# Reflection group counting and q-counting

# Vic Reiner Univ. of Minnesota

reiner@math.umn.edu

Summer School on Algebraic and Enumerative Combinatorics S. Miguel de Seide, Portugal July 2-13, 2012

# Outline

## Lecture 1

- Things we count
- What is a finite reflection group?
- Taxonomy of reflection groups
- 2 Lecture 2
  - Back to the Twelvefold Way
  - Transitive actions and CSPs
- Lecture 3
  - Multinomials, flags, and parabolic subgroups
  - Fake degrees
- Lecture 4
  - The Catalan and parking function family
- Bibliography

伺 ト イヨ ト イヨト

The examples of

- *k*-subsets counted by  $\binom{n}{k}$ , and
- ordered k-subsets counted by  $n(n-1)\cdots(n-(k-1))$ ,

are special cases of objects parametrized by a composition  $\alpha = (\alpha_1, \dots, \alpha_\ell)$  of *n*.

#### Definition

An  $\alpha$ -flag (of subsets) is a chain of nested subsets of  $\{1, 2, \dots, n\}$ 

$$\varnothing \subset S_{\alpha_1} \subset S_{\alpha_1+\alpha_2} \subset \cdots \subset S_{\alpha_1+\cdots+\alpha_{\ell-1}} \subset \{1,2,\ldots,n\}$$

in which each subset  $S_j$  has cardinality given by its subscript j.

★御▶ ★ 国▶ ★ 国≯

The examples of

- *k*-subsets counted by  $\binom{n}{k}$ , and
- ordered k-subsets counted by  $n(n-1)\cdots(n-(k-1))$ ,

are special cases of objects parametrized by a composition  $\alpha = (\alpha_1, \dots, \alpha_\ell)$  of *n*.

#### Definition

An  $\alpha$ -flag (of subsets) is a chain of nested subsets of  $\{1, 2, \dots, n\}$ 

$$\varnothing \subset S_{\alpha_1} \subset S_{\alpha_1+\alpha_2} \subset \cdots \subset S_{\alpha_1+\cdots+\alpha_{\ell-1}} \subset \{1, 2, \dots, n\}$$

in which each subset  $S_i$  has cardinality given by its subscript j.

◆□ > ◆◎ > ◆ □ > ◆ □ >

The examples of

- *k*-subsets counted by  $\binom{n}{k}$ , and
- ordered k-subsets counted by  $n(n-1)\cdots(n-(k-1))$ ,

are special cases of objects parametrized by a composition  $\alpha = (\alpha_1, \dots, \alpha_\ell)$  of *n*.

#### Definition

An  $\alpha$ -flag (of subsets) is a chain of nested subsets of  $\{1, 2, \dots, n\}$ 

$$\varnothing \subset S_{\alpha_1} \subset S_{\alpha_1+\alpha_2} \subset \cdots \subset S_{\alpha_1+\cdots+\alpha_{\ell-1}} \subset \{1, 2, \dots, n\}$$

in which each subset  $S_i$  has cardinality given by its subscript j.

◆□ > ◆◎ > ◆ □ > ◆ □ >

#### Proposition

The  $\alpha$ -flags are counted by the multinomial coefficient

$$\binom{n}{\alpha} = \binom{n}{\alpha_1, \ldots, \alpha_\ell} = \frac{n!}{\alpha_1! \cdots \alpha_\ell!}.$$

#### Proof.

They carry a transitive  $\mathfrak{S}_n$ -action, with the stabilizer of one particular flag conjugate to the Young subgroup

$$\mathfrak{S}_{\alpha} = \mathfrak{S}_{\alpha_1} \times \mathfrak{S}_{\alpha_2} \times \cdots \times \mathfrak{S}_{\alpha_\ell}.$$

▲ @ ▶ ▲ ■ ▶ ▲

## Here one has

$$S^{\mathfrak{S}_{\alpha}} = \mathbb{C}\left[\boldsymbol{e}_{1}(\mathbf{x}^{(1)}), \ldots, \boldsymbol{e}_{\alpha_{1}}(\mathbf{x}^{(1)}), \cdots, \boldsymbol{e}_{1}(\mathbf{x}^{(\ell)}), \ldots, \boldsymbol{e}_{\alpha_{\ell}}(\mathbf{x}^{(\ell)})\right]$$

where  $\mathbf{x}^{(i)}$  is the variable set

$$\{\mathbf{X}_{\alpha_1+\cdots+\alpha_{i-1}+1}, \mathbf{X}_{\alpha_1+\cdots+\alpha_{i-1}+2}, \cdots, \mathbf{X}_{\alpha_1+\cdots+\alpha_{i-1}+\alpha_i}\}$$

and hence

$$\begin{aligned} \boldsymbol{X}(\boldsymbol{q}) &= \frac{\operatorname{Hilb}(S^{\mathfrak{S}_{\alpha}}, \boldsymbol{q})}{\operatorname{Hilb}(S^{\mathfrak{S}_{n,q}})} \\ &= \frac{1/((1-q)\cdots(1-q^{\alpha_{1}})\cdots(1-q)\cdots(1-q^{\alpha_{\ell}}))}{1/((1-q)\cdots(1-q^{n}))} \\ &= \frac{[\boldsymbol{n}]!_{q}}{[\alpha_{1}]!_{q}\cdots[\alpha_{\ell}]!_{q}} =: \begin{bmatrix} \boldsymbol{n} \\ \alpha \end{bmatrix}_{q} \end{aligned}$$

the traditional *q*-multinomial.

## Here one has

$$S^{\mathfrak{S}_{\alpha}} = \mathbb{C}\left[e_{1}(\mathbf{x}^{(1)}), \ldots, e_{\alpha_{1}}(\mathbf{x}^{(1)}), \cdots, e_{1}(\mathbf{x}^{(\ell)}), \ldots, e_{\alpha_{\ell}}(\mathbf{x}^{(\ell)})\right]$$

where  $\mathbf{x}^{(i)}$  is the variable set

$$\{\mathbf{X}_{\alpha_1+\cdots+\alpha_{i-1}+1}, \mathbf{X}_{\alpha_1+\cdots+\alpha_{i-1}+2}, \cdots, \mathbf{X}_{\alpha_1+\cdots+\alpha_{i-1}+\alpha_i}\}$$

## and hence

$$\begin{aligned} X(q) &= \frac{\operatorname{Hilb}(S^{\mathfrak{S}_{\alpha}}, q)}{\operatorname{Hilb}(S^{\mathfrak{S}_{n}, q)}} \\ &= \frac{1/((1-q)\cdots(1-q^{\alpha_{1}})\cdots(1-q)\cdots(1-q^{\alpha_{\ell}}))}{1/((1-q)\cdots(1-q^{n}))} \\ &= \frac{[n]!_{q}}{[\alpha_{1}]!_{q}\cdots[\alpha_{\ell}]!_{q}} =: \begin{bmatrix} n \\ \alpha \end{bmatrix}_{q} \end{aligned}$$

the traditional *q*-multinomial.

## Here one has

$$S^{\mathfrak{S}_{\alpha}} = \mathbb{C}\left[e_{1}(\mathbf{x}^{(1)}), \ldots, e_{\alpha_{1}}(\mathbf{x}^{(1)}), \cdots, e_{1}(\mathbf{x}^{(\ell)}), \ldots, e_{\alpha_{\ell}}(\mathbf{x}^{(\ell)})\right]$$

where  $\mathbf{x}^{(i)}$  is the variable set

$$\{\mathbf{X}_{\alpha_1+\cdots+\alpha_{i-1}+1}, \mathbf{X}_{\alpha_1+\cdots+\alpha_{i-1}+2}, \ldots \mathbf{X}_{\alpha_1+\cdots+\alpha_{i-1}+\alpha_i}\}$$

and hence

$$\begin{split} X(q) &= \frac{\operatorname{Hilb}(S^{\mathfrak{S}_{\alpha}}, q)}{\operatorname{Hilb}(S^{\mathfrak{S}_{n}, q)}} \\ &= \frac{1/((1-q)\cdots(1-q^{\alpha_{1}})\cdots(1-q)\cdots(1-q^{\alpha_{\ell}}))}{1/((1-q)\cdots(1-q^{n}))} \\ &= \frac{[n]!_{q}}{[\alpha_{1}]!_{q}\cdots[\alpha_{\ell}]!_{q}} =: \begin{bmatrix} n \\ \alpha \end{bmatrix}_{q} \end{split}$$

the traditional *q*-multinomial.

## Here one has

$$S^{\mathfrak{S}_{\alpha}} = \mathbb{C}\left[e_{1}(\mathbf{x}^{(1)}), \ldots, e_{\alpha_{1}}(\mathbf{x}^{(1)}), \cdots, e_{1}(\mathbf{x}^{(\ell)}), \ldots, e_{\alpha_{\ell}}(\mathbf{x}^{(\ell)})\right]$$

where  $\mathbf{x}^{(i)}$  is the variable set

$$\{\mathbf{X}_{\alpha_1+\cdots+\alpha_{i-1}+1}, \mathbf{X}_{\alpha_1+\cdots+\alpha_{i-1}+2}, \cdots, \mathbf{X}_{\alpha_1+\cdots+\alpha_{i-1}+\alpha_i}\}$$

and hence

$$\begin{aligned} \boldsymbol{X}(\boldsymbol{q}) &= \frac{\operatorname{Hilb}(\boldsymbol{S}^{\mathfrak{S}_{\alpha}}, \boldsymbol{q})}{\operatorname{Hilb}(\boldsymbol{S}^{\mathfrak{S}_{n}, \boldsymbol{q})}} \\ &= \frac{1/((1-q)\cdots(1-q^{\alpha_{1}})\cdots(1-q)\cdots(1-q^{\alpha_{\ell}}))}{1/((1-q)\cdots(1-q^{n}))} \\ &= \frac{[\boldsymbol{n}]!_{\boldsymbol{q}}}{[\alpha_{1}]!_{\boldsymbol{q}}\cdots[\alpha_{\ell}]!_{\boldsymbol{q}}} =: \begin{bmatrix} \boldsymbol{n} \\ \alpha \end{bmatrix}_{\boldsymbol{q}} \end{aligned}$$

the traditional *q*-multinomial.

## Here one has

$$S^{\mathfrak{S}_{\alpha}} = \mathbb{C}\left[e_{1}(\mathbf{x}^{(1)}), \ldots, e_{\alpha_{1}}(\mathbf{x}^{(1)}), \cdots, e_{1}(\mathbf{x}^{(\ell)}), \ldots, e_{\alpha_{\ell}}(\mathbf{x}^{(\ell)})\right]$$

where  $\mathbf{x}^{(i)}$  is the variable set

$$\{\mathbf{X}_{\alpha_1+\cdots+\alpha_{i-1}+1}, \mathbf{X}_{\alpha_1+\cdots+\alpha_{i-1}+2}, \cdots, \mathbf{X}_{\alpha_1+\cdots+\alpha_{i-1}+\alpha_i}\}$$

and hence

$$\begin{aligned} \boldsymbol{X}(\boldsymbol{q}) &= \frac{\operatorname{Hilb}(\boldsymbol{S}^{\mathfrak{S}_{\alpha}}, \boldsymbol{q})}{\operatorname{Hilb}(\boldsymbol{S}^{\mathfrak{S}_{n,q}})} \\ &= \frac{1/((1-q)\cdots(1-q^{\alpha_{1}})\cdots(1-q)\cdots(1-q^{\alpha_{\ell}}))}{1/((1-q)\cdots(1-q^{n}))} \\ &= \frac{[\boldsymbol{n}]!_{q}}{[\alpha_{1}]!_{q}\cdots[\alpha_{\ell}]!_{q}} =: \begin{bmatrix}\boldsymbol{n}\\\alpha\end{bmatrix}_{q} \end{aligned}$$

the traditional *q*-multinomial.

One has a triple (X, X(q), C) giving a CSP where

$$X = \alpha \text{-flags of subsets of } \{1, 2, \dots, n\}$$
$$X(q) := \begin{bmatrix} n \\ \alpha \end{bmatrix}_{q}$$
$$C := \langle c \rangle$$

where c is an *n*-cycle or (n-1)-cycle in  $\mathfrak{S}_n$ .

・ロン・雪と・雪と、 ヨン・

= 900

# But *q*-multinomials have further meanings

 $W = \mathfrak{S}_n$  as a Coxeter group, has usual length function  $\ell(w) = \ell_S(w)$  with respect to Coxeter generators *S*, and

 $\sum_{w\in W} q^{\ell(w)} = [n]!_q.$ 

Similarly  $W_J = \mathfrak{S}_{\alpha}$  is a Coxeter group in its own right, a parabolic subgroup, inheriting the same length function, with

$$\sum_{w\in W_J}q^{\ell(w)}=[\alpha_1]!_q\cdots[\alpha_\ell]!_q.$$

The theory says the minimum length coset representatives  $W^J$  for  $W/W_J$  will have

$$\sum_{w \in W^J} q^{\ell(w)} = \frac{\sum_{w \in W} q^{\ell(w)}}{\sum_{w \in W_J} q^{\ell(w)}} = \frac{[n]!_q}{[\alpha_1]!_q \cdots [\alpha_\ell]!_q} = \begin{bmatrix} n \\ \alpha \end{bmatrix}_q.$$

# But *q*-multinomials have further meanings

 $W = \mathfrak{S}_n$  as a Coxeter group, has usual length function  $\ell(w) = \ell_S(w)$  with respect to Coxeter generators *S*, and

$$\sum_{w\in W} q^{\ell(w)} = [n]!_q.$$

Similarly  $W_J = \mathfrak{S}_{\alpha}$  is a Coxeter group in its own right, a parabolic subgroup, inheriting the same length function, with

$$\sum_{w\in W_J} q^{\ell(w)} = [\alpha_1]!_q \cdots [\alpha_\ell]!_q.$$

The theory says the minimum length coset representatives  $W^J$  for  $W/W_J$  will have

$$\sum_{w \in W^J} q^{\ell(w)} = \frac{\sum_{w \in W} q^{\ell(w)}}{\sum_{w \in W_J} q^{\ell(w)}} = \frac{[n]!_q}{[\alpha_1]!_q \cdots [\alpha_\ell]!_q} = \begin{bmatrix} n \\ \alpha \end{bmatrix}_q.$$

# But *q*-multinomials have further meanings

 $W = \mathfrak{S}_n$  as a Coxeter group, has usual length function  $\ell(w) = \ell_S(w)$  with respect to Coxeter generators *S*, and

$$\sum_{w\in W} q^{\ell(w)} = [n]!_q.$$

Similarly  $W_J = \mathfrak{S}_{\alpha}$  is a Coxeter group in its own right, a parabolic subgroup, inheriting the same length function, with

$$\sum_{w\in W_J} q^{\ell(w)} = [\alpha_1]!_q \cdots [\alpha_\ell]!_q.$$

The theory says the minimum length coset representatives  $W^J$  for  $W/W_J$  will have

$$\sum_{w \in \mathbf{W}^J} q^{\ell(w)} = \frac{\sum_{w \in \mathbf{W}} q^{\ell(w)}}{\sum_{w \in \mathbf{W}_J} q^{\ell(w)}} = \frac{[n]!_q}{[\alpha_1]!_q \cdots [\alpha_\ell]!_q} = \begin{bmatrix} n \\ \alpha \end{bmatrix}_q.$$

## Definition

For any field  $\mathbb{F}$  and composition  $\alpha$  of *n*, one can consider the partial flag variety of all  $\alpha$ -flags of  $\mathbb{F}$ -subspaces in  $\mathbb{F}^n$ 

$$\{\mathbf{0}\} \subset V_{\alpha_1} \subset V_{\alpha_1 + \alpha_2} \subset \cdots \subset V_{\alpha_1 + \cdots + \alpha_{\ell-1}} \subset \mathbb{F}^n$$

Alternatively, it is the homogeneous space  $G/P_{\alpha}$  where  $G = GL_n(\mathbb{F})$  and  $P_{\alpha}$  is the block-triangular matrix subgroup fixing a standard  $\alpha$ -flag where  $V_i = \mathbb{F}e_1 + \mathbb{F}e_2 + \cdots + \mathbb{F}e_i$ .

## $G/P_{\alpha}$ turns out to be a

- smooth projective variety, with
- Schubert cell decomposition  $X_w$ , indexed by w in  $W^J$ :

$$G/P_{\alpha} = \bigsqcup_{w \in W^J} X_w$$

• and the Schubert cell  $X_w = BwP_\alpha$  isomorphic to  $\mathbb{F}^{\ell(w)}$ 

## Definition

For any field  $\mathbb{F}$  and composition  $\alpha$  of *n*, one can consider the partial flag variety of all  $\alpha$ -flags of  $\mathbb{F}$ -subspaces in  $\mathbb{F}^n$ 

$$\{\mathbf{0}\} \subset V_{\alpha_1} \subset V_{\alpha_1 + \alpha_2} \subset \cdots \subset V_{\alpha_1 + \cdots + \alpha_{\ell-1}} \subset \mathbb{F}^n$$

Alternatively, it is the homogeneous space  $G/P_{\alpha}$  where  $G = GL_n(\mathbb{F})$  and  $P_{\alpha}$  is the block-triangular matrix subgroup fixing a standard  $\alpha$ -flag where  $V_i = \mathbb{F}e_1 + \mathbb{F}e_2 + \cdots + \mathbb{F}e_i$ .

## $G/P_{lpha}$ turns out to be a

- smooth projective variety, with
- Schubert cell decomposition  $X_w$ , indexed by w in  $W^J$ :

$$G/P_{\alpha} = \bigsqcup_{w \in W^J} X_w$$

• and the Schubert cell  $X_w = BwP_\alpha$  isomorphic to  $\mathbb{F}^{\ell(w)}$ 

## Definition

For any field  $\mathbb{F}$  and composition  $\alpha$  of *n*, one can consider the partial flag variety of all  $\alpha$ -flags of  $\mathbb{F}$ -subspaces in  $\mathbb{F}^n$ 

$$\{\mathbf{0}\} \subset V_{\alpha_1} \subset V_{\alpha_1 + \alpha_2} \subset \cdots \subset V_{\alpha_1 + \cdots + \alpha_{\ell-1}} \subset \mathbb{F}^n$$

Alternatively, it is the homogeneous space  $G/P_{\alpha}$  where  $G = GL_n(\mathbb{F})$  and  $P_{\alpha}$  is the block-triangular matrix subgroup fixing a standard  $\alpha$ -flag where  $V_i = \mathbb{F}e_1 + \mathbb{F}e_2 + \cdots + \mathbb{F}e_i$ .

## $G/P_{\alpha}$ turns out to be a

- smooth projective variety, with
- Schubert cell decomposition  $X_w$ , indexed by w in  $W^J$ :

$$G/P_{\alpha} = \bigsqcup_{w \in W^J} X_w$$

• and the Schubert cell  $X_w = BwP_\alpha$  isomorphic to  $\mathbb{P}^{\ell(w)}$ 

## Definition

For any field  $\mathbb{F}$  and composition  $\alpha$  of *n*, one can consider the partial flag variety of all  $\alpha$ -flags of  $\mathbb{F}$ -subspaces in  $\mathbb{F}^n$ 

$$\{\mathbf{0}\} \subset V_{\alpha_1} \subset V_{\alpha_1 + \alpha_2} \subset \cdots \subset V_{\alpha_1 + \cdots + \alpha_{\ell-1}} \subset \mathbb{F}^n$$

Alternatively, it is the homogeneous space  $G/P_{\alpha}$  where  $G = GL_n(\mathbb{F})$  and  $P_{\alpha}$  is the block-triangular matrix subgroup fixing a standard  $\alpha$ -flag where  $V_i = \mathbb{F}e_1 + \mathbb{F}e_2 + \cdots + \mathbb{F}e_i$ .

## $G/P_{\alpha}$ turns out to be a

- smooth projective variety, with
- Schubert cell decomposition  $X_w$ , indexed by w in  $W^J$ :

$$G/P_{\alpha} = \bigsqcup_{\mathbf{w} \in \mathbf{W}^J} X_{\mathbf{w}}$$

• and the Schubert cell  $X_w = BwP_\alpha$  isomorphic to  $\mathbb{F}^{\ell(w)}$ .

This lets one prove these classical facts about  $X(q) = \begin{bmatrix} n \\ \alpha \end{bmatrix}_q$ .

#### Theorem

- When  $\mathbb{F} = \mathbb{F}_q$ , one has  $X(q) = |G/P_{\alpha}|$ .
- When  $\mathbb{F} = \mathbb{R}$ , one has

$$X(q) = \operatorname{Poin}_{\mathbb{Z}_2}(G/P_{lpha}, q) := \sum_{i \geq 0} q^i \cdot \dim_{\mathbb{Z}_2} H_i(G/P_{lpha}; \mathbb{Z}_2).$$

• When  $\mathbb{F} = \mathbb{C}$ , one has

$$X(q) = \operatorname{Poin}_{\mathbb{Z}}(G/P_{\alpha}, q^{\frac{1}{2}}) := \sum_{i \geq 0} q^{i} \cdot \operatorname{rank}_{\mathbb{Z}}H_{2i}(G/P_{\alpha}; \mathbb{Z}).$$

(日)

This lets one prove these classical facts about  $X(q) = \begin{bmatrix} n \\ \alpha \end{bmatrix}_{q}$ .

#### Theorem

- When  $\mathbb{F} = \mathbb{F}_q$ , one has  $X(q) = |G/P_{\alpha}|$ .
- When  $\mathbb{F} = \mathbb{R}$ , one has

$$X(q) = \operatorname{Poin}_{\mathbb{Z}_2}(G/P_{lpha}, q) := \sum_{i \geq 0} q^i \cdot \dim_{\mathbb{Z}_2} H_i(G/P_{lpha}; \mathbb{Z}_2).$$

• When  $\mathbb{F} = \mathbb{C}$ , one has

$$X(q) = \operatorname{Poin}_{\mathbb{Z}}(G/P_{\alpha}, q^{\frac{1}{2}}) := \sum_{i \geq 0} q^{i} \cdot \operatorname{rank}_{\mathbb{Z}}H_{2i}(G/P_{\alpha}; \mathbb{Z}).$$

ヘロン 人間 とくほとくほど

This lets one prove these classical facts about  $X(q) = \begin{bmatrix} n \\ \alpha \end{bmatrix}_q$ .

#### Theorem

- When  $\mathbb{F} = \mathbb{F}_q$ , one has  $X(q) = |G/P_{\alpha}|$ .
- When  $\mathbb{F} = \mathbb{R}$ , one has

$$X(q) = \operatorname{Poin}_{\mathbb{Z}_2}(G/P_\alpha, q) := \sum_{i \ge 0} q^i \cdot \dim_{\mathbb{Z}_2} H_i(G/P_\alpha; \mathbb{Z}_2).$$

• When  $\mathbb{F} = \mathbb{C}$ , one has

$$X(q) = \operatorname{Poin}_{\mathbb{Z}}(G/P_{\alpha}, q^{\frac{1}{2}}) := \sum_{i \geq 0} q^{i} \cdot \operatorname{rank}_{\mathbb{Z}}H_{2i}(G/P_{\alpha}; \mathbb{Z}).$$

This lets one prove these classical facts about  $X(q) = \begin{bmatrix} n \\ \alpha \end{bmatrix}_q$ .

#### Theorem

- When  $\mathbb{F} = \mathbb{F}_q$ , one has  $X(q) = |G/P_{\alpha}|$ .
- When  $\mathbb{F} = \mathbb{R}$ , one has

$$X(q) = \operatorname{Poin}_{\mathbb{Z}_2}(G/P_\alpha, q) := \sum_{i \ge 0} q^i \cdot \dim_{\mathbb{Z}_2} H_i(G/P_\alpha; \mathbb{Z}_2).$$

• When  $\mathbb{F} = \mathbb{C}$ , one has

$$\boldsymbol{X}(\boldsymbol{q}) = \operatorname{Poin}_{\mathbb{Z}}(\boldsymbol{G}/\boldsymbol{P}_{\alpha}, \boldsymbol{q}^{\frac{1}{2}}) := \sum_{i \geq 0} \boldsymbol{q}^{i} \cdot \operatorname{rank}_{\mathbb{Z}} \boldsymbol{H}_{2i}(\boldsymbol{G}/\boldsymbol{P}_{\alpha}; \mathbb{Z}).$$

▲ □ ▶ ▲ □ ▶ ▲

#### We've seen the Boolean algebra $2^{n-1}$

of all compositions  $\alpha = (\alpha_1, \dots, \alpha_\ell)$  of *n* generalizes from  $W = \mathfrak{S}_n$  to real reflection groups *W* with simple generators *S*:

 $2^{n-1}$  generalizes to the Boolean algebra  $2^{S}$ , with  $\alpha$  corresponding to the subset  $J \subseteq S$  generating  $W_{J} = \mathfrak{S}_{\alpha}$ 

#### Example

For  $W = \mathfrak{S}_9$  with  $S = \{s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8\}$ , the composition  $\alpha = (2, 4, 3)$  corresponds to the subset  $J = \{s_1, s_3, s_4, s_5, s_7, s_8\}$  generating  $W_J = \mathfrak{S}_2 \times \mathfrak{S}_4 \times \mathfrak{S}_3$ .

(日)

We've seen the Boolean algebra  $2^{n-1}$ 

of all compositions  $\alpha = (\alpha_1, \dots, \alpha_\ell)$  of *n* generalizes from  $W = \mathfrak{S}_n$  to real reflection groups *W* with simple generators *S*:

 $2^{n-1}$  generalizes to the Boolean algebra  $2^S$ , with  $\alpha$  corresponding to the subset  $J \subseteq S$  generating  $W_J = \mathfrak{S}_{\alpha}$ 

#### Example

For  $W = \mathfrak{S}_9$  with  $S = \{s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8\}$ , the composition  $\alpha = (2, 4, 3)$  corresponds to the subset  $J = \{s_1, s_3, s_4, s_5, s_7, s_8\}$  generating  $W_J = \mathfrak{S}_2 \times \mathfrak{S}_4 \times \mathfrak{S}_3$ .

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

One has q-analogues of  $|W|, |W^J|, [W : W_J] = |W^J|$  as before:

• 
$$\sum_{w \in W} q^{\ell(w)} = [d_1]_q [d_2]_q \cdots [d_n]_q$$

•  $\sum_{w \in W_J} q^{\ell(w)} = [d_1^J]_q [d_2^J]_q \cdots [d_n^J]_q$ 

• 
$$\sum_{w \in W^J} q^{\ell(w)} = \frac{\sum_{w \in W} q^{\ell(w)}}{\sum_{w \in W_J} q^{\ell(w)}} = \frac{[d_1]_q [d_2]_q \cdots [d_n]_q}{[d_1^J]_q [d_2^J]_q \cdots [d_n^J]_q}.$$

One has *q*-analogues of |W|,  $|W^J|$ ,  $[W : W_J] = |W^J|$  as before:

• 
$$\sum_{w \in W} q^{\ell(w)} = [d_1]_q [d_2]_q \cdots [d_n]_q$$

•  $\sum_{w \in W_J} q^{\ell(w)} = [d_1^J]_q [d_2^J]_q \cdots [d_n^J]_q$ 

• 
$$\sum_{w \in W^J} q^{\ell(w)} = \frac{\sum_{w \in W} q^{\ell(w)}}{\sum_{w \in W_J} q^{\ell(w)}} = \frac{[d_1]_q [d_2]_q \cdots [d_n]_q}{[d_1^J]_q [d_2^J]_q \cdots [d_n^J]_q}$$

通り イヨト イヨト

One has *q*-analogues of |W|,  $|W^J|$ ,  $[W : W_J] = |W^J|$  as before:

• 
$$\sum_{w \in W} q^{\ell(w)} = [d_1]_q [d_2]_q \cdots [d_n]_q$$

•  $\sum_{w \in W_J} q^{\ell(w)} = [d_1^J]_q [d_2^J]_q \cdots [d_n^J]_q$ 

• 
$$\sum_{w \in W^J} q^{\ell(w)} = \frac{\sum_{w \in W} q^{\ell(w)}}{\sum_{w \in W_J} q^{\ell(w)}} = \frac{[d_1]_q [d_2]_q \cdots [d_n]_q}{[d_1^J]_q [d_2^J]_q \cdots [d_n^J]_q}$$

・ 値 と ・ 目 と ・ ・ 雪 と

One has *q*-analogues of |W|,  $|W^J|$ ,  $[W : W_J] = |W^J|$  as before:

• 
$$\sum_{w \in W} q^{\ell(w)} = [d_1]_q [d_2]_q \cdots [d_n]_q$$

•  $\sum_{w \in W_J} q^{\ell(w)} = [d_1^J]_q [d_2^J]_q \cdots [d_n^J]_q$ 

• 
$$\sum_{w \in W^J} q^{\ell(w)} = \frac{\sum_{w \in W} q^{\ell(w)}}{\sum_{w \in W_J} q^{\ell(w)}} = \frac{[d_1]_q [d_2]_q \cdots [d_n]_q}{[d_1^J]_q [d_2^J]_q \cdots [d_n^J]_q}$$

過 とく ヨ とく ヨ とう

One has *q*-analogues of |W|,  $|W^J|$ ,  $[W : W_J] = |W^J|$  as before:

• 
$$\sum_{w \in W} q^{\ell(w)} = [d_1]_q [d_2]_q \cdots [d_n]_q$$
  
•  $\sum_{w \in W_J} q^{\ell(w)} = [d_1^J]_q [d_2^J]_q \cdots [d_n^J]_q$   
•  $\sum_{w \in W^J} q^{\ell(w)} = \frac{\sum_{w \in W} q^{\ell(w)}}{\sum_{w \in W_J} q^{\ell(w)}} = \frac{[d_1]_q [d_2]_q \cdots [d_n]_q}{[d_1^J]_q [d_2^J]_q \cdots [d_n^J]_q}.$ 

伺 と く ヨ と く ヨ と …

In the above setting, one has a CSP triple (X, X(q), C) with

 $X = W/W_J$ 

$$\begin{split} \mathcal{K}(q) &= \frac{\mathrm{Hilb}(S^{W_J}, q)}{\mathrm{Hilb}(S^W, q)} = \sum_{w \in W^J} q^{\ell(w)} = \prod_{i=1}^n \frac{[d_i]_{ci}}{[d_i^J]_{ci}} \\ \mathcal{C} &= \langle \boldsymbol{c} \rangle \end{split}$$

where c is any regular element of W, and C acts on  $W/W_J$  via left-translation of cosets  $wW_J$ .

In the above setting, one has a CSP triple (X, X(q), C) with

 $X = W/W_J$ 

$$X(q) = rac{\mathrm{Hilb}(S^{W_J}, q)}{\mathrm{Hilb}(S^W, q)} = \sum_{w \in W^J} q^{\ell(w)} = \prod_{i=1}^n rac{[d_i]_d}{[d_i^J]_d}$$
  
 $C = \langle c 
angle$ 

where c is any regular element of W, and C acts on  $W/W_J$  via left-translation of cosets  $wW_J$ .

In the above setting, one has a CSP triple (X, X(q), C) with

$$X = \frac{W/W_J}{X(q)}$$
$$X(q) = \frac{\text{Hilb}(S^{W_J}, q)}{\text{Hilb}(S^{W}, q)} = \sum_{w \in W^J} q^{\ell(w)} = \prod_{i=1}^n \frac{[d_i]_q}{[d_i^J]_q}$$
$$C = \langle c \rangle$$

where c is any regular element of W, and C acts on  $W/W_J$  via left-translation of cosets  $wW_J$ .

In the above setting, one has a CSP triple (X, X(q), C) with

 $X = W/W_J$ 

$$X(q) = rac{\mathrm{Hilb}(\mathcal{S}^{W_J}, q)}{\mathrm{Hilb}(\mathcal{S}^{W}, q)} = \sum_{w \in W^J} q^{\ell(w)} = \prod_{i=1}^n rac{[d_i]_q}{[d_i^J]_q}$$
 $C = \langle c 
angle$ 

where c is any regular element of W, and C acts on  $W/W_J$  via left-translation of cosets  $wW_J$ .

・ 同 ト ・ ヨ ト ・ ヨ ト

# Furthermore, if W is also a Weyl group, then there is an associated semisimple algebraic group G over any field $\mathbb{F}$ .

Corresponding to the subset  $J \subseteq S$ , one has a parabolic subgroup  $P_J$  of G, playing the role of  $P_{\alpha}$ .

One again has the generalized partial flag variety  $G/P_J$ , which is smooth, projective, with a Schubert cell decomposition into cells  $X_w \cong \mathbb{F}^{\ell(w)}$  indexed by *w* in  $W^J$ .

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

Furthermore, if W is also a Weyl group, then there is an associated semisimple algebraic group G over any field  $\mathbb{F}$ .

Corresponding to the subset  $J \subseteq S$ , one has a parabolic subgroup  $P_J$  of G, playing the role of  $P_{\alpha}$ .

One again has the generalized partial flag variety  $G/P_J$ , which is smooth, projective, with a Schubert cell decomposition into cells  $X_w \cong \mathbb{F}^{\ell(w)}$  indexed by *w* in  $W^J$ .

Furthermore, if W is also a Weyl group, then there is an associated semisimple algebraic group G over any field  $\mathbb{F}$ .

Corresponding to the subset  $J \subseteq S$ , one has a parabolic subgroup  $P_J$  of G, playing the role of  $P_{\alpha}$ .

One again has the generalized partial flag variety  $G/P_J$ , which is smooth, projective, with a Schubert cell decomposition into cells  $X_w \cong \mathbb{F}^{\ell(w)}$  indexed by *w* in  $W^J$ .

This leads to similar geometric interpretations for

$$X(q) = \frac{\operatorname{Hilb}(S^{W_J}, q)}{\operatorname{Hilb}(S^{W}, q)} = \sum_{w \in W^J} q^{\ell(w)} = \prod_{i=1}^n \frac{[d_i]_q}{[d_i^J]_q}$$

#### Theorem

- When  $\mathbb{F} = \mathbb{F}_q$ , one has  $X(q) = |G/P_J|$ .
- When  $\mathbb{F} = \mathbb{R}$ , one has  $X(q) = \operatorname{Poin}_{\mathbb{Z}_2}(G/P_J, q) := \sum_{i \ge 0} q^i \cdot \dim_{\mathbb{Z}_2} H_i(G/P_J; \mathbb{Z}_2).$
- When  $\mathbb{F} = \mathbb{C}$ , one has  $X(q) = \operatorname{Poin}_{\mathbb{Z}}(G/P_J, q^{\frac{1}{2}}) := \sum_{i \ge 0} q^i \cdot \operatorname{rank}_{\mathbb{Z}} H_{2i}(G/P_J; \mathbb{Z}).$

This leads to similar geometric interpretations for

$$X(q) = \frac{\operatorname{Hilb}(S^{W_J}, q)}{\operatorname{Hilb}(S^{W}, q)} = \sum_{w \in W^J} q^{\ell(w)} = \prod_{i=1}^n \frac{[d_i]_q}{[d_i^J]_q}$$

#### Theorem

• When  $\mathbb{F} = \mathbb{F}_q$ , one has  $X(q) = |G/P_J|$ .

• When 
$$\mathbb{F} = \mathbb{R}$$
, one has  
 $X(q) = \operatorname{Poin}_{\mathbb{Z}_2}(G/P_J, q) := \sum_{i \ge 0} q^i \cdot \dim_{\mathbb{Z}_2} H_i(G/P_J; \mathbb{Z}_2).$   
• When  $\mathbb{F} = \mathbb{C}$  one has

 $X(q) = \operatorname{Poin}_{\mathbb{Z}}(G/P_J, q^{\frac{1}{2}}) := \sum_{i \ge 0} q^i \cdot \operatorname{rank}_{\mathbb{Z}}H_{2i}(G/P_J; \mathbb{Z}).$ 

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ □

This leads to similar geometric interpretations for

$$X(q) = \frac{\operatorname{Hilb}(S^{W_J}, q)}{\operatorname{Hilb}(S^{W}, q)} = \sum_{w \in W^J} q^{\ell(w)} = \prod_{i=1}^n \frac{[d_i]_q}{[d_i^J]_q}$$

#### Theorem

- When  $\mathbb{F} = \mathbb{F}_q$ , one has  $X(q) = |G/P_J|$ .
- When  $\mathbb{F} = \mathbb{R}$ , one has  $X(q) = \operatorname{Poin}_{\mathbb{Z}_2}(G/P_J, q) := \sum_{i \ge 0} q^i \cdot \dim_{\mathbb{Z}_2} H_i(G/P_J; \mathbb{Z}_2).$ • When  $\mathbb{F} = \mathbb{C}$ , one has

 $X(q) = \operatorname{Poin}_{\mathbb{Z}}(G/P_J, q^{\frac{1}{2}}) := \sum_{i \ge 0} q^i \cdot \operatorname{rank}_{\mathbb{Z}} H_{2i}(G/P_J; \mathbb{Z}).$ 

・ 同 ト ・ ヨ ト ・ ヨ ト

This leads to similar geometric interpretations for

$$X(q) = \frac{\operatorname{Hilb}(S^{W_J}, q)}{\operatorname{Hilb}(S^{W}, q)} = \sum_{w \in W^J} q^{\ell(w)} = \prod_{i=1}^n \frac{[d_i]_q}{[d_i^J]_q}$$

#### Theorem

- When  $\mathbb{F} = \mathbb{F}_q$ , one has  $X(q) = |G/P_J|$ .
- When  $\mathbb{F} = \mathbb{R}$ , one has  $X(q) = \operatorname{Poin}_{\mathbb{Z}_2}(G/P_J, q) := \sum_{i \ge 0} q^i \cdot \dim_{\mathbb{Z}_2} H_i(G/P_J; \mathbb{Z}_2).$
- When  $\mathbb{F} = \mathbb{C}$ , one has  $X(q) = \operatorname{Poin}_{\mathbb{Z}}(G/P_J, q^{\frac{1}{2}}) := \sum_{i \ge 0} q^i \cdot \operatorname{rank}_{\mathbb{Z}} H_{2i}(G/P_J; \mathbb{Z}).$

< 同 > < 回 > < 回 > -

#### Definition (Stembridge 1994)

Suppose one has a CSP triple (X, X(q), C) has the cyclic group  $C = \mathbb{Z}_2 = \langle \tau \rangle$  of order two.

In other words, one has  $\tau$  is an involution on X, and

X(+1) = |X| $X(-1) = |X^{ au}| = \{x \in X : au(x) = x\}$ 

Then Stembridge called this a q = -1 phenomenon, (pre-dating CSPs).

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

#### Definition (Stembridge 1994)

Suppose one has a CSP triple (X, X(q), C) has the cyclic group  $C = \mathbb{Z}_2 = \langle \tau \rangle$  of order two.

In other words, one has  $\tau$  is an involution on X, and

$$X(+1) = |X|$$
  
 $X(-1) = |X^{\tau}| = \{x \in X : \tau(x) = x\}$ 

Then Stembridge called this a q = -1 phenomenon, (pre-dating CSPs).

・ 同 ト ・ ヨ ト ・ ヨ ト

# A q = -1 phenomenon involving partitions

#### Definition

Say that a number partition  $\lambda = (\lambda_1 \ge \lambda_2 \ge \lambda_\ell > 0)$  fits in a  $k \times (n-k)$  rectangle if  $\lambda_1 \le n-k$  and  $\ell \le k$ .

| $\lambda = 553 = 5530$ fits in a 4 $\times$ 5 rectangle: |  |  |  |
|----------------------------------------------------------|--|--|--|
|                                                          |  |  |  |
|                                                          |  |  |  |
|                                                          |  |  |  |

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

# A q = -1 phenomenon involving partitions

#### Definition

Say that a number partition  $\lambda = (\lambda_1 \ge \lambda_2 \ge \lambda_\ell > 0)$  fits in a  $k \times (n-k)$  rectangle if  $\lambda_1 \le n-k$  and  $\ell \le k$ .

| Example                                                  |   |   |   |   |   |
|----------------------------------------------------------|---|---|---|---|---|
| $\lambda = 553 = 5530$ fits in a 4 $\times$ 5 rectangle: | 5 |   |   |   |   |
|                                                          | 5 |   |   |   |   |
|                                                          | 3 |   |   | • | • |
|                                                          | 0 | • | • |   | • |

< ロ > < 同 > < 回 > < 回 > < □ > <

# The *q*-binomial *q*-counts partitions in a rectangle

#### Theorem

$$\begin{bmatrix} n \\ k \end{bmatrix}_{q} = \sum_{\substack{\lambda \text{ fitting in a} \\ k \times (n-k) \text{ rectangle}}} q^{|\lambda|}.$$

#### Proof.

See the exercises.

## Example



# The *q*-binomial *q*-counts partitions in a rectangle

#### Theorem

$$\begin{bmatrix} n \\ k \end{bmatrix}_{q} = \sum_{\substack{\lambda \text{ fitting in a} \\ k \times (n-k) \text{ rectangle}}} q^{|\lambda|}.$$

#### Proof.

## See the exercises.

#### Example



# The *q*-binomial *q*-counts partitions in a rectangle

#### Theorem

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \sum_{\substack{\lambda \text{ fitting in a} \\ k \times (n-k) \text{ rectangle}}} q^{|\lambda|}.$$

#### Proof.

## See the exercises.

Example

$$22 q^4 21 +q^3 20 11 +2q^2 10 +q^1 10 +q^1 10 +q^0 = 1 + q + 2q^2 + q^3 + q^4 = \begin{bmatrix} 4 \\ 2 \end{bmatrix}_q$$

Having fixed the dimensions  $k \times (n - k)$  of the rectangle, define an involution  $\tau$  on all such  $\lambda$  fitting in it, by rotating the picture 180°, and taking the complementary boxes.



How many such  $\lambda$  are fixed by the involution  $\tau$ ?

## Theorem (Stembridge 1994)

The involution  $\tau$  on the set X of  $\lambda$  in a  $k \times (n - k)$  rectangle, with  $X(q) = \begin{bmatrix} n \\ k \end{bmatrix}_q$ , exhibits a q = -1 phenomenon.

(He really proved something more general for plane partitions.)

## Example

E.g. for 
$$n = 4, k = 2$$
,  
 $X = \left\{ \begin{array}{ccc} 22 & \overleftarrow{\leftrightarrow} & 00, \\ X^{\tau} = \left\{ \begin{array}{ccc} 20, & 11 \end{array} \right\} \right\}$  has  
 $X^{\tau} = \left\{ \begin{array}{ccc} 20, & 11 \end{array} \right\}$ ,

and 
$$X(q) = \begin{bmatrix} 4 \\ 2 \end{bmatrix}_q = 1 + q + 2q^2 + q^3 + q^4$$
  
has  $X(-1) = 1 - 1 + 2 - 1 + 1 = 2 = |X^{\tau}|.$ 

## Theorem (Stembridge 1994)

The involution  $\tau$  on the set X of  $\lambda$  in a  $k \times (n - k)$  rectangle, with  $X(q) = \begin{bmatrix} n \\ k \end{bmatrix}_q$ , exhibits a q = -1 phenomenon.

(He really proved something more general for plane partitions.)

## Example

E.g. for 
$$n = 4, k = 2$$
,  
 $X = \left\{ \begin{array}{ccc} 22 \stackrel{\tau}{\leftrightarrow} 00, & 21 \stackrel{\tau}{\leftrightarrow} 10, & \begin{array}{c} 20 & \begin{array}{c} 11 \end{array} \right\}$  has  
 $X^{\tau} = \{20, 11\}, \end{array}$ 

and 
$$X(q) = \begin{bmatrix} 4 \\ 2 \end{bmatrix}_q = 1 + q + 2q^2 + q^3 + q^4$$
  
has  $X(-1) = 1 - 1 + 2 - 1 + 1 = 2 = |X^{\tau}|.$ 

Stembridge's result is a special case, for  $W = \mathfrak{S}_n$  and  $W_J = \mathfrak{S}_k \times \mathfrak{S}_{n-k}$ , of the following.

Let *W* be a finite real reflection group *W*, simple reflections *S*, longest element  $w_0$ , and pick any subset  $J \subseteq S$ .

## Theorem (O. Eng 2001)

The involution  $\tau$  on  $X = W/W_J$  defined by  $\tau(wW_J) := w_0 wW_J$ , with  $X(q) = \sum_{w \in W^J} q^{\ell(w)}$ , gives a q = -1 phenomenon.

#### Proof.

(Not Eng's) It follows from our general CSP: X(q) is our usual for  $X = W/W_J$ , and the longest element  $w_0$  is regular.

< ロ > < 同 > < 回 > < 回 > .