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The Catalan and parking function family

The Catalan numbers

Recall the Catalan number

Cn :=
1

n + 1

(

2n

n

)

counts many things

(see Stanley’s “Enum. Comb. Vol. 2” Exer. 6.19).

Among them are these four:

1 Noncrossing partitions of {1,2, . . . ,n}

2 Nonnesting partitions of {1,2, . . . ,n}

3 Increasing parking functions of length n

4 Triangulations of a convex (n + 2)-gon
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The Catalan and parking function family

Noncrossing partitions

Definition

Draw {1,2, . . . ,n} as points around a circle, and call a set

partition noncrossing if the convex hulls of its blocks are disjoint.

Example

1589|234|67 is noncrossing, while 124|35 is crossing.

4

2

3

6

8
9 1

7

5

1

2

34

5
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The Catalan and parking function family

The poset NC(n) and Narayana numbers

Theorem (Kreweras 1972)

The poset NC(n) of all noncrossing partitions of {1,2, . . . ,n}
inside the partition lattice Πn has the Narayana numbers

Nar(n, k) :=
1

n

(

n

k

)(

n

k − 1

)

as rank numbers.
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The Catalan and parking function family

The noncrossing partition poset NC(4)

1234 Nar(4, 1) = 1
4

(

4
1

)(

4
0

)

= 1

123|4

llllllllllllllll
124|3

rrrrrrrrrrr
134|2

�������
1|234 12|34

:::::::
14|23

LLLLLLLLLLL
Nar(4, 2) = 1

4

(

4
2

)(

4
1

)

= 6

12|3|4

�������

iiiiiiiiiiiiiiiiiiiii
13|2|4

9999999

�������
1|23|4

KKKKKKKKKK
1|2|34

:::::::

�������
14|2|3

RRRRRRRRRRRRRRR

LLLLLLLLLLL

�������
1|24|3

UUUUUUUUUUUUUUUUUUUUU

LLLLLLLLLL
Nar(4, 3) = 1

4

(

4
3

)(

4
2

)

= 6

1|2|3|4

RRRRRRRRRRRRRRR

LLLLLLLLLL

:::::::

�������

rrrrrrrrrr
Nar(4, 4) = 1

4

(

4
4

)(

4
3

)

= 1
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The Catalan and parking function family

Nonnesting partitions

Plot {1,2, . . . ,n} along the x-axis, and depict set partitions by

semicircular arcs in the upper half-plane, connecting i , j in the

same block if no other k with i < k < j is in that block.

Definition

Say the set partition is nonnesting if no pair of arcs nest.

Example

124|35 is nonnesting,

while 1589|234|67 is nesting as arc 15 nests arc 23.

1  2  3  4  5

1   2   3   4   5   6   7   8   9
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The Catalan and parking function family

Narayana numbers and nonnesting partitions

Narayana numbers Nar(n, k) := 1
n

(

n
k

)(

n
k−1

)

also count

nonnesting set partitions with k blocks, or n − k arcs.

Example

Nar(4,2) =
1

4

(

4

2

)(

4

2 − 1

)

= 6

as 1 one of the 7 = S(4,2) partitions of {1,2,3,4} is nesting:

1   2   3    4
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The Catalan and parking function family

Increasing parking functions

Definition

An increasing parking function of length n is a weakly

increasing sequence (a1 ≤ . . . ≤ an) with ai in {1,2, . . . , i}.

Definition

A parking function is sequence (b1, . . . ,bn) whose weakly

increasing rearrangement is an increasing parking function.

Theorem (Konheim and Weiss 1966)

There are (n + 1)n−1 parking functions of length n

By definition parking functions have an Sn-action on positions

w(b1, . . . ,bn) = (bw(1), . . . ,bw(n))

and increasing parking functions represent the Sn-orbits.
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The Catalan and parking function family

Parking functions of length n = 3

Example

The (3 + 1)3−1 = 16 parking functions of length 3,

grouped into the C3 = 1
4

(

6
3

)

= 5 different S3-orbits,

with increasing parking function representative shown leftmost:

111

112 121 211

113 131 311

122 212 221

123 132 213 231 312 321

V. Reiner Reflection group counting and q-counting



The Catalan and parking function family

Narayana numbers and increasing parking functions

The Narayana number N(n, k) also counts increasing parking

functions by their number of distinct values.

Example

The C4 = 1
5

(

8
4

)

= 14 increasing parking functions of length 4,

grouped by number of distinct values:

increasing parking function k N(4,k)

1111 1 1

1112, 1113, 1114 2 6

1122, 1222, 1133

1123, 1124, 1134 3 6

1223, 1224, 1233

1234 4 1

(Or Dyck paths (0,0) → (2n,0) counted by number of peaks.)
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The Catalan and parking function family

Triangulations of an (n + 2)-gon

There are C3 = 5 for a convex (3 + 2)-gon,

and C4 = 14 for a convex (4 + 2)-gon

V. Reiner Reflection group counting and q-counting



The Catalan and parking function family

Triangulations and the associahedron

Theorem (Stasheff 1963, Milnor 1963, Haiman 1984,

Lee 1989, Gelfand-Kapranov-Zelevinksy 1989)

Triangulations of a convex (n + 2)-label the vertices of an

(n − 1)-dimensional convex polytope: the associahedron.

What about faces of higher dimension than the vertices?
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The Catalan and parking function family

Kirkman-Cayley numbers

Theorem (Kirkman 1857, Cayley 1890)

Kirk(n, k) :=
1

k + 1

(

n + k + 1

k

)(

n − 1

k

)

count dissections of the (n + 2)-gon using k diagonals.

Example

Kirk(4,2) = 1
2+1

(

4+2+1
2

)(

4−1
2

)

= 1
3

(

7
2

)(

3
2

)

= 21
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The Catalan and parking function family

Counting faces of associahedra

Kirk(n, k) counts (n − 1 − k)-dim’l faces of the associahedron.

Example

k Kirk(4, k) = 1
k+1

(

4+k+1
k

)(

4−1
k

)

3 14 vertices

2 21 edges

1 9 2-faces

0 1 the 3-face
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The Catalan and parking function family

Kirkman is to Narayana as f -vector is to h-vector

The relation between Kirkman and Narayana numbers is the

(invertible) relation of the f -vector (f0, . . . , fn) of a simple

n-dimensional polytope to its h-vector (h0, . . . ,hn):

n
∑

i=0

fi t
i =

n
∑

i=0

hi(t + 1)n−i .

Example

The 3-dimensional associahedron has f -vector (14,21,9,1),
and h-vector (1,6,6,1).

1

1 9

1 8 21

1 7 13 14

(1, 6, 6, 1)
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The Catalan and parking function family

Reflection group Catalan objects

It turns out that one can at least generalize

noncrossing partitions to well-generated reflection groups

nonnesting partitions to Weyl groups

increasing parking functions to Weyl groups

triangulations to real reflection groups.

These give generalizations of the parking function, Catalan,

Kirkman, Narayana numbers, and for most of them also

q-analogues.

Nevertheless, many mysteries about them remain.
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The Catalan and parking function family

Noncrossing partitions as interval in absolute order

Let c be an n-cycle (1,2, . . . ,n) in W = Sn.

Biane (2002) observed that the map

(W , <) −→ Πn

sending w to its cycle partition restricts to an isomorphism

[e, c] → NC(n)

(123)

��
��
��

77
77
77

QQQ
QQQ

QQQ
QQ (132)

mmm
mmm

mmm
mm

��
��
��

77
77
77

(12)(3) (13)(2) (1)(23)

e

JJJJJJJJ

tttttttt

123

��
��
�

33
33

3

12|3 13|2 23|1

1|2|3

33333
�����
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The Catalan and parking function family

Noncrossing partitions as interval in absolute order

Theorem (Biane 2002)

A permutation w in Sn lies in the absolute order interval [e, c] if

and only if the cycles of w are noncrossing and oriented

clockwise when we draw {1,2, . . . ,n} clockwise around a circle.

Proof.

See the exercises.

Example

4

2

3

6

8
9 1

7

5
4

2

3

6

8
9 1

7

5

V. Reiner Reflection group counting and q-counting



The Catalan and parking function family

Noncrossing partitions as interval in absolute order
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The Catalan and parking function family

Coxeter elements for well-generated groups

Who plays the role of c = (1,2, . . . ,n) for more general W?

Definition

For W any complex reflection group, define the Coxeter number

h :=
1

2
(#{reflections}+#{reflecting hyperplanes}) .
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The Catalan and parking function family

Coxeter elements for well-generated groups

For W well-generated the largest dn of the degrees

(d1 ≤ · · · ≤ dn) has dn = h,

A theorem of Lehrer and Michel (2003) implies existence of a

regular element c of order h with eigenvalue ζ = e
2πi
h .

Definition

Call such an element c a Coxeter element for c.

Example (Coxeter 1948)

For real reflection groups W with simple reflections

S = {s1, . . . , sn}, the product c = s1s2 · · · sn is always a Coxeter

element in the above sense.
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The Catalan and parking function family

Noncrossing partitions for well-generated groups

Definition (Bessis 2003, 2006)

For W a well-generated complex reflection group, define the

poset of noncrossing partitions NC(W ) to be the interval [e, c]
in the absolute order (W , <)

Theorem (Bessis 2006)

The W-noncrossing partition poset NC(W )

• is ranked with rank(w) = n − dim(V w ),

• is self-dual with antiautomorphism w 7→ w−1c,

• is a lattice, and

• has cardinality given by the W-Catalan number

Cat(W ) :=
n
∏

i=1

h + di

di
=

1

|W |

n
∏

i=1

(h + di).
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Cat(W ) :=
n
∏

i=1

h + di

di
=

1

|W |

n
∏

i=1

(h + di).

V. Reiner Reflection group counting and q-counting



The Catalan and parking function family

Noncrossing partitions for well-generated groups

The first two properties (ranked, self-dual) are easy to prove

uniformly, and the self-duality w 7→ w−1c generalizes Kreweras

complementation on NC(n).

The last two properties (lattice, cardinality Cat(W )) have only

case-by-case proofs currently.

The lattice property has uniform proofs for real reflection

groups, due to Brady and Watt (2005) and to Reading (2005).

Problem

Prove |NC(W )| = Cat(W ) uniformly for

• well-generated groups,

• or even just for real reflection groups,

• or even just for Weyl groups.
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Narayana numbers for well-generated groups

Rank numbers of NC(W ) generalize Narayana numbers.

Example

For the hyperoctahedral group W = S
±
n ,

with degrees (d1, . . . ,dn) = (2,4, . . . ,2n), one finds that

• Cat(W ) =
(

2n
n

)

,

• NC(W ) is the subposet of centrally symmetric noncrossing

partitions inside NC(2n),

• there are
(

n
k

)2
elements in NC(W ) of rank k , so these are

the W -Narayana numbers.

(Note that
(

2n
n

)

=
∑

k

(

n
k

)2
.)
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Nonnesting partitions for Weyl groups

Recall we said nonnesting partitions generalize to Weyl groups

W (=crystallographic real reflection groups)

Such groups preserve a lattice, and have choices of root

systems Φ as a W -stable collection of normal vectors ±α to all

the reflecting hyperplanes.

One can always split Φ into positive and negative roots

Φ = Φ+ ⊔ (−Φ+)

by fixing a fundamental chamber C0 in V = Rn cut out by the

hyperplanes, and saying Φ+ are roots pairing positively with C0.
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Nonnesting partitions for Weyl groups

Definition

The root order on Φ+ says that α < β if β − α is a nonnegative

combination of roots in Φ+.

Example

For W = S5, the root order on Φ+ = {ei − ej : 1 ≤ i < j ≤ 5} is

e1 − e5

ww
ww
ww
w

GG
GG

GG
G

e1 − e4

ww
ww
ww
w

GG
GG

GG
G

e2 − e5

ww
ww
ww
w

GG
GG

GG
G

e1 − e3

ww
ww
ww
w

GG
GG

GG
G

e2 − e4

ww
ww
ww
w

GG
GG

GG
G

e3 − e5

ww
ww
ww
w

GG
GG

GG
G

e1 − e2 e2 − e3 e3 − e4 e4 − e5
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Nonnesting partitions for Weyl groups

Postnikov (1996) observed nonnesting partitions of {1,2, . . . ,n}
biject with antichains in the poset Φ+ for Sn:

to each arc i < j associate the root ei − ej .

Example

124|35 is nonnesting, corresponding to antichain

{e1 − e2,e2 − e4,e3 − e5}:
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Nonnesting partitions for Weyl groups

Definition (Postnikov)

For any Weyl group W with a choice of root system Φ and

positive roots Φ+, call an antichain in the poset Φ+ a

nonnesting partition for W .

Let Q be the root lattice Z-spanned by Φ.

Theorem (Shi 1986, Cellini-Papi 2002)

Antichains in the poset Φ+ also parametrize the W-orbits

W\Q/(h + 1)Q when W acts on Q/(h + 1)Q.

Theorem (Haiman 1993)

The (h + 1)n elements of Q/(h + 1)Q fall into Cat(W ) many

W-orbits W\Q/(h + 1)Q.
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Parking functions for Weyl groups

Haiman also pointed out for W = Sn how the root lattice Q can

be identified W -equivariantly with Zn/Z1 ∼= Zn−1 where

1 = (1,1, . . . ,1).

Then parking functions of length n give representatives for the

(n + 1)n−1 different cosets Q/(h + 1)Q = Q/(n + 1)Q.

Thus

• Q/(h + 1)Q generalizes parking functions, and

• its W -orbits W\Q/(h + 1)Q generalize both the increasing

parking functions, and the nonnesting partitions.
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Parking, increasing parking functions for Weyl groups

Shi and Cellini-Papi also biject parking functions and increasing

parking functions with the (h + 1)n chambers cut out by the

Shi arrangement {(α, x) = 0,1 : α ∈ Φ+}

and the subset of Cat(W ) many chambers that lie within the

dominant cone where (α, x) > 0 for all α in Φ+.

Example

The Shi, dominant Shi chambers for W = S3:

Here hn = 4(3−1) = 16 and Cat(W ) = 1
4

(

6
3

)

= 5.
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Narayana numbers for Weyl groups

It has been checked case-by-case that the W -Narayana

numbers defined earlier (=rank numbers of NC(W )) also count

• the nonnesting partitions or antichains A ⊂ Φ+ for which

the intersection subspace

XA :=
⋂

α∈A

Hα

in LW has a given dimension, and

• W -orbits W .x for x in Q/(h + 1)Q, for which the reflection

subgroup Wx ⊂ W stabilizing x has fixed subspace V Wx of

a given dimension.
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More refined: Kreweras numbers

Theorem (Kreweras 1972)

The number of noncrossing partitions of {1,2, . . . ,n} for which

the cycle size partition λ = (λ1, . . . , λℓ) has mi parts of size i is

n!

(n − k + 1)! · m1!m2! · · ·
.

Recall taking the cycle size partition λ of a set partition is

mapping an intersection subspaces to its W -orbit:

LW −→ W\LW

X 7−→ W .X
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Generalization of Kreweras numbers

The case-by-case check of the Narayana number coincidence

actually showed for each W -orbit W .X in W\LW that the

following W -Kreweras numbers coincide:

• number of w in NC(W ) = [e, c] with V w in W .X

• number of antichains A ⊂ Φ+ having the subspace

XA :=
⋂

α∈A Hα in W .X , or equivalently,

• number of W -orbits W .x for x in Q/(h + 1)Q whose

stabilizer subgroup Wx has fixed subspace V Wx in W .X .
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Kreweras numbers have a product formula

For Weyl groups W one even has a product formula.

Theorem (Sommers-Trapa 1997, Broer 1998, Douglass 1999)

The number of antichains A ⊂ Φ+ with XA =
⋂

α∈A Hα in W .X is

1

[NW (WX ) : WX ]

ℓ
∏

i=1

(h + 1 − eX
i )

where eX
i are integers called the Orlik-Solomon exponents of

the restriction A|X to X of the reflection arrangement A.

The Orlik-Solomon exponents are the roots of the restricted

arrangement’s characteristic polynomial

∑

Y∈LA|X

µ(0̂,Y )tdim(Y ) =

ℓ
∏

i=1

(t − eX
i ).
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Triangulations, clusters and Cambrian fans

We won’t do justice to this topic!

In Fomin and Zelevinsky’s theory of cluster algebras, a special

role is played by those of finite type, which have a classfication

parallels that of Weyl groups.

To each such Weyl group and finite type cluster algebra one

associates the cluster fan, ∆W , a complete simplicial fan in

V = Rn.
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Triangulations, clusters and Cambrian fans

Example

The cluster algebra corresponding to W = Sn is isomorphic to

the coordinate ring of the Grassmannian G(2,Cn+2).

It is the subalgebra of C[aij ]i≤2,j≤n+2 generated by 2 × 2 minors

∆i ,j = det

[

a1i a1j

a2i a2j

]

of a 2 × (n + 2)-matrix of indeterminates

[

a11 a12 · · · a1,n+2

a21 a22 · · · a2,n+2

]
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The type A cluster fan

The minors ∆ij are the cluster variables, and they biject with the

diagonals ij in the (n + 2)-gon.

Certain (2n − 3)-element subsets of the minors ∆ij are called

clusters. In this case, clusters biject with triangulations of the

2n-gon, thought of as the diagonals present in the triangulation

(including the n outside diagonals {12,23, . . .}).
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Triangulations, clusters and Cambrian fans

Theorem (Chapoton, Fomin, and Zelevinsky 2002)

A finite type cluster fan is the normal fan of a convex polytope.

Example

For W = S
±
n , it is the Bott-Taubes/cyclohedron/type B

associahedron considered by Bott and Taubes, Simion.

Vertices are centrally symmetric 2n-gon triangulations.
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Triangulations, clusters and Cambrian fans

Theorem (Reading 2006)

For real reflection groups, one can define a Cambrian fan,

coarsening the reflection arrangement fan, combinatorially

isomorphic to the cluster fan for Weyl groups.

Theorem (Hohlweg, Lange and Thomas 2007)

The Cambrian fan is the normal fan of a convex polytope.
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Catalan, Kirkman, Narayana in W-associahedra

Reading also developed theories of c-sortable elements, and

shard intersection order, explaining uniformly the following.

Theorem (Reading 2005)

For real reflection groups W, the W-associahedron (resp.

Cambrian fan) has

• vertices (resp. top dimensional cones) bijecting with

NC(W ), hence counted by Cat(W )), and

• the f -vector to h-vector map sends its face numbers, the

W-Kirkman numbers, into the rank numbers of NC(W ),
the W-Narayana numbers.
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q-parking functions, q-Catalan, q-Kirkman

Where to find natural q-analogues of the

• (h + 1)n many W -parking functions Q/(h + 1)Q,

• Cat(W ) many W -orbits W\Q/(h + 1)Q,

• W -Kirkman many faces of a given dimension in the

W -associahedra?
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Homogeneous systems of parameters again

A starting point was found by Haiman for W = Sn, and later by

others for real reflection groups in work on finite-dimensional

representations of rational Cherednik algebras.

Theorem (Berest-Etingof-Ginzburg 2003, Gordon 2003)

For a real reflection group W acting on V and on

S = Sym(V ∗) = C[x1, . . . , xn], there always exists

• a system of parameters Θ = (θ1, . . . , θn),

• with all θi homogeneous of degree h + 1,

• whose linear span Cθ1 + · · ·Cθn carries the representation

V ∗(∼= V ) inside Sh+1.

V. Reiner Reflection group counting and q-counting



The Catalan and parking function family

Homogeneous systems of parameters again

A starting point was found by Haiman for W = Sn, and later by

others for real reflection groups in work on finite-dimensional

representations of rational Cherednik algebras.

Theorem (Berest-Etingof-Ginzburg 2003, Gordon 2003)

For a real reflection group W acting on V and on

S = Sym(V ∗) = C[x1, . . . , xn], there always exists

• a system of parameters Θ = (θ1, . . . , θn),

• with all θi homogeneous of degree h + 1,

• whose linear span Cθ1 + · · ·Cθn carries the representation

V ∗(∼= V ) inside Sh+1.

V. Reiner Reflection group counting and q-counting



The Catalan and parking function family

Homogeneous systems of parameters again

A starting point was found by Haiman for W = Sn, and later by

others for real reflection groups in work on finite-dimensional

representations of rational Cherednik algebras.

Theorem (Berest-Etingof-Ginzburg 2003, Gordon 2003)

For a real reflection group W acting on V and on

S = Sym(V ∗) = C[x1, . . . , xn], there always exists

• a system of parameters Θ = (θ1, . . . , θn),

• with all θi homogeneous of degree h + 1,

• whose linear span Cθ1 + · · ·Cθn carries the representation

V ∗(∼= V ) inside Sh+1.

V. Reiner Reflection group counting and q-counting



The Catalan and parking function family

Homogeneous systems of parameters again

A starting point was found by Haiman for W = Sn, and later by

others for real reflection groups in work on finite-dimensional

representations of rational Cherednik algebras.

Theorem (Berest-Etingof-Ginzburg 2003, Gordon 2003)

For a real reflection group W acting on V and on

S = Sym(V ∗) = C[x1, . . . , xn], there always exists

• a system of parameters Θ = (θ1, . . . , θn),

• with all θi homogeneous of degree h + 1,

• whose linear span Cθ1 + · · ·Cθn carries the representation

V ∗(∼= V ) inside Sh+1.

V. Reiner Reflection group counting and q-counting



The Catalan and parking function family

h.s.o.p.’s for Sn and S
±
n

Example

For the hyperoctahedral groups S
±
n , one has h = 2n, and one

can take Θ = (x2n+1
1 , . . . , x2n+1

n ).

But in general, these Θ are not so easy to construct!

One seems to need rational Cherednik theory or other insight.

Example (Dunkl 1998)

For the symmetric groups Sn, one has h = n, and one can take

θi = coefficient of tn+1 in

∏n
j=1(1 − xj t)

n+1
n

(1 − xi t)

expanded as an element of Q[x1, . . . , xn][[t]]
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Graded parking spaces

Θ a system of parameters means the quotient S/(Θ) is a

finite-dimensional C-vector space.

Cohen-Macaulayness further implies S is a free module over

C[Θ] := C[θ1, . . . , θn].

Definition

Call the quotient

S/(Θ) = S/(θ1, . . . , θn)

the graded parking space for the real reflection group W .
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Graded parking spaces

Theorem (Haiman 1994, BEG 2003, Gordon 2003)

The graded parking space is isomorphic as W-representation

to the W-permutation representation on Q/(h + 1)Q, with

Hilb(S/(Θ),q) =
Hilb(S,q)

Hilb(C[Θ],q)
=

1/(1 − q)n

1/(1 − qh+1)n
= [h + 1]nq.

the q-parking function number for W.

Its W-fixed subspace as a graded vector space has

Hilb((S/(Θ)W ,q) = Cat(W ,q) :=

n
∏

i=1

[h + di ]q
[di ]q

the q-Catalan number for W.
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Mysteries of the q-Catalan number for W

Sadly, this theory gives the only uniform proof known that

Cat(W ,q) :=

n
∏

i=1

[h + di ]q
[di ]q

lies in N[q], for real reflection groups, or even for Weyl groups.

Problem

Is there a simple statistic stat(−) on any W-Catalan objects

• NC(W ),

• W\Q/(h + 1)Q or antichains in Φ+, or dominant Shi

chambers,

• W-clusters, for which

Cat(W ,q) =
∑

x

qstat(x)?
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q-Catalan in the well-generated case

Work of Gordon and Griffeth (2009) shows that for

well-generated W

Cat(W ,q) =

n
∏

i=1

[h + di ]q
[di ]q

still lies in N[q], but their proof relies on some uniformly-stated

facts about bases for the Hecke algebras HW that have only

been checked case-by-case.

They also suggest how to correctly define Cat(W ,q) for all

complex reflection groups!

V. Reiner Reflection group counting and q-counting



The Catalan and parking function family

q-Catalan in the well-generated case

Work of Gordon and Griffeth (2009) shows that for

well-generated W

Cat(W ,q) =

n
∏

i=1

[h + di ]q
[di ]q

still lies in N[q], but their proof relies on some uniformly-stated

facts about bases for the Hecke algebras HW that have only

been checked case-by-case.

They also suggest how to correctly define Cat(W ,q) for all

complex reflection groups!

V. Reiner Reflection group counting and q-counting



The Catalan and parking function family

CSP’s for the q-Catalan

One has CSP triples (X ,X (q),C) for various of the W -Catalan

objects X and X (q) = Cat(W ,q), with different cyclic actions C.

And sadly, none have been proven in a truly uniform fashion. In

each case, some aspect of the proofs have relied on a fact

checked case-by-case.
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The noncrossing partition CSP

Recall the noncrossing partitions NC(W ) = [e, c] have an

antiautomorphism w 7→ w−1c, the Kreweras complementation.

Doing it twice gives the conjugation automorphism

w 7−→ (w−1c)−1c = c−1wc

Theorem (R.-Stanton-White 2004, Bessis-R. 2007)

One has a CSP triple (X ,X (q),C) where X = NC(W ) and

X (q) = Cat(W ,q) with C = Z/hZ = 〈c〉 acting via conjugation.

The proof makes use of Bessis’s theory of simple tunnels

interpreting NC(W ) in the Lyashko-Looijenga covering.
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The noncrossing partition CSP

Bessis-R. also suggested a generalization involving q-Kreweras

numbers, which was proven and generalized even further in

work of Krattenthaler and Müller (2010), for all well-generated

groups.

Unfortunately this is all checked case-by-case.
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The nonnesting partition CSP

For any poset P, one has simple bijections between its

• order ideals (=sets closed under going downward in P)

• order filters (=sets closed under going upward in P)

• antichains

Specifically, complementation I ↔ P \ I sends order ideals to

order filters, and the maximal (resp. minimal) elements of an

order ideal (resp. order filter) give an antichain which uniquely

determines it.
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Duchet, Brouwer-Schrijver, Deza-Fukuda,

Cameron-FonDerFlaass, Panyushev action

This leads to an interesting cyclic action on the antichains,

considered first for Boolean algebras by Duchet, then for posets

by other authors, and more recently by Panyushev for the

positive root poset Φ+ for a Weyl group W .

Definition

Given an antichain A in a poset P, it generates an ideal

P≤A := {p ∈ P : p ≤ a for some a ∈ A}

with complementary filter P \ P≤A, and then antichain

Ψ(A) := { minimal elements of P \ P≤A }.
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The Ψ action on antichains

Example

(A)={b   ,b   ,b   }1 2 3

b1

2b b3

P \P A
a1 a 2

a3

a1 a 2 a3A={ , , }

P A
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Deza and Fukuda’s example

Example (Deza and Fukuda 1990)

For a matroid on ground set E ,

within the Boolean algebra P := 2E ,

• the bases B form an antichain, with

• the independent sets I equal to P≤B,

• the dependent sets D equal to P \ P≤B, and

• antichain Ψ(B) is the circuits C (=minimal dependent sets).
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The nonnesting partition CSP

Panyushev (2009) conjectured that for P = Φ+ this Ψ operation

on antichains had order 2h.

Bessis-R. conjectured that it actually gave a CSP.

Theorem (Armstrong, Thomas, Stump 2011)

One has a CSP triple (X ,X (q),C) where X is the antichains in

Φ+, and X (q) = Cat(W ,q) with C = Z/2hZ = 〈Ψ〉.

In fact, there is a C-equivariant bijection from this X to the set

NC(W ) with C = Z/2hZ acting via the Kreweras

antiautomorphism w 7→ w−1c, giving another CSP with same

X (q) = Cat(W ,q).

The CSP and bijection in the theorem are constructed and

stated uniformly, but checked case-by-case.
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Triangulations give a CSP

Theorem (R.-Stanton-White 2004)

One has a CSP triple (X ,X (q),C) in which

• X is the triangulations of an (n + 2)-gon,

• X (q) = 1
[n+1]q

[

2n

n

]

q

is the q-Catalan,

• C = 〈c〉 = Z/(n + 2)Z having c act by 2π
n+2 rotation.

V. Reiner Reflection group counting and q-counting



The Catalan and parking function family

Triangulations give a CSP

Example

For n = 4 there are four C-orbits of 6-gon triangulations:

26 3 3

X (q) =
1

[5]q

[

8

4

]

q

=
[8]q [7]q[6]q[5]q
[5]q [4]q[3]q[2]q

= [7]q(1 − q + q2)(1 + q4)

≡ 4 + q + 3q2 + 2q3 + 3q4 + q5 mod q6 − 1

X (ζ0) = X (1) = 7 · 1 · 2 = 14 = |X | = |X c0
|

X (ζ1) = X (ζ5) = 1 · 0 · (1 + ζ4) = 0 = |X c1
| = |X c5

|

X (ζ2) = X (ζ4) = 2 = |X c2
| = |X c4

|

X (ζ3) = X (−1) = 1 · 3 · 2 = 6 = |X c3
|
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The cluster/Cambrian fan CSP

More generally, Fomin and Zelevinsky’s clusters in a cluster

algebra of finite type carry a natural cyclic action

C = Z/(h + 2)Z, generated by the deformed Coxeter element

τ . Similarly, one has such an action on the top dimensional

cones in the Cambrian fan for real reflection groups.

Theorem (Eu and Fu 2008)

In this context, one has a CSP triple (X ,X (q),C) where X is

the set of clusters or top-dimensional cones in the Cambrian

fan, with C = Z/(h + 2)Z as above, and X (q) = Cat(W ,q)

Proven case-by-case.
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The q-Kirkman numbers

What about dissections of the (n + 2)-gon?

Theorem (R.-Stanton-White 2004)

One has a CSP triple (X ,X (q),C) in which

• X is the dissections of an (n + 2)-gon with k diagonals,

• X (q) = Kirk(n, k ,q) = 1
[k+1]q

[

n + k + 1

k

]

q

[

n − 1

k

]

q

.

• C = 〈c〉 = Z/(n + 2)Z having c act by 2π
n+2 rotation.
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The q-Kirkman numbers

Example

For n = 4 and k = 2, there are four C-orbits of dissections:

6 6 6 3

X (q) =
1

[3]q

[

7

2

]

q

[

3

2

]

q

=
1

[3]q

[7]q[6]q
[2]q

[3]q[2]q
[2]q

= [7]q(1 + q2 + q4)

X (ζ0) = X (1) = 7 · 3 = 21 = |X | = |X c0
|

X (ζ1) = X (ζ5) = 1 · 0 = 0 = |X c1
| = |X c5

|

X (ζ2) = X (ζ4) = 1 · 0 = 0 = |X c2
| = |X c4

|

X (ζ3) = X (−1) = 1 · 3 = 3 = |X c3
|
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The q-Kirkman numbers

Eu and Fu were able to prove analogous CSPs for some of the

other real reflection groups, where X were faces in the cluster

complex or cones in the Cambrian fans of a fixed dimension,

using W − q-Kirkman numbers defined case-by-case ad hoc.

The obstacle to a general statement here is lack of a good

general definition for a W − q-Kirkman number.
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W -Kirkman numbers as irreducible multiplicities

An (imperfect) remedy comes from the following observations.

Theorem (Steinberg 1968(?))

For a complex reflection group W acting irreducibly on V = Cn,

the exterior powers ∧kV for k = 0,1,2, . . . ,n are also

irreducible W-representations.

Theorem (Armstrong-R.-Rhoades 2012)

For a real reflection group W, the W-Kirkman number counting

k-dimensional faces in the W-associahedron is the same as

the multiplicity of the W-irreducible ∧kV in the parking function

W-permutation representation on Q/(h + 1)Q.

This was observed for W = Sn by Pak and Postnikov (1995).
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The q-Kirkman numbers

It suggests the following.

Definition

For real reflection groups W define the q-Kirkman number

Kirk(W , k ,q) :=
∑

d≥0

qd · 〈∧kV ,S/(Θ)d )〉W .

This is imperfect as it only coincides with the ad hoc q-Kirkman

numbers used by Eu and Fu for W = Sn and W = S
±
n . In fact,

in some other types, they seem not to give the desired CSP!
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A parking space conjecture

There is a conjecture that would explain at least these:

• why NC(W ) (and clusters) are counted by Cat(W ),

• why X = NC(W ) and X (q) = Cat(W ,q) has a CSP for the

conjugation action of the Coxeter element, and

• why Kirkman numbers give multiplicities of ∧kV in

Q/(h + 1)Q.
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A parking space conjecture

Given a real reflection group W and Θ an h.s.o.p. of degree

h + 1 that carries the (dual) reflection representation V ∗,

assume that one has picked the coordinates x1, . . . , xn so that

V ∗ −→ Cθ1 + · · ·+ Cθn

xi 7−→ θi

defines a W -equivariant isomorphism.

Let VΘ be the subset of V which is the zero locus of the ideal

(θ1 − x1, . . . , θn − xn).

Alternatively, this zero locus can be thought as the fixed points

for the map

V
Θ

−→ V

[x1, . . . , xn] 7−→ [θ1(x), . . . , θn(x)]
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A parking space conjecture

VΘ carries an action of W × C where C = 〈c〉 = Z/hZ, as it is

stable under W acting on V and scalings cd (v) = e
2πi
h
·d · v .

Conjecture (Armstrong-R.-Rhoades 2012)

1 The locus Z contains (h + 1)n distinct points of V .

2 As W × C-permutation representation it is a direct sum

⊕

X∈NC(W )

C[W/WX ]

where (u, cd ) in W × C sends wWX 7−→ uwc−dWcd X .

Etingof has shown that the first assertion holds when Θ is the

h.s.o.p. that comes from rational Cherednik algebra theory. The

second assertion is open, even for such h.s.o.p.’s.
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