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(g-)counting linear extensions

Posets

A poset (partially ordered set) P on labels {1,2,...,n}
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(g-)counting linear extensions

Posets

A poset (partially ordered set) P on labels {1,2,...,n}
is naturally labelled if i <p j impliesi <z j.

For n = 5, our favorite poset P will be
/ 4\ / 9
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/
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(g-)counting linear extensions

Linear extensions

A linear extension of P is a total order wy <y Wy <y -+ + <w Wp
that is stronger than P, thatis, i <p j impliesi <y j.
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Linear extensions

A linear extension of P is a total order wy <y Wy <y -+ + <w Wp
that is stronger than P, thatis, i <p j impliesi <y j.
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(g-)counting linear extensions

Linear extensions

A linear extension of P is a total order wy <y Wy <y -+ + <w Wp
that is stronger than P, thatis, i <p j impliesi <y j.
The set of all linear extensions of P is denoted L(P).
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Our favorite P has

12345, 13245, 31245,
£(P) ={ 12354, 13254, 31254,
13524, 31524, 35124
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(g-)counting linear extensions

(g-)counting

In general, |£(P)] is hard to count, or g-count by various
statistics, such as
>, am

weL(P)
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(g-)counting linear extensions

(g-)counting

In general, |£(P)] is hard to count, or g-count by various
statistics, such as
>, am

weL(P)

where the major index

ITWi >Wi g

ma(3-15-24)=1+3=4.
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(g-)counting linear extensions

An example g-count

Our favorite P has

12345, 13.245, 3-1245,
q°+ a2+ at+

ST gmam) — 1235-4, 13-25-4, 3.125-4,
weL(P) q*+ q°+ 0>+
135.24, 3.15.24, 35.124
>+ a*+ @
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(g-)counting linear extensions

An example g-count

Our favorite P has

12345,
q°+

1235 - 4,
q*+

Z gqmaW) =

weL(P)

135. 24,
a3+

13.25- 4,
q°+

3.15.24,
q*+

3.1245,
q'+

3.125-4,
q°+

35-124
92

:q0+ql+2q2+q3+2q4+q5+q6
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(g-)counting linear extensions

Unexpected factorization

> ™t — g+ g+ 207+ q° + 20° +¢° + o°
weL(P)
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(g-)counting linear extensions

Unexpected factorization

> ™t — g+ g+ 207+ q° + 20° +¢° + o°
weL(P)

=(1+9+09*)(1+9*+q*
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(g-)counting linear extensions

Unexpected factorization

> ™) = q0+ql+202 + 0 +29* +0° + o°
weL(P)

=(1+9+09*)(1+9*+q*

= [Bla[3]e2
where [m]q :==1+q+q2+---+qm?t

V. Reiner P-partitions revisited



(g-)counting linear extensions

Unexpected factorization

> ™) = q0+ql+202 + 0 +29* +0° + o°
weL(P)

=(1+9+09*)(1+9*+q*

= [Bla[3]e2
where [m]q :==1+q+q2+---+qm?t

[6]q

- [S]Q [2]
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Complete interesction posets

Cl-posets

Such factorizations will occur for a class of posets that we call
complete intersection (or Cl) posets, defined here
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Such factorizations will occur for a class of posets that we call
complete intersection (or Cl) posets, defined here

@ first in terms of their connected order ideals,
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Complete interesction posets

Cl-posets

Such factorizations will occur for a class of posets that we call
complete intersection (or Cl) posets, defined here

@ first in terms of their connected order ideals,

@ later characterized later in terms of their ring of P-partitions
having a complete intersection presentation.
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Complete interesction posets

Connected order ideals

An order ideal J in P is a down-set:
jeJandi <p jimpliesi € J.
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Complete interesction posets

Connected order ideals

An order ideal J in P is a down-set:
jeJandi <p jimpliesi € J.

An order ideal J is connected if its

Hasse diagram is nonempty and connected
as a graph.
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Complete interesction posets

Example, with connected ideals darkly circled

A @ @

N

ST 0 00
o)

NS

Q)
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Complete interesction posets

Principal and nearly principal ideals

An obvious subclass of the connected order ideals
are the principal ideals P<x = {i € P : i <p x}.

V. Reiner P-partitions revisited



Complete interesction posets

Principal and nearly principal ideals

An obvious subclass of the connected order ideals
are the principal ideals P<x = {i € P : i <p x}.

An important disjoint subclass for us
are the nearly principal ideals J, defined by

V. Reiner P-partitions revisited



Complete interesction posets

Principal and nearly principal ideals

An obvious subclass of the connected order ideals
are the principal ideals P<x = {i € P : i <p x}.

An important disjoint subclass for us
are the nearly principal ideals J, defined by

@ J is connected, and

V. Reiner P-partitions revisited



Complete interesction posets

Principal and nearly principal ideals

An obvious subclass of the connected order ideals
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are the nearly principal ideals J, defined by
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Complete interesction posets

Principal and nearly principal ideals

An obvious subclass of the connected order ideals
are the principal ideals P<x = {i € P : i <p x}.
An important disjoint subclass for us
are the nearly principal ideals J, defined by
@ J is connected, and
@ J=J1UJ
with J;, J, connected ideals having J; € J, and

=

@ this expression J = J; U J, is unique
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Complete interesction posets

Principal and nearly principal ideals

An obvious subclass of the connected order ideals
are the principal ideals P<x = {i € P : i <p x}.
An important disjoint subclass for us
are the nearly principal ideals J, defined by
@ J is connected, and
@ J=J1UJ
with J1,J> connected ideals having J; € J, and

@ this expression J = J; U J, is unique

Say that a poset P is a Cl-poset if every connected order ideal
of P is either principal or nearly principal
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Complete interesction posets

Our favorite example is ClI

nearly principal
= /\3 union ¢
niipaf ‘
4 5
/N

2 3 princi ripcipal
/ @ @
1

N\ pringi éf “pringi pal

NS

@
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Complete interesction posets

The three minimal non-Cl examples

These P,, P,,P3 are not Cl, and are the
minimal obstructions to being ClI, as induced subposets.

R, NS = NN, union s
=N, union ,/\/°
13 4
R o= N union '

= % union \

= N union

Neo—s

= N/ union

No—n
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A product formula

Factorization theorem

(Féray-R.)
Naturally labelled Cl-posets P on {1,2,...,n} have

. Moo sy 132+ 9]
maj(w) _ 113,05} q
2 a™ =il =2

weL(P)

where
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A product formula

Factorization theorem

(Féray-R.)
Naturally labelled Cl-posets P on {1,2,...,n} have

. Moo sy 132+ 9]
maj(w) _ 113,05} q
2 a™ =il =2

weL(P)

where
@ [n]lq := [n]g[n — 1]q - - [3]q[2]q[1]q;
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A product formula

Factorization theorem

(Féray-R.)
Naturally labelled Cl-posets P on {1,2,...,n} have

. Moo sy 132+ 9]
maj(w) _ 113,05} q
2 a™ =il =2
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where

@ [n]lg := [n]q[n — 1]q - [3q[2]q[Llq;
@ the denominator runs over connected order ideals J, while
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A product formula

Factorization theorem

(Féray-R.)
Naturally labelled Cl-posets P on {1,2,...,n} have

. Moo sy 132+ 9]
maj(w) _ 113,05} q
2 a™ =il =2

weL(P)

where

@ [n]lg := [n]q[n — 1]q - [3q[2]q[Llq;
@ the denominator runs over connected order ideals J, while

@ the numerator runs over pairs {J;,J,} of connected order
ideals that intersect nontrivially, in the sense that

2 CIhNdy CIJq,d0.
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A product formula

Our favorite example...

... has these connected ideals

ideal {1} {3} {172} {375} {1727374} {172737475}
size 1 1 2 2 4 5
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A product formula

Our favorite example...

... has these connected ideals

ideal {1} {3} {172} {375} {1727374} {172737475}
size 1 1 2 2 4 5

and only one (unordered) pair intersecting nontrivially, namely

{3, =1{3,5} , Jp=1{1,2,3,4}}
31|+ 3| =2+ 4 =6.
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A product formula

The theorem therefore asserts that

mai(w) _ , [6]q
S O = B oAl B
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The theorem therefore asserts that

[6]q

maj(w) _ .
S O = B oAl B

_ [1]al2]4[3]q[4]q[5]q[6]q

 [1g[1lq[2]q[2]q[4]4[5]q




A product formula

The theorem therefore asserts that

mai(w) _ , [6]q
S O = B oAl B

_ [Ma[2]a[3]a[4]4[5]q[6]q
[1]4[1]q([2]q[2]q[4]q[5]q

_ [Blal6ls
2lq

=q°+q'+29°+9%+29*+q°+q°

V. Reiner P-partitions revisited



Some context

Special case: forest posets

A special case of the factorization theorem occurs when the
poset Cl-poset P has every connected ideal principal, so none
are nearly principal.

16
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Some context

Special case: forest posets

A special case of the factorization theorem occurs when the
poset Cl-poset P has every connected ideal principal, so none
are nearly principal.

Then P is a forest poset in the sense that every element is
covered by at most one other element.

16

12

l 841013

5
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Some context

Special case: The mg g-hook-formula for forests

(Knuth 1973 for q = 1, Bjorner and Wachs 1989)

Naturally labelled forest posets P on {1,2,...,n} have
Z qmaj [n]|
WGC p) HI 1 [|P<||]
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Some context

A typical CI poset

Still, one might ask “How special are Cl-posets?”
Here’s a typical-looking one:
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Some context

Characterizations of Cl posets

T.FA.E. for a poset P:
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T.FA.E. for a poset P:

@ P is ClI, that is, every connected order ideal is either
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@ P avoids Py, P,, P3 as induced subposets.

@ P is the smallest class of posets containing the
one-element poset and closed under 3 operations:
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Some context

Characterizations of Cl posets

T.FA.E. for a poset P:

@ P is ClI, that is, every connected order ideal is either
principal or nearly principal.

@ P avoids Py, P,, P3 as induced subposets.

@ P is the smallest class of posets containing the
one-element poset and closed under 3 operations:
disjoint union, hanging,
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Some context

Characterizations of Cl posets

T.FA.E. for a poset P:

@ P is ClI, that is, every connected order ideal is either
principal or nearly principal.

@ P avoids Py, P,, P3 as induced subposets.

@ P is the smallest class of posets containing the
one-element poset and closed under 3 operations:
disjoint union, hanging, and twinning.
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Some context

Characterizations of Cl posets

T.FA.E. for a poset P:

@ P is ClI, that is, every connected order ideal is either
principal or nearly principal.

@ P avoids Py, P,, P3 as induced subposets.

@ P is the smallest class of posets containing the
one-element poset and closed under 3 operations:
disjoint union, hanging, and twinning.

@ The P-partition affine semigroup ring has a complete
intersection presentation ...
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Revisiting the ring of P-partitions

P-partition review

It is time to revisit the rings behind Richard Stanley’s (1971)
concept of P-partitions for a naturally-labelled poset P on
{1,2,...,n}.

4 5 0
N\ 165210 5/]\2/

7 g
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Revisiting the ring of P-partitions

P-partition review

It is time to revisit the rings behind Richard Stanley’s (1971)
concept of P-partitions for a naturally-labelled poset P on
{1,2,...,n}.

These are functions f : P — N which are (weakly)
order-reversing: if i <p j then (i) >y f(j).

4 5 0
N\ 165210 5/]\2/

7 g
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Revisiting the ring of P-partitions

An affine semigroup ring

These P-partitions are the lattice points in
a convex polyhedral cone of dimension n:

o f(i)>0 fori=1,2,...,n,and
o f(i) >f(j) fori<pj.
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Revisiting the ring of P-partitions

An affine semigroup ring

These P-partitions are the lattice points in
a convex polyhedral cone of dimension n:

o f(i)>0 fori=1,2,...,n,and
o f(i) >f(j) fori<pj.
Thus the sum f; + f, of two P-partitions fy, f, is another;

they are a (finitely generated, cancellative) semigroup under
addition.
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Revisiting the ring of P-partitions

Making P-partitions f correspond to monomials x'

f=(55,2,1,0) < x"=x2xxZx}x2
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Revisiting the ring of P-partitions

Making P-partitions f correspond to monomials x'
f=(55,2,1,0) < x"=x2xxZx}x2

they form a k-basis for an affine semigroup ring

Rp := k — span of{x" : f a P — partition}
C K[X1,...,X%n].
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Revisiting the ring of P-partitions

Making P-partitions f correspond to monomials x'
f=(55,2,1,0) < x"=x2xxZx}x2
they form a k-basis for an affine semigroup ring

Rp := k — span of{x" : f a P — partition}
C K[X1,...,X%n].

This ring was studied a bit by Adriano Garsia around 1980.
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Revisiting the ring of P-partitions

Why major index ?

Introduce a standard grading on Rp where deg(x;) = 1.

V. Reiner P-partitions revisited



Revisiting the ring of P-partitions

Why major index ?

Introduce a standard grading on Rp where deg(x;) = 1.
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with maximal cones indexed by L(P),
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Revisiting the ring of P-partitions

Why major index ?

Introduce a standard grading on Rp where deg(x;) = 1.

Stanley’s Basic lemma on P-partitions gives

a unimodular triangulation of the polyhedral cone,
with maximal cones indexed by L(P),

and the following easy Hilbert series computation:

Hilb(Rp, q qu(l +ot(n)
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Revisiting the ring of P-partitions

Why major index ?

Introduce a standard grading on Rp where deg(x;) = 1.

Stanley’s Basic lemma on P-partitions gives

a unimodular triangulation of the polyhedral cone,
with maximal cones indexed by L(P),

and the following easy Hilbert series computation:

Hllb RP qu(l +oHf(n) ZWEE(P) qma(W) )
4 S (l-g)(1-9%)---(1—q")
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Revisiting the ring of P-partitions

Why major index ?

Introduce a standard grading on Rp where deg(x;) = 1.

Stanley’s Basic lemma on P-partitions gives

a unimodular triangulation of the polyhedral cone,
with maximal cones indexed by L(P),

and the following easy Hilbert series computation:

Hllb RP qu(l +oHf(n) ZWEE(P) qma(W) )
4 S (l-g)(1-9%)---(1—q")

Garsia (1980) interpreted this algebraically.
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Revisiting the ring of P-partitions

Rings to the rescue!

Thus if one can compute that Hilbert series differently,
e.g. from structural knowledge or a resolution of the ring Rp,
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Revisiting the ring of P-partitions

Rings to the rescue!

Thus if one can compute that Hilbert series differently,
e.g. from structural knowledge or a resolution of the ring Rp,

then one can compute

Z qmaj(w

weL(P)
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Revisiting the ring of P-partitions

Rings to the rescue!

Thus if one can compute that Hilbert series differently,
e.g. from structural knowledge or a resolution of the ring Rp,

then one can compute

Z qmaj(w

weL(P)

and count |£(P)| by setting q = 1.

V. Reiner P-partitions revisited



Revisiting the ring of P-partitions

Generators for Rp

It's easy to see that Rp is generated by the monomials
X3 = HiEJ Xj as one runs through the order ideals J of P,

4 5 0
Ny 165210 5/]\2/

e 5
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Revisiting the ring of P-partitions

Generators for Rp

It's easy to see that Rp is generated by the monomials
X3 = HiEJ Xj as one runs through the order ideals J of P,

e.g.

f 2 0

5y 5y 2y1
= X{X3X5X1 X5

= (X1X2X3X4) (X1X2X3) (X1X2)3 .

X

4 5 0
Ny 165210 5/]\2/

e 5
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Revisiting the ring of P-partitions

order ideals?

It's also easy to see that monomials x; for
disconnected ideals J give redundant generators, e.g.

X1XoX3 = X1X2 - X3
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Revisiting the ring of P-partitions

order ideals?

It's also easy to see that monomials x; for
disconnected ideals J give redundant generators, e.g.
X1X2X3 = X1X2 - X3
(Boussicault-Féray-Lascoux-R.)

@ Extreme rays of the P-partition cone are
the connected ordered ideals J of P, and

V. Reiner P-partitions revisited



Revisiting the ring of P-partitions

order ideals?

It's also easy to see that monomials x; for
disconnected ideals J give redundant generators, e.g.

X1XoX3 = X1X2 - X3

(Boussicault-Féray-Lascoux-R.)

@ Extreme rays of the P-partition cone are
the connected ordered ideals J of P, and

@ their {x;} give the unique Hilbert basis
(=minimum semigroup generating set)
for the P-partitions, and the ring Rp.

V. Reiner P-partitions revisited



Revisiting the ring of P-partitions

Minimal presentation for Rp

Introducing indeterminates U; for the connected ideals J, one
has a surjection k[U;] — Rp sending Uy — Xj.
Its kernel is often called the toric ideal Ip.
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Revisiting the ring of P-partitions

Minimal presentation for Rp

Introducing indeterminates U; for the connected ideals J, one
has a surjection k[U;] — Rp sending Uy — Xj.
Its kernel is often called the toric ideal Ip.

(Féray-R.)

The presentation Rp = k[U;]/Ip, has the toric ideal Ip
minimally generated by the binomials
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Revisiting the ring of P-partitions

Minimal presentation for Rp

Introducing indeterminates U; for the connected ideals J, one
has a surjection k[U;] — Rp sending Uy — Xj.
Its kernel is often called the toric ideal Ip.

(Féray-R.)

The presentation Rp = k[U;]/Ip, has the toric ideal Ip
minimally generated by the binomials

U, U;, —Ugu, H Ujai)
i

where
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Revisiting the ring of P-partitions

Minimal presentation for Rp

Introducing indeterminates U; for the connected ideals J, one
has a surjection k[U;] — Rp sending Uy — Xj.
Its kernel is often called the toric ideal Ip.

(Féray-R.)
The presentation Rp = k[U;]/Ip, has the toric ideal Ip
minimally generated by the binomials

U, U;, —Ugu, H Ujai)
i
where

@ J1,J, are connected order ideals that intersect nontrivially:
2 CJ1NIp ¢ I1,J32, and
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Revisiting the ring of P-partitions

Minimal presentation for Rp

Introducing indeterminates U; for the connected ideals J, one
has a surjection k[U;] — Rp sending Uy — Xj.
Its kernel is often called the toric ideal Ip.

(Féray-R.)
The presentation Rp = k[U;]/Ip, has the toric ideal Ip
minimally generated by the binomials

U, U;, —Ugu, H Ujai)
i

where
@ J1,J, are connected order ideals that intersect nontrivially:
2 CIhNIy CIJq,d0, and
@ J( are the connected components of J; N Js.
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Revisiting the ring of P-partitions

The running example

Our favorite example has

Rp  =K[X1, X3, XiXz, XaXs, X1XaX3Xs, X1XoX3X4Xs]
=k[U1, Uz, Ui, Uss,  Ujaas, U12345] /lp
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Revisiting the ring of P-partitions

The running example

Our favorite example has

Rp  =K[X1, X3, XiXz, XaXs, X1XaX3Xs, X1XoX3X4Xs]
=k[U1, Uz, Ui, Uss,  Ujaas, U12345] /lp

where Ip is the (principal) ideal generated by the element

U3zsU1234 — U12345U3

in degree 2 + 4 = 6.
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Revisiting the ring of P-partitions

The running example

Our favorite example has

Rp  =K[X1, X3, XiXz, XaXs, X1XaX3Xs, X1XoX3X4Xs]
=k[U1, Uz, Ui, Uss,  Ujaas, U12345] /lp

where Ip is the (principal) ideal generated by the element

U3zsU1234 — U12345U3

in degree 2 + 4 = 6.
Consequently,

1-—q°
(1-a)1-a)(1-9?)(1-0a?)(1-a*)(1~-0a°

Hilb(Rp, q) =
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The running example

Our favorite example has

Rp  =K[X1, X3, XiXz, XaXs, X1XaX3Xs, X1XoX3X4Xs]
=k[U1, Uz, Ui, Uss,  Ujaas, U12345] /lp

where Ip is the (principal) ideal generated by the element

U3zsU1234 — U12345U3

in degree 2 + 4 = 6.
Consequently,

1-—q°
(1-a)1-a)1-a*)(1-ag*)(1-a9)(1 -0
implying our formula for 3, ) 4™ ™) and |£(P)|.

Hilb(Rp, q) =



Revisiting the ring of P-partitions

Complete intersections

The same trick works just as well whenever Rp = k[U;]/lp
is a complete intersection presentation,
that is,
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@ the Krull dimension n for Rp, and
@ the Krull dimension m for k[U;],
equal to the number of connected order ideals,
together with
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Complete intersections

The same trick works just as well whenever Rp = k[U;]/lp
is a complete intersection presentation,
that is,
@ the Krull dimension n for Rp, and
@ the Krull dimension m for k[U;],
equal to the number of connected order ideals,
together with

@ the number of relations r, equal to the number of pairs
{J1,J2} of connected ideals intersecting nontrivially,
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Revisiting the ring of P-partitions

Complete intersections

The same trick works just as well whenever Rp = k[U;]/lp
is a complete intersection presentation,
that is,

@ the Krull dimension n for Rp, and

@ the Krull dimension m for k[U;],
equal to the number of connected order ideals,
together with

@ the number of relations r, equal to the number of pairs
{J1,J2} of connected ideals intersecting nontrivially,

achieve equality inr > m —n.
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Revisiting the ring of P-partitions

Complete intersection posets

(Féray-R.)
A poset P is CI
(connected order ideals either principal or nearly principal)
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Revisiting the ring of P-partitions

Complete intersection posets

(Féray-R.)
A poset P is CI
(connected order ideals either principal or nearly principal)
if and only
r=m-n.
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Revisiting the ring of P-partitions

Complete intersection posets

(Féray-R.)
A poset P is CI

(connected order ideals either principal or nearly principal)
if and only

r=m-—n.

This gives the earlier factorization theorem.
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Revisiting the ring of P-partitions

Two remarks

These generators form a Grobner basis
for the toric ideal with respect to certain term orders.
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Two remarks

These generators form a Grobner basis
for the toric ideal with respect to certain term orders.

@ This corresponds to a new (non-unimodular) triangulation
of the P-partition cone.
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Revisiting the ring of P-partitions

Two remarks

These generators form a Grobner basis
for the toric ideal with respect to certain term orders.

@ This corresponds to a new (non-unimodular) triangulation
of the P-partition cone.

@ It shows that a certain associated graded ring is Koszul.
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Revisiting the ring of P-partitions

Two remarks

Can one resolve Rp when P is a Ferrers diagram poset P,
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Two remarks

Can one resolve Rp when P is a Ferrers diagram poset P,
and recover the usual (q—)hook-length formula for L(P),
that is, the g-count by major index for

standard Young tableaux of shape P?
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Two remarks

Can one resolve Rp when P is a Ferrers diagram poset P,
and recover the usual (g—)hook-length formula for L(P),
that is, the g-count by major index for

standard Young tableaux of shape P?

Ferrers posets are not covered by our factorization theorem,
that is, Rp is not a complete intersection
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Thanks for listening!
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