c \rangle = \mathbb{Z}_4$ with $c = (1, 2, 3, 4)$:

$$\begin{array}{c|c} \{1,2\} & \xrightarrow{c} \{2,3\} \\ c & \downarrow c \\ \{1,4\} & \xleftarrow{c} \{3,4\} \end{array}$$

$$X(q) = \begin{bmatrix} 4 \\ 2 \end{bmatrix}_{q} = 1 + q + 2q^{2} + q^{3} + q^{4}$$
$$X(i^{0}) = 1 + 1 + 2 + 1 + 1 = 6 = |X| = |X^{c^{0}}|$$
$$X(i^{1}) = 1 + i - 2 - i + 1 = 0 = |X^{c^{1}}|$$
$$X(i^{2}) = 1 - 1 + 2 - 1 + 1 = 2 = |X^{c^{2}}|$$
$$X(i^{3}) = 1 - i - 2 + i + 1 = 0 = |X^{c^{3}}|.$$

Example

$$n = 4, k = 2$$
 and $C = \langle c \rangle = \mathbb{Z}_4$ with $c = (1, 2, 3, 4)$:

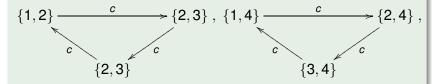
$$\begin{array}{c|c} \{1,2\} & \xrightarrow{c} \{2,3\} \\ c & \downarrow c \\ \{1,4\} & \xleftarrow{c} \{3,4\} \end{array}$$

$$X(q) = \begin{bmatrix} 4 \\ 2 \end{bmatrix}_{q} = 1 + q + 2q^{2} + q^{3} + q^{4}$$
$$X(i^{0}) = 1 + 1 + 2 + 1 + 1 = 6 = |X| = |X^{c^{0}}|$$
$$X(i^{1}) = 1 + i - 2 - i + 1 = 0 = |X^{c^{1}}|$$
$$X(i^{2}) = 1 - 1 + 2 - 1 + 1 = 2 = |X^{c^{2}}|$$
$$X(i^{3}) = 1 - i - 2 + i + 1 = 0 = |X^{c^{3}}|.$$

500

Example

$$n = 4, k = 2$$
, and $C = \langle c \rangle = \mathbb{Z}_3$ with $c = (1, 2, 3)(4)$:

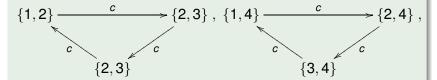


$$X(q) = \begin{bmatrix} 4 \\ 2 \end{bmatrix}_{q} = 1 + q + 2q^{2} + q^{3} + q^{4}$$
$$X(\zeta^{0}) = 1 + 1 + 2 + 1 + 1 = 6 = |X| = |X^{c^{0}}|$$
$$X(\zeta^{1}) = 1 + \zeta + \zeta^{2} + \zeta^{2} + \zeta^{3} + \zeta^{4} = 0 = |X^{c^{1}}|$$
$$X(\zeta^{2}) = 1 + \zeta^{2} + \zeta^{4} + \zeta^{4} + \zeta^{6} + \zeta^{8} = 0 = |X^{c^{1}}|$$

・ロト ・聞 ト ・ヨト ・ヨト

Example

$$n = 4, k = 2$$
, and $C = \langle c \rangle = \mathbb{Z}_3$ with $c = (1, 2, 3)(4)$:

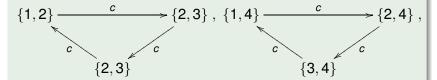


$$X(q) = \begin{bmatrix} 4 \\ 2 \end{bmatrix}_{q} = 1 + q + 2q^{2} + q^{3} + q^{4}$$
$$X(\zeta^{0}) = 1 + 1 + 2 + 1 + 1 = 6 = |X| = |X^{c^{0}}|$$
$$X(\zeta^{1}) = 1 + \zeta + \zeta^{2} + \zeta^{2} + \zeta^{3} + \zeta^{4} = 0 = |X^{c^{1}}|$$
$$X(\zeta^{2}) = 1 + \zeta^{2} + \zeta^{4} + \zeta^{4} + \zeta^{6} + \zeta^{8} = 0 = |X^{c^{1}}|$$

・ロト ・聞 ト ・ヨト ・ヨト

Example

$$n = 4, k = 2$$
, and $C = \langle c \rangle = \mathbb{Z}_3$ with $c = (1, 2, 3)(4)$:

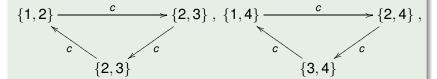


$$X(q) = \begin{bmatrix} 4 \\ 2 \end{bmatrix}_{q} = 1 + q + 2q^{2} + q^{3} + q^{4}$$
$$X(\zeta^{0}) = 1 + 1 + 2 + 1 + 1 = 6 = |X| = |X^{c^{0}}|$$
$$X(\zeta^{1}) = 1 + \zeta + \zeta^{2} + \zeta^{2} + \zeta^{3} + \zeta^{4} = 0 = |X^{c^{1}}|$$
$$X(\zeta^{2}) = 1 + \zeta^{2} + \zeta^{4} + \zeta^{4} + \zeta^{6} + \zeta^{8} = 0 = |X^{c^{1}}|$$

・ロト ・聞 ト ・ヨト ・ヨト

Example

$$n = 4, k = 2$$
, and $C = \langle c \rangle = \mathbb{Z}_3$ with $c = (1, 2, 3)(4)$:

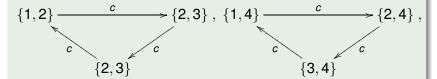


$$X(q) = \begin{bmatrix} 4 \\ 2 \end{bmatrix}_{q} = 1 + q + 2q^{2} + q^{3} + q^{4}$$
$$X(\zeta^{0}) = 1 + 1 + 2 + 1 + 1 = 6 = |X| = |X^{c^{0}}|$$
$$X(\zeta^{1}) = 1 + \zeta + \zeta^{2} + \zeta^{2} + \zeta^{3} + \zeta^{4} = 0 = |X^{c^{1}}|$$
$$X(\zeta^{2}) = 1 + \zeta^{2} + \zeta^{4} + \zeta^{4} + \zeta^{6} + \zeta^{8} = 0 = |X^{c^{1}}|$$

・ロト ・聞 ト ・ヨト ・ヨト

Example

$$n = 4, k = 2$$
, and $C = \langle c \rangle = \mathbb{Z}_3$ with $c = (1, 2, 3)(4)$:



$$X(q) = \begin{bmatrix} 4 \\ 2 \end{bmatrix}_{q} = 1 + q + 2q^{2} + q^{3} + q^{4}$$
$$X(\zeta^{0}) = 1 + 1 + 2 + 1 + 1 = 6 = |X| = |X^{c^{0}}|$$
$$X(\zeta^{1}) = 1 + \zeta + \zeta^{2} + \zeta^{2} + \zeta^{3} + \zeta^{4} = 0 = |X^{c^{1}}|$$
$$X(\zeta^{2}) = 1 + \zeta^{2} + \zeta^{4} + \zeta^{4} + \zeta^{6} + \zeta^{8} = 0 = |X^{c^{1}}|$$

・ロト ・聞 ト ・ヨト ・ヨト

Example

n = 4, k = 1, and $C = \langle c \rangle = \mathbb{Z}_2$ with c = (1, 2)(3)(4):

$$\{1\} \xrightarrow{c} \{2\} \quad \langle \{3\} \quad \langle \{4\}$$

$$X(q) = \begin{bmatrix} 4\\1 \end{bmatrix}_{q} = 1 + q + q^{2} + q^{3}$$
$$X((-1)^{0}) = 1 + 1 + 1 + 1 = 4 = |X| = |X^{c^{0}}|$$
$$X((-1)^{1}) = 1 - 1 + 1 - 1 = 0 \neq |X^{c^{1}}|$$

Example

n = 4, k = 1, and $C = \langle c \rangle = \mathbb{Z}_2$ with c = (1, 2)(3)(4):

$$\{1\} \longleftrightarrow \{2\} \quad \& \{3\} \quad \& \{4\}$$
$$X(q) = \begin{bmatrix} 4\\1 \end{bmatrix}_q = 1 + q + q^2 + q^3$$
$$X((-1)^0) = 1 + 1 + 1 + 1 = 4 = |X| = |X^{c^0}$$
$$X((-1)^1) = 1 - 1 + 1 - 1 = 0 \neq |X^{c^1}|$$

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト …

= 900

Example

n = 4, k = 1, and $C = \langle c \rangle = \mathbb{Z}_2$ with c = (1, 2)(3)(4):

$$\{1\} \stackrel{c}{\longleftrightarrow} \{2\} \quad \langle \{3\} \quad \langle \{4\} \}$$

$$X(q) = \begin{bmatrix} 4 \\ 1 \end{bmatrix}_{q} = 1 + q + q^{2} + q^{3}$$
$$X((-1)^{0}) = 1 + 1 + 1 + 1 = 4 = |X| = |X^{c^{0}}|$$
$$X((-1)^{1}) = 1 - 1 + 1 - 1 = 0 \neq |X^{c^{1}}|$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ● ●

Example

n = 4, k = 1, and $C = \langle c \rangle = \mathbb{Z}_2$ with c = (1, 2)(3)(4):

$$\{1\} \xrightarrow{c} \{2\} \quad {\clubsuit} \{3\} \quad {\clubsuit} \{4\}$$

$$X(q) = \begin{bmatrix} 4 \\ 1 \end{bmatrix}_{q} = 1 + q + q^{2} + q^{3}$$
$$X((-1)^{0}) = 1 + 1 + 1 + 1 = 4 = |X| = |X^{c^{0}}|$$
$$X((-1)^{1}) = 1 - 1 + 1 - 1 = 0 \neq |X^{c^{1}}|$$

The same would work also for ordered *k*-subsets:

Theorem

This triple (X, X(q), C) exhibits the CSP:

 $X := \text{ordered } k \text{-subsets of } \{1, 2, \dots, n\}$ $X(q) := [n]_q [n-1]_q \cdots [n-(k-1)]_q$ $C = \langle c \rangle \cong \mathbb{Z}_n \text{ or } \mathbb{Z}_{n-1}$

where c is either an *n*-cycle or (n-1)-cycle in \mathfrak{S}_n

But this one is not as interesting, and there is something much more general, due to the transitive \mathfrak{S}_n -action.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

The same would work also for ordered *k*-subsets:

Theorem This triple (X, X(q), C) exhibits the CSP:

 $X := \text{ordered } k \text{-subsets of } \{1, 2, \dots, n\}$ $X(q) := [n]_q [n-1]_q \cdots [n-(k-1)]_q$ $C = \langle c \rangle \cong \mathbb{Z}_n \text{ or } \mathbb{Z}_{n-1}$

where c is either an *n*-cycle or (n-1)-cycle in \mathfrak{S}_n

But this one is not as interesting, and there is something much more general, due to the transitive \mathfrak{S}_n -action.

< ロ > < 同 > < 回 > < 回 > .

Transitive actions are coset actions

Recall that for a group *G* permuting a set *X* transitively, the elements x_0 in *X* all have *G*-conjugate stabilizer subgroups

$$G_{x_0} := \{g \in G : g(x_0) = x_0\}.$$

Fixing some x_0 in X and defining $H := G_{x_0}$, the map

 $G \longrightarrow X$ $g \longmapsto g(x)$

induces a G-equivariant bijection

 $G/H \rightarrow X$

Transitive actions are coset actions

Recall that for a group *G* permuting a set *X* transitively, the elements x_0 in *X* all have *G*-conjugate stabilizer subgroups

$$G_{x_0} := \{g \in G : g(x_0) = x_0\}.$$

Fixing some x_0 in X and defining $H := G_{x_0}$, the map

$$egin{array}{c} G \longrightarrow X \ g \longmapsto g(x) \end{array}$$

induces a G-equivariant bijection

 $G/H \rightarrow X$

Transitive actions are coset actions

Recall that for a group *G* permuting a set *X* transitively, the elements x_0 in *X* all have *G*-conjugate stabilizer subgroups

$$G_{x_0} := \{g \in G : g(x_0) = x_0\}.$$

Fixing some x_0 in X and defining $H := G_{x_0}$, the map

$$\begin{array}{c} G \longrightarrow X \\ g \longmapsto g(x) \end{array}$$

induces a G-equivariant bijection

 $G/H \rightarrow X$

Corollary *Transitive G*-actions are always coset actions of *G* on X = G/H. V. Reiner Reflection group counting and *g*-counting

A q-analogue of [G : H]

In particular, when *G* acts transitively on *X*, with *H* the stabilizer of x_0 in *X*, one has

|X| = [G:H].

But when *G* is a finite subgroup of $GL_n(\mathbb{F})$, we claim that there is also an appropriate *q*-analogue.

Recall that G acts via linear substitutions on

$$S = \mathbb{F}[x_1, \ldots, x_n]$$

with graded G-invariant subring S^G, having Hilbert series

$$\operatorname{Hilb}(S^G, q) := \sum_{d \ge 0} q^d \cdot \operatorname{dim}_{\mathbb{F}}(S^G)_d.$$

< 同 > < 回 > < 回

A q-analogue of [G : H]

In particular, when *G* acts transitively on *X*, with *H* the stabilizer of x_0 in *X*, one has

|X| = [G:H].

But when *G* is a finite subgroup of $GL_n(\mathbb{F})$, we claim that there is also an appropriate *q*-analogue.

Recall that G acts via linear substitutions on

$$S = \mathbb{F}[x_1,\ldots,x_n]$$

with graded G-invariant subring S^G , having Hilbert series

$$\operatorname{Hilb}(S^G,q) := \sum_{d \ge 0} q^d \cdot \dim_{\mathbb{F}}(S^G)_d.$$

For a finite subgroup *G* of $GL_n(\mathbb{F})$ acting transitively on *X*, with *H* the stabilizer of x_0 , define

 $X(q) := rac{\mathrm{Hilb}(\mathcal{S}^H, q)}{\mathrm{Hilb}(\mathcal{S}^G, q)}.$

Theorem

X(q) is a rational function in q with no pole at q = 1, and

X(1)=[G:H].

Proof. See exercises!

For a finite subgroup *G* of $GL_n(\mathbb{F})$ acting transitively on *X*, with *H* the stabilizer of x_0 , define

$$X(q) := rac{\mathrm{Hilb}(\mathcal{S}^H, q)}{\mathrm{Hilb}(\mathcal{S}^G, q)}$$

Theorem

X(q) is a rational function in q with no pole at q = 1, and

X(1)=[G:H].

Proof. See exercises!

For a finite subgroup *G* of $GL_n(\mathbb{F})$ acting transitively on *X*, with *H* the stabilizer of x_0 , define

$$X(q) := rac{\mathrm{Hilb}(\mathcal{S}^H, q)}{\mathrm{Hilb}(\mathcal{S}^G, q)}$$

Theorem

X(q) is a rational function in q with no pole at q = 1, and

X(1)=[G:H].

D	ro	of.	
	10	υı.	

See exercises!

< □ > < 同 > < 回 > <

Theorem

When $S^G = \mathbb{F}[f_1, ..., f_n]$ is a polynomial algebra, then any subgroup H of G has $X(q) := \frac{\text{Hilb}(S^H, q)}{\text{Hilb}(S^G, q)}$

() a polynomial in q, that is, lying in $\mathbb{Z}[q]$, and

) if furthermore |G| is in \mathbb{F}^{\times} , then X(q) lies in $\mathbb{N}[q]$.

In particular, both hold when *G* is a complex reflection group.

Proof.

(Sketch)

The first assertion comes from Hilbert's syzygy theorem, saying S^H will have a finite free S^G -module resolution.

In the second case, S^H will be Cohen-Macaulay, and hence actually a free S^G -module.

(日)

Theorem

When $S^G = \mathbb{F}[f_1, ..., f_n]$ is a polynomial algebra, then any subgroup H of G has $X(q) := \frac{\operatorname{Hilb}(S^H, q)}{\operatorname{Hilb}(S^G, q)}$

- **(**) a polynomial in q, that is, lying in $\mathbb{Z}[q]$, and
- 2 if furthermore |G| is in \mathbb{F}^{\times} , then X(q) lies in $\mathbb{N}[q]$.

In particular, both hold when *G* is a complex reflection group.

Proof.

(Sketch) The first assertion comes from Hilbert's syzygy theorem, saying S^H will have a finite free S^G -module resolution.

In the second case, S^H will be Cohen-Macaulay, and hence actually a free S^G -module.

< □ > < 同 > < 回 > <

Theorem

When $S^G = \mathbb{F}[f_1, ..., f_n]$ is a polynomial algebra, then any subgroup H of G has $X(q) := \frac{\text{Hilb}(S^H, q)}{\text{Hilb}(S^G, q)}$

- **(**) a polynomial in q, that is, lying in $\mathbb{Z}[q]$, and
- 2 if furthermore |G| is in \mathbb{F}^{\times} , then X(q) lies in $\mathbb{N}[q]$.

In particular, both hold when *G* is a complex reflection group.

Proof.

(Sketch) The first assertion comes from Hilbert's syzygy theorem, saying S^H will have a finite free S^G -module resolution.

In the second case, S^H will be Cohen-Macaulay, and hence actually a free S^G -module.

・ロット (雪) (日) (日)

Theorem

When $S^G = \mathbb{F}[f_1, ..., f_n]$ is a polynomial algebra, then any subgroup H of G has $X(q) := \frac{\operatorname{Hilb}(S^H, q)}{\operatorname{Hilb}(S^G, q)}$

- **(**) a polynomial in q, that is, lying in $\mathbb{Z}[q]$, and
- 2 if furthermore |G| is in \mathbb{F}^{\times} , then X(q) lies in $\mathbb{N}[q]$.

In particular, both hold when *G* is a complex reflection group.

Proof.

(Sketch)

The first assertion comes from Hilbert's syzygy theorem, saying S^H will have a finite free S^G -module resolution.

In the second case, S^H will be Cohen-Macaulay, and hence actually a free S^G -module.

< □ > < 同 > < 回 > < 回 > < 回 >

For *G* a complex reflection group in $GL_n(\mathbb{C})$, say that *c* in *G* is a regular element if there is some *c*-eigenvector *v* in $V = \mathbb{C}^n$ that avoids all reflecting hyperplanes for *G*. (Equivalently, *G* permutes the eigenvector *v* freely.)

Theorem (R.-Stanton-White 2004)

In the above setting and for any subgroup H of G, the triple (X, X(q), C) exhibits the CSP, where

- X = G/H
- $X(q) = \frac{\operatorname{Hilb}(S^H, q)}{\operatorname{Hilb}(S^G, q)}$
- $C = \langle c \rangle$ permuting X via c(gH) = cgH

< ロ > < 同 > < 回 > < 回 > .

For *G* a complex reflection group in $GL_n(\mathbb{C})$, say that *c* in *G* is a regular element if there is some *c*-eigenvector *v* in $V = \mathbb{C}^n$ that avoids all reflecting hyperplanes for *G*. (Equivalently, *G* permutes the eigenvector *v* freely.)

Theorem (R.-Stanton-White 2004)

In the above setting and for any subgroup H of G, the triple (X, X(q), C) exhibits the CSP, where

- *X* = *G*/*H*
- $X(q) = \frac{\operatorname{Hilb}(S^H,q)}{\operatorname{Hilb}(S^G,q)}$
- $C = \langle c \rangle$ permuting X via c(gH) = cgH

・ロン ・聞と ・ 聞と

How does this generalize the CSP's that we saw? Firstly, who are the regular elements in \mathfrak{S}_n ?

Let $\zeta_n := e^{\frac{2\pi i}{n}}$.

Example

An *n*-cycle c = (1, 2, 3, ..., n) is a regular element, since it has an eigenvector $v = (1, \zeta_n, \zeta_n^2, ..., \zeta_n^{n-1})$ avoiding all reflection hyperplanes $x_i = x_j$.

Example

An (n-1)-cycle c = (1, 2, 3, ..., n-1)(n) is a regular element, since it has an eigenvector $v = (1, \zeta_{n-1}, \zeta_{n-1}^2, ..., \zeta_{n-1}^{n-2}, 0)$. avoiding all $x_i = x_j$.

< ロ > < 同 > < 回 > < 回 > .

How does this generalize the CSP's that we saw? Firstly, who are the regular elements in \mathfrak{S}_n ?

Let $\zeta_n := e^{\frac{2\pi i}{n}}$.

Example

An *n*-cycle c = (1, 2, 3, ..., n) is a regular element, since it has an eigenvector $v = (1, \zeta_n, \zeta_n^2, ..., \zeta_n^{n-1})$ avoiding all reflection hyperplanes $x_i = x_j$.

Example

An (n-1)-cycle c = (1, 2, 3, ..., n-1)(n) is a regular element, since it has an eigenvector $v = (1, \zeta_{n-1}, \zeta_{n-1}^2, ..., \zeta_{n-1}^{n-2}, 0)$. avoiding all $x_i = x_j$.

How does this generalize the CSP's that we saw? Firstly, who are the regular elements in \mathfrak{S}_n ?

Let $\zeta_n := e^{\frac{2\pi i}{n}}$.

Example

An *n*-cycle c = (1, 2, 3, ..., n) is a regular element, since it has an eigenvector $v = (1, \zeta_n, \zeta_n^2, ..., \zeta_n^{n-1})$ avoiding all reflection hyperplanes $x_i = x_j$.

Example

An (n-1)-cycle c = (1, 2, 3, ..., n-1)(n) is a regular element, since it has an eigenvector $v = (1, \zeta_{n-1}, \zeta_{n-1}^2, ..., \zeta_{n-1}^{n-2}, 0)$. avoiding all $x_i = x_j$.

< ロ > < 同 > < 回 > < 回 > .

How does this generalize the CSP's that we saw? Firstly, who are the regular elements in \mathfrak{S}_n ?

Let $\zeta_n := e^{\frac{2\pi i}{n}}$.

Example

An *n*-cycle c = (1, 2, 3, ..., n) is a regular element, since it has an eigenvector $v = (1, \zeta_n, \zeta_n^2, ..., \zeta_n^{n-1})$ avoiding all reflection hyperplanes $x_i = x_j$.

Example

An (n-1)-cycle c = (1, 2, 3, ..., n-1)(n) is a regular element, since it has an eigenvector $v = (1, \zeta_{n-1}, \zeta_{n-1}^2, ..., \zeta_{n-1}^{n-2}, 0)$. avoiding all $x_i = x_j$.

< □ > < 同 > < 回 > < 回 > < 回 >

Powers of regular elements are always regular.

Example

In \mathfrak{S}_n , the longest permutation $w_0 = (1, n)(2, n-1) \cdots$ is a power of an *n*-cycle (*n* even) or of an (n-1)-cycle (*n* is odd), hence always a regular element.

(In finite real reflection groups, the longest element w_0 is always a regular element.)

Theorem

All regular elements in \mathfrak{S}_n are powers of *n*- and (n - 1)-cycles.

Proof.

See the exercises!

(日)

Powers of regular elements are always regular.

Example

In \mathfrak{S}_n , the longest permutation $w_0 = (1, n)(2, n-1) \cdots$ is a power of an *n*-cycle (*n* even) or of an (n-1)-cycle (*n* is odd), hence always a regular element.

(In finite real reflection groups, the longest element w_0 is always a regular element.)

Theorem

All regular elements in \mathfrak{S}_n are powers of n- and (n - 1)-cycles.

Proof.

See the exercises!

< ロ > < 同 > < 回 > < 回 >

Powers of regular elements are always regular.

Example

In \mathfrak{S}_n , the longest permutation $w_0 = (1, n)(2, n-1) \cdots$ is a power of an *n*-cycle (*n* even) or of an (n-1)-cycle (*n* is odd), hence always a regular element.

(In finite real reflection groups, the longest element w_0 is always a regular element.)

Theorem

All regular elements in \mathfrak{S}_n are powers of *n*- and (n-1)-cycles.

Proof.

See the exercises!

< □ > < @ > < E > < E >

Powers of regular elements are always regular.

Example

In \mathfrak{S}_n , the longest permutation $w_0 = (1, n)(2, n-1) \cdots$ is a power of an *n*-cycle (*n* even) or of an (n-1)-cycle (*n* is odd), hence always a regular element.

(In finite real reflection groups, the longest element w_0 is always a regular element.)

Theorem

All regular elements in \mathfrak{S}_n are powers of *n*- and (n-1)-cycles.

Proof.

See the exercises!

< □ > < 同 > < 回 > <

k-subsets *X* of $\{1, 2, ..., n\}$, have transitive action of $G = \mathfrak{S}_n$, and $x_0 = \{1, 2, ..., k\}$ has $H = G_{x_0} = \mathfrak{S}_k \times \mathfrak{S}_{n-k}$, the Young subgroup permuting $\{1, 2, ..., k\}, \{k + 1, k + 2, ..., n\}$.

$$S^{G} = \mathbb{C}[e_{1}(x_{1}, \dots, x_{n}), \dots, e_{n}(x_{1}, \dots, x_{n})]$$

$$S^{H} = \mathbb{C}[e_{1}(x_{1}, \dots, x_{k}), \dots, e_{k}(x_{1}, \dots, x_{k}), e_{1}(x_{k} + 1, \dots, x_{n}), \dots, e_{n-k}(x_{k+1}, \dots, x_{n})]$$

$$X(q) = \frac{\text{Hilb}(S^{H}, q)}{\text{Hilb}(S^{G}, q)}$$

= $\frac{1/((1 - q^{1}) \cdots (1 - q^{k})) \cdot ((1 - q^{1}) \cdots (1 - q^{n-k}))}{1/(1 - q^{1})(1 - q^{2}) \cdots (1 - q^{n})}$
= $\begin{bmatrix} n \\ k \end{bmatrix}_{q}$

k-subsets *X* of $\{1, 2, ..., n\}$, have transitive action of $G = \mathfrak{S}_n$, and $x_0 = \{1, 2, ..., k\}$ has $H = G_{x_0} = \mathfrak{S}_k \times \mathfrak{S}_{n-k}$, the Young subgroup permuting $\{1, 2, ..., k\}, \{k + 1, k + 2, ..., n\}$.

$$S^{G} = \mathbb{C}[e_{1}(x_{1}, \dots, x_{n}), \dots, e_{n}(x_{1}, \dots, x_{n})]$$

$$S^{H} = \mathbb{C}[e_{1}(x_{1}, \dots, x_{k}), \dots, e_{k}(x_{1}, \dots, x_{k}),$$

$$e_{1}(x_{k} + 1, \dots, x_{n}), \dots, e_{n-k}(x_{k+1}, \dots, x_{n})]$$

$$X(q) = \frac{\text{Hilb}(S^{H}, q)}{\text{Hilb}(S^{G}, q)}$$

= $\frac{1/((1 - q^{1}) \cdots (1 - q^{k})) \cdot ((1 - q^{1}) \cdots (1 - q^{n-k}))}{1/(1 - q^{1})(1 - q^{2}) \cdots (1 - q^{n})}$
= $\begin{bmatrix} n \\ k \end{bmatrix}_{q}$

k-subsets *X* of $\{1, 2, ..., n\}$, have transitive action of $G = \mathfrak{S}_n$, and $x_0 = \{1, 2, ..., k\}$ has $H = G_{x_0} = \mathfrak{S}_k \times \mathfrak{S}_{n-k}$, the Young subgroup permuting $\{1, 2, ..., k\}, \{k + 1, k + 2, ..., n\}$.

$$S^G = \mathbb{C}[e_1(x_1, \dots, x_n), \dots, e_n(x_1, \dots, x_n)]$$

$$S^H = \mathbb{C}[e_1(x_1, \dots, x_k), \dots, e_k(x_1, \dots, x_k), e_1(x_k + 1, \dots, x_n), \dots, e_{n-k}(x_{k+1}, \dots, x_n)]$$

$$X(q) = \frac{\text{Hilb}(S^{H}, q)}{\text{Hilb}(S^{G}, q)}$$

= $\frac{1/((1 - q^{1}) \cdots (1 - q^{k})) \cdot ((1 - q^{1}) \cdots (1 - q^{n-k}))}{1/(1 - q^{1})(1 - q^{2}) \cdots (1 - q^{n})}$
= $\begin{bmatrix} n \\ k \end{bmatrix}_{q}$

k-subsets *X* of $\{1, 2, ..., n\}$, have transitive action of $G = \mathfrak{S}_n$, and $x_0 = \{1, 2, ..., k\}$ has $H = G_{x_0} = \mathfrak{S}_k \times \mathfrak{S}_{n-k}$, the Young subgroup permuting $\{1, 2, ..., k\}, \{k + 1, k + 2, ..., n\}$.

$$S^{G} = \mathbb{C}[e_{1}(x_{1}, \dots, x_{n}), \dots, e_{n}(x_{1}, \dots, x_{n})]$$

$$S^{H} = \mathbb{C}[e_{1}(x_{1}, \dots, x_{k}), \dots, e_{k}(x_{1}, \dots, x_{k}),$$

$$e_{1}(x_{k} + 1, \dots, x_{n}), \dots, e_{n-k}(x_{k+1}, \dots, x_{n})]$$

$$X(q) = \frac{\text{Hilb}(S^{H}, q)}{\text{Hilb}(S^{G}, q)}$$

= $\frac{1/((1 - q^{1}) \cdots (1 - q^{k})) \cdot ((1 - q^{1}) \cdots (1 - q^{n-k}))}{1/(1 - q^{1})(1 - q^{2}) \cdots (1 - q^{n})}$
= $\begin{bmatrix} n \\ k \end{bmatrix}_{q}$

Similarly, ordered *k*-subsets *X* of $\{1, 2, ..., n\}$, have transitive action of $G = \mathfrak{S}_n$, and $x_0 = (1, 2, ..., k)$ has $H = G_{x_0} = \mathfrak{S}_1 \times \cdots \times \mathfrak{S}_1 \times \mathfrak{S}_{n-k}$, the Young subgroup permuting $\{k + 1, k + 2, ..., n\}$.

$$S^{G} = \mathbb{C}[e_{1}(x_{1}, \dots, x_{n}), \dots, e_{n}(x_{1}, \dots, x_{n})]$$

$$S^{H} = \mathbb{C}[x_{1}, \dots, x_{k}, e_{1}(x_{k} + 1, \dots, x_{n}), \dots, e_{n-k}(x_{k+1}, \dots, x_{n})]$$

$$X(q) = \frac{\text{Hilb}(S^{H}, q)}{\text{Hilb}(S^{G}, q)}$$

= $\frac{1/((1 - q^{1})^{k} \cdot ((1 - q^{1}) \cdots (1 - q^{n-k})))}{1/(1 - q^{1})(1 - q^{2}) \cdots (1 - q^{n})}$
= $[n]_{q}[n - 1]_{q} \cdots [n - (k - 1)]_{q}$

Similarly, ordered *k*-subsets *X* of $\{1, 2, ..., n\}$, have transitive action of $G = \mathfrak{S}_n$, and $x_0 = (1, 2, ..., k)$ has $H = G_{x_0} = \mathfrak{S}_1 \times \cdots \times \mathfrak{S}_1 \times \mathfrak{S}_{n-k}$, the Young subgroup permuting $\{k + 1, k + 2, ..., n\}$.

$$S^{G} = \mathbb{C}[e_{1}(x_{1}, \dots, x_{n}), \dots, e_{n}(x_{1}, \dots, x_{n})]$$

$$S^{H} = \mathbb{C}[x_{1}, \dots, x_{k}, e_{1}(x_{k} + 1, \dots, x_{n}), \dots, e_{n-k}(x_{k+1}, \dots, x_{n})]$$

$$X(q) = \frac{\text{Hilb}(S^{H}, q)}{\text{Hilb}(S^{G}, q)}$$

= $\frac{1/((1 - q^{1})^{k} \cdot ((1 - q^{1}) \cdots (1 - q^{n-k})))}{1/(1 - q^{1})(1 - q^{2}) \cdots (1 - q^{n})}$
= $[n]_{q}[n - 1]_{q} \cdots [n - (k - 1)]_{q}$

(同) (ヨ) (ヨ) (

Similarly, ordered *k*-subsets *X* of $\{1, 2, ..., n\}$, have transitive action of $G = \mathfrak{S}_n$, and $x_0 = (1, 2, ..., k)$ has $H = G_{x_0} = \mathfrak{S}_1 \times \cdots \times \mathfrak{S}_1 \times \mathfrak{S}_{n-k}$, the Young subgroup permuting $\{k + 1, k + 2, ..., n\}$.

$$S^{G} = \mathbb{C}[e_{1}(x_{1}, \dots, x_{n}), \dots, e_{n}(x_{1}, \dots, x_{n})]$$

$$S^{H} = \mathbb{C}[x_{1}, \dots, x_{k}, e_{1}(x_{k} + 1, \dots, x_{n}), \dots, e_{n-k}(x_{k+1}, \dots, x_{n})]$$

$$X(q) = \frac{\text{Hilb}(S^{H}, q)}{\text{Hilb}(S^{G}, q)}$$

= $\frac{1/((1 - q^{1})^{k} \cdot ((1 - q^{1}) \cdots (1 - q^{n-k})))}{1/(1 - q^{1})(1 - q^{2}) \cdots (1 - q^{n})}$
= $[n]_{q}[n - 1]_{q} \cdots [n - (k - 1)]_{q}$

・ 戸 ト ・ ヨ ト ・ ヨ ト

Similarly, ordered *k*-subsets *X* of $\{1, 2, ..., n\}$, have transitive action of $G = \mathfrak{S}_n$, and $x_0 = (1, 2, ..., k)$ has $H = G_{x_0} = \mathfrak{S}_1 \times \cdots \times \mathfrak{S}_1 \times \mathfrak{S}_{n-k}$, the Young subgroup permuting $\{k + 1, k + 2, ..., n\}$.

$$S^{G} = \mathbb{C}[e_{1}(x_{1}, \dots, x_{n}), \dots, e_{n}(x_{1}, \dots, x_{n})]$$

$$S^{H} = \mathbb{C}[x_{1}, \dots, x_{k}, e_{1}(x_{k} + 1, \dots, x_{n}), \dots, e_{n-k}(x_{k+1}, \dots, x_{n})]$$

$$X(q) = \frac{\text{Hilb}(S^{H}, q)}{\text{Hilb}(S^{G}, q)}$$

= $\frac{1/((1 - q^{1})^{k} \cdot ((1 - q^{1}) \cdots (1 - q^{n-k})))}{1/(1 - q^{1})(1 - q^{2}) \cdots (1 - q^{n})}$
= $[n]_{q}[n - 1]_{q} \cdots [n - (k - 1)]_{q}$

く 伺 と く ヨ と く ヨ と …

What is magical about regular elements?

So what made this general CSP work?

Theorem

For any subgroup H of G a complex reflection group, and any regular element c of G, the triple (X, X(q), C) exhibits the CSP, where

- *X* = *G*/*H*
- $X(q) = \frac{\operatorname{Hilb}(S^H,q)}{\operatorname{Hilb}(S^G,q)}$
- $C = \langle c \rangle$ permuting X via c(gH) = cgH

It is a shadow of Springer's theory of regular elements, generalizing work of Shephard-Todd and Chevalley on the coinvariant algebra for *G*.

< □ > < 同 > < 回 > < 回 >

The coinvariant algebra is the quotient $S/(S^G_+)$ of S by the ideal generated by G-invariant elements S^G_+ of positive degree.

Example

When
$$S^G = \mathbb{F}[f_1, ..., f_n]$$
, then $S^G_+ = (f_1, ..., f_n)$ and $S/(S^G_+) = \mathbb{F}[x_1, ..., x_n]/(f_1, ..., f_n)$.

Example

In particular, the symmetric group \mathfrak{S}_n has $S/(S_+^{\mathfrak{S}_n}) = \mathbb{F}[x_1, \dots, x_n]/(e_1(\mathbf{x}), \dots, e_n(\mathbf{x})).$

・ロト ・聞 ト ・ヨト ・ヨト

The coinvariant algebra is the quotient $S/(S^G_+)$ of S by the ideal generated by G-invariant elements S^G_+ of positive degree.

Example

When
$$S^G = \mathbb{F}[f_1, ..., f_n]$$
, then $S^G_+ = (f_1, ..., f_n)$ and $S/(S^G_+) = \mathbb{F}[x_1, ..., x_n]/(f_1, ..., f_n)$.

Example

In particular, the symmetric group \mathfrak{S}_n has $S/(S_+^{\mathfrak{S}_n}) = \mathbb{F}[x_1, \dots, x_n]/(e_1(\mathbf{x}), \dots, e_n(\mathbf{x})).$

< □ > < 同 > < 回 > < 回 > < 回 >

The coinvariant algebra is the quotient $S/(S^G_+)$ of S by the ideal generated by G-invariant elements S^G_+ of positive degree.

Example

When
$$S^G = \mathbb{F}[f_1, ..., f_n]$$
, then $S^G_+ = (f_1, ..., f_n)$ and $S/(S^G_+) = \mathbb{F}[x_1, ..., x_n]/(f_1, ..., f_n)$.

Example

In particular, the symmetric group \mathfrak{S}_n has $S/(S_+^{\mathfrak{S}_n}) = \mathbb{F}[x_1, \dots, x_n]/(e_1(\mathbf{x}), \dots, e_n(\mathbf{x})).$

< □ > < 同 > < 回 > <

Theorem (Shephard-Todd 1955, Chevalley 1955)

For G a complex reflection group inside $GL_n(\mathbb{C})$, one has an isomorphism of G-representations

 $S/(S^G_+)\cong \mathbb{C}[G]$

where G acts via

- linear substitutions on $S/(S^G_+)$, and
- via the (left-)regular representation on $\mathbb{C}[G]$.

Thus $S/(S^G_+)$ is a natural graded version of $\mathbb{C}[G]$.

< 同 > < 回 > < 回 > -

Theorem (Shephard-Todd 1955, Chevalley 1955)

For G a complex reflection group inside $GL_n(\mathbb{C})$, one has an isomorphism of G-representations

 $S/(S^G_+)\cong \mathbb{C}[G]$

where G acts via

- linear substitutions on $S/(S^G_+)$, and
- via the (left-)regular representation on $\mathbb{C}[G]$.

Thus $S/(S^G_+)$ is a natural graded version of $\mathbb{C}[G]$.

Springer enhanced this with a commuting cyclic action. Given a regular element *c* in *G*, with eigenvector *v* avoiding the reflecting hyperplanes, let $c(v) = \zeta \cdot v$ for some ζ in \mathbb{C}^{\times} .

Theorem (Springer 1974)

For G any complex reflection group and letting C be the cyclic group generated by any regular element c, one has an isomorphism of $G \times C$ -representations

 $S/(S^G_+)\cong \mathbb{C}[G]$

where G acts as before, but now C acts

• via scalar substitutions $x_i \stackrel{c}{\mapsto} \zeta x_i$ on $S/(S^G_+)$, and

via right-multiplication on C[G].

< □ > < 同 > < 回 > < 回 > < 回 >

Springer enhanced this with a commuting cyclic action. Given a regular element *c* in *G*, with eigenvector *v* avoiding the reflecting hyperplanes, let $c(v) = \zeta \cdot v$ for some ζ in \mathbb{C}^{\times} .

Theorem (Springer 1974)

For G any complex reflection group and letting C be the cyclic group generated by any regular element c, one has an isomorphism of $G \times C$ -representations

 $S/(S^G_+)\cong \mathbb{C}[G]$

where G acts as before, but now C acts

- via scalar substitutions $x_i \stackrel{c}{\mapsto} \zeta x_i$ on $S/(S^G_+)$, and
- via right-multiplication on C[G].

< □ > < 同 > < 回 > < 回 >

Taking H-fixed subspaces in Springer's $G \times C$ -isomorphism $S/(S^G_+) \cong \mathbb{C}[G]$

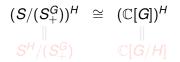
it becomes an isomorphism of *C*-representations:

Any c^d in C acts with same trace on the two extreme ends:

- One can show the trace on the left side $S^H/(S^G_+)$ is $X(\zeta^d)$ where $X(q) = \frac{\text{Hilb}(S^H,q)}{\text{Hilb}(S^G,q)}$, and
- the trace on the right size is $|X^{c^d}|$ where X = G/H.

Taking *H*-fixed subspaces in Springer's $G \times C$ -isomorphism $S/(S^G_+) \cong \mathbb{C}[G]$

it becomes an isomorphism of *C*-representations:



Any c^d in *C* acts with same trace on the two extreme ends:

- One can show the trace on the left side $S^H/(S^G_+)$ is $X(\zeta^d)$ where $X(q) = \frac{\text{Hilb}(S^H,q)}{\text{Hilb}(S^G,q)}$, and
- the trace on the right size is $|X^{c^d}|$ where X = G/H.

Taking *H*-fixed subspaces in Springer's $G \times C$ -isomorphism $S/(S^G_+) \cong \mathbb{C}[G]$

it becomes an isomorphism of *C*-representations:

$(\mathcal{S}/(\mathcal{S}^G_+))^H$	\cong	$(\mathbb{C}[G])^{H}$
$\mathcal{S}^{H}/(\mathcal{S}^{G}_{+})$		$\mathbb{C}[G/H]$

Any c^d in *C* acts with same trace on the two extreme ends:

- One can show the trace on the left side $S^H/(S^G_+)$ is $X(\zeta^d)$ where $X(q) = \frac{\text{Hilb}(S^H,q)}{\text{Hilb}(S^G,q)}$, and
- the trace on the right size is $|X^{c^d}|$ where X = G/H.

Taking *H*-fixed subspaces in Springer's $G \times C$ -isomorphism $S/(S^G_+) \cong \mathbb{C}[G]$

it becomes an isomorphism of *C*-representations:

$(\mathcal{S}/(\mathcal{S}^G_+))^H$	\cong	$(\mathbb{C}[G])^H$
$\mathcal{S}^{H}/(\mathcal{S}^{G}_{+})$		ℂ[<i>G/H</i>]

Any c^d in *C* acts with same trace on the two extreme ends:

- One can show the trace on the left side $S^H/(S^G_+)$ is $X(\zeta^d)$ where $X(q) = \frac{\text{Hilb}(S^H,q)}{\text{Hilb}(S^G,q)}$, and
- the trace on the right size is $|X^{c^d}|$ where X = G/H.

Taking *H*-fixed subspaces in Springer's $G \times C$ -isomorphism $S/(S^G_+) \cong \mathbb{C}[G]$

it becomes an isomorphism of *C*-representations:

$$\begin{array}{rcl} (S/(S^G_+))^H &\cong & (\mathbb{C}[G])^H \\ & \parallel & \parallel \\ S^H/(S^G_+) & & \mathbb{C}[G/H] \end{array}$$

Any c^d in *C* acts with same trace on the two extreme ends:

- One can show the trace on the left side $S^H/(S^G_+)$ is $X(\zeta^d)$ where $X(q) = \frac{\text{Hilb}(S^H,q)}{\text{Hilb}(S^G,q)}$, and
- the trace on the right size is $|X^{c^d}|$ where X = G/H.

This proves that general CSP theorem.

Taking *H*-fixed subspaces in Springer's $G \times C$ -isomorphism $S/(S^G_+) \cong \mathbb{C}[G]$

it becomes an isomorphism of *C*-representations:

$$\begin{array}{rcl} (S/(S^G_+))^H &\cong & (\mathbb{C}[G])^H \\ \| & \| \\ S^H/(S^G_+) & \mathbb{C}[G/H] \end{array}$$

Any c^d in *C* acts with same trace on the two extreme ends:

- One can show the trace on the left side $S^H/(S^G_+)$ is $X(\zeta^d)$ where $X(q) = \frac{\text{Hilb}(S^H,q)}{\text{Hilb}(S^G,q)}$, and
- the trace on the right size is $|X^{c^d}|$ where X = G/H.

This proves that general CSP theorem.

▲御 ▶ ▲ 注 ▶ ▲ 注 ▶ … 注