
LECTURES ON MATROIDS AND ORIENTED MATROIDS

VICTOR REINER

Abstract. These lecture notes were prepared for the Algebraic Combina-

torics in Europe (ACE) Summer School in Vienna, July 2005.

1. Lecture 1: Motivation, examples and axioms

Let’s begin with a little “pep talk”, some (very) brief history, and some of the
motivating examples of matroids.

1.1. Motivation. Why learn about or study matroids/oriented matroids in geo-
metric, topological, algebraic combinatorics? Here are a few of my personal rea-
sons.

• They are general, so results about them are widely applicable.
• They have relatively few axioms and standard constructions/techniques,

so they focus one’s approach to solving a problem.
• They give examples of well-behaved objects: polytopes, cell/simplicial

complexes, rings.
• They provide “duals” for non-planar graphs!

1.2. Brief early history. (in no way comprehensive ...)

1.2.1. Matroids.

• H. Whitney (1932, 1935) - graphs, duality, and matroids as abstract linear
independence.
• G. Birkhoff (1935) - geometric lattices are simple matroids.
• S. Mac Lane (1938) - abstract algebraic independence give matroids.
• J. Edmonds and D.R. Fulkerson (1965) - partial matchings give matroids.

1.2.2. Oriented matroids (OM’s).

• J. Folkman and J. Lawrence (1975) - abstract hyperplane arrangements
• R. Bland and M. Las Vergnas (1975) - abstract linear programming

1.3. Motivating examples. Let’s start with the first few examples that origi-
nally motivated the definition of a matroid, before we actually give the definition.

Thanks to the Algebraic Combinatorics in Europe (ACE) training network for the opportu-

nity to give these lectures, and to the students at the summer school who discovered numerous

typos, incorrect exercises, and gave great suggestions for improvement! Particular thanks go
to Andrew Berget for a later careful reading.
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1.3.1. Motivating example: vector configurations.

Let V = {ve}e∈E be a finite set of vectors in some vector space over a field F.

Example 1.
Let V = {a, b, c, d, e, f} be the columns of

a b c d e f1 1 0 0 1 0
0 1 1 1 0 0
0 0 0 0 1 1


Which subsets I ⊂ E index linearly independent sets? Call them I.

I = {∅, a, b, c, d, e, f,
ab, ac, ad, ae, af, bc, bd, be, bf, ce, cf, de, df, ef,

abe, abf, ace, acf, ade, adf, bce, bcf, bde, bdf, bef, cef, def}

Which subsets I ⊂ E index bases for the span of V? Call them B.

B = {abe, abf, ace, acf, ade, adf, bce, bcf, bde, bdf, bef, cef, def}

Some properties of the collection of independent sets I ⊂ 2E :

I1. ∅ ∈ I.
I2. I1 ∈ I and I2 ⊂ I1 implies I2 ∈ I.

(I1 and I2 together say that I is an abstract simplicial complex on E).

I3. (Exchange axiom) I1, I2 ∈ I and |I2| > |I1| implies there exists e ∈ I2−I1
with I1 ∪ {e} ∈ I.
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Some properties of the collection of bases B ⊂ 2E :

B1. B 6= ∅.
B2. (Exchange axiom) Given B1, B2 ∈ I and x ∈ B1 − B2, there exists

y ∈ B2 −B1 with

(B1 − {x}) ∪ {y} ∈ B.

1.3.2. Motivating example: algebraic independence and transcendence bases (Mac
Lane 1938).

Let V = {fe}e∈E be a finite subset of vectors of an extension field of a field F.

Example 2.
In the rational function field F(x, y, z) ⊃ F, let

V = {a = x,

b = xy,

c = y,

d = y2 − 1,

e =
x

z
,

f = z2 + 2}

Which subsets I ⊂ E index algebraically independent subsets?
Which subsets B ⊂ E index transcendence bases for the subfield that V gener-

ates1 ?
Some of the minimal algebraic dependences:

0 = ac− b,
0 = d− (c2 − 1),

0 = a2 + 2e2 − fe2.

Note that we have cooked up this example so that these minimal algebraic
dependences involve the same sets of elements as the minimal linear dependences
in our vector configuration example from before Figure 1.

1.3.3. Motivating example: forests and spanning trees (Whitney 1932).

Let G = (V,E) be a finite, connected graph, such as the one in Figure 2.
Which subsets I ⊂ E index forests of edges?
Which subsets B ⊂ E index spanning trees for G?

1Recall from field theory that a transcendence basis for a field extension of F′ ⊇ F is a set

of elements {αi} which are algebraically independent and have the property that the extension

F′ ⊇ F({αi}) is algebraic, i.e. every β in F′ satisfies an algebraic equation with coefficients in
F({αi}).
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1.3.4. Historically later example: partial matchings in bipartite graphs (Edmonds
and Fulkerson 1965).

Consider a bipartite graph with vertex bipartition E t F , such as the one in
Figure 3.

Which subsets I ⊂ E can be matched along edges into F?
Which subsets B ⊂ E are the left endpoints of maximum-size matchings?
The exchange axioms I3 for I, and B2 for B do hold in this situation, but this

is not at all obvious!.

1.4. Definition. Finally, the definition of a matroid (Whitney 1935)...

Definition 3.
Say I ⊂ 2E forms the independent sets of a matroid M on E (and write I =
I(M)) if I satisfies properties I1, I2, I3 from before.

Alternatively, ...

Definition 4.
Say B ⊂ 2E forms the bases of a matroid M on E (and write B = B(M)) if B
satisfies properties B1, B2 from before.
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Example 5.

(1) Linear matroids: represented over a field F by vectors {ve}e∈E
I = linearly independent subsets
B = bases for their span

(2) Algebraic matroids: represented over a field F by elements of {fe}e∈E
of an extension field
I = algebraically independent subsets
B = transcendence bases for the subfield they generate

(3) Graphic matroids: represented by a (connected) graph G = (V,E)
I = forests of edges
B = spanning trees

(4) Transversal matroids: represented by a bipartite graph on vertex set
E t F
I = endpoints in E of partial matchings
B = endpoints in E of maximum size matchings

In Exercise 1, you are shown how to prove these impliciations:

Graphic
↘

Linear → Algebraic
↗

Transversal

1.5. Other axiom systems. One of the features of matroids that makes them
flexible (and occasionally frustrating to the novice) is that they have several
equivalent axiom systems. Here are a few notable ones...

1.5.1. Circuits.

The circuits C of a matroid are the inclusion-minimal dependent sets (= sets
not in I).

Example 6.
The circuits C consists of {abc, abd, cd, aef, bcef, bdef} in the example we have
been using so far.

Definition 7.
Say C ⊂ 2E forms the circuits of a matroid M on E (and write C = C(M)) if I
satisifies these three axioms:

C1. ∅ 6∈ C.
C2. C1, C2 ∈ C and C1 ⊂ C2 implies C1 = C2.
C3. (Circuit elimination) C1, C2 ∈ C with C1 6= C2 and e ∈ C1 ∩ C2 implies

there exists C3 ∈ C with C3 ⊂ (C1 ∪ C2)− {e}.
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Example 8.
Here is an example of circuit elimination for vector configurations:

C1 : 0 = a− e+ f

C2 : 0 = −b+ c+ e− f
implies

C3 : 0 = a− b+ c

Exercise 4 asks you to prove the equivalence between the circuit axioms and
the independent set axioms.
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1.5.2. The semimodular rank function.

Given a matroid M on E, for A ⊂ E define the rank function

r(A) := max{|I| : I ∈ I(M) and I ⊆ A}.

It satisfies these rank axioms:

R1. 0 ≤ r(A) ≤ |A|.
R2. A1 ⊂ A2 implies r(A1) ≤ r(A2).
R3. (Semimodularity)

r(A ∪B) + r(A ∩B) ≤ r(A) + r(B).

One can recover the independent sets from these as follows:

I = {I ⊂ E : r(I) = |I|}.

1.5.3. The exchange closure operation.

The closure operation

A := {e ∈ E : r(A ∪ {e}) = r(A)}

satisfies these matroid/exchange closure axioms:

CL1. A ⊆ A.
CL2. A = A.
CL3. A1 ⊆ A2 implies A1 ⊆ A2.

(CL1,CL2,CL3 together say that A 7→ A is a closure operator on 2E .)

CL4. (Exchange) If x, y ∈ E andA ⊂ E have y ∈ A ∪ {x}−A then x ∈ A ∪ {y}.
Closed sets (those with A = A) are called flats of M .

1.5.4. The geometric lattice of flats.

The poset L(M) of all flats of M , ordered by inclusion, is a geometric lattice,

meaning that it is

• a lattice– it has meets x ∧ y, joins x ∨ y,
• (upper-)semimodular– it is ranked, and satisfying

r(x ∨ y) + r(x ∧ y) ≤ r(x) + r(y),

• atomic – every x ∈ L(M) is the join of the atoms below it.

Theorem 9. (G. Birkhoff) Geometric lattices = posets of flats of simple ma-
troids.

A matroid is simple if it has no
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Simplification

Figure 7

• loops (= elements e ∈ E lying in no elements of I, or equivalently, e ∈ ∅),
nor
• parallel elements (= elements e, e′ ∈ E with e′ ∈ {e})

To every matroid M on ground set E, one can associate a simple matroid M̂
by removing loops, and letting the ground set Ê of M̂ be the set of parallelism
classes of E, with obvious independent sets, bases, closure, etc. One calls M̂ the
simplification of M , and there is an obvious poset isomorphism L(M̂) ∼= L(M).

One way of restating Birkhoff’s Theorem 9 is as follows. There is a map L 7→ M̂
backward from geometric lattices to simple matroids, in which the ground set E
of M̂ is the set of atoms of L, and a subset of atoms I is independent if the
rank in L of the join

∨
e∈I e is the cardinality |I|. Then the composite map from

matroids to matroids

M 7→ L(M) 7→ M̂

is exactly the simplification map M 7→ M̂ from above.

Finite geometric lattices fit into a natural hierarchy for properties of finite
lattices ...
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LATTICE PROPERTY ... PLUS ATOMIC

distributive ⇐ atomic distributive
= ideals of a poset = Boolean algebra

⇓ ⇓

modular ⇐ atomic modular
= products of projective geometries :{

P(Frq) r 6= 3

proj. plane r = 3

⇓ ⇓

semimodular ⇐ atomic semimodular
i.e. geometric

= simple matroid

From the viewpoint of geometric combinatorics, there are a few further inter-
esting ways to characterize matroids. We mention some of these here.

1.6. Simplicial complexes. Recall that axioms I1, I2 for the independent sets
I = I(M) of a matroid M on E are equivalent to I being an abstract simplicial
complex on E. One can replace the exchange axiom I3 with various others.

One relates to purity of its vertex-induced subcomplexes. Recall that a sim-
plicial complex is pure (of dimension r − 1) if every maximal face has the same
cardinality r. For example, it can replaced (see Exercise 5) with this axiom:

I3′. For every subset A ⊂ E, the restriction

I|A := {I ∈ I : I ⊂ A}

is a pure simplicial complex.

Example 10.
The matroid on E = {a, c, d, e, f} represented linearly by the columns of this

matrix

a c d e f1 0 0 1 0
0 1 1 0 0
0 0 0 1 1


has bases B(M) = {ace, acf, ade, adf, cef, def}. Its simplicial complex of inde-
pendent sets I is the boundary complex of the bipyramid shown in Figure 8.
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Another characterization of I(M) relates to shellability. Recall that a sim-
plicial complex is shellable if there exists an ordering F1, F2, . . . , Ft of its facets
(= maximal faces) having the following property: for each j ≥ 2, the facet Fj

intersects the subcomplex generated by the previous facets F1, . . . , Fj−1 in a sub-
complex of Fj which is pure of codimension one inside Fj . Then one can also
replace I3 by this axiom:

I3′′. I is a pure simplicial complex, and every linear ordering
on E makes the lexicographic ordering on its maximal elements
(the bases B) into a shelling order on I.

For example, the ordering of B(M) = {ace, acf, ade, adf, cef, def} as in the
previous example is lexicographic for a < c < d < e < f , and one can check that
this shells the boundary of the bipyramid in Figure 8.

1.7. The greedy algorithm. Another characterization of I(M) relates to op-
timization. Consider the problem of finding a set I ∈ I of maximum weight

w(I) :=
∑
e∈I

w(e)

with respect to some arbitrary (nonnegative) weight function w : E → R+.

(Kruskal’s) greedy algorithm:
Initialize I0 = ∅. Having constructed Ij−1, let Ij := Ij−1 ∪ {e0}
where e0 has the maximum weight w(e0) among all elements of
the set

{e ∈ E − Ij−1 : Ij−1 ∪ {e} ∈ I},
assuming this set is non-empty. If this set is empty, stop and
return I = Ij−1.

Then one can also replace I3 by this axiom:
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I3′. The greedy algorithm always finds a set I ∈ I achieving the
maximum weight, regardless of the choice of nonnegative weight
function w.

Example 11.
Here is a non-example, that is a simplicial complex which looks perfectly nice, but
is not a matroid complex because it fails to satisfy any of the axioms I3′, I3′′, I3′′′.

Let ∆ be the pure 2-dimensional simplicial complex with facets {124, 245, 235}.
Then one can check that

• the restriction ∆|{1,2,3,4} to vertex set {1, 2, 3, 4} has facets {124, 23}, so
is not pure.
• the lex order on the facets would order them (F1, F2, F3) = (124, 235, 245),

which is not a shelling order: the intersection of F2 = 235 with the sub-
complex generated by F1 = 124 is the vertex 2, and this does not have
codimension 1 within F2.
• if one weights the vertices 1, 2, 3, 4, 5 by 99, 1, 100, 98, 2 then the greedy

algorith will try to build up a maximum weight subset I of ∆ as follows:
I0 = ∅, I1 = 3, I2 = 35, I3 = 235. This finds the subset I3 = 235 of
weight 1 + 100 + 2 = 103, but misses the (unique) maximum weight
subset of ∆, namely Imax = 124 of weight 99 + 1 + 98 = 198.

The last axiomatization relates to the greedy algorithm and bases. Let ω be
an arbitrary linear ordering on E, and then define the associated Gale ordering
on its r-subsets

(
E
r

)
to be the following: let

B = {b1 <ω · · · <ω br}
B′ = {b′1 <ω · · · <ω b

′
r}

and say B ≤ω B
′ if bi ≤ b′i for i = 1, 2, . . . , r.

Then the exchange axiom B2 for bases of a matroid can be replaced by this
axiom:

B2′. The collection B consists of elements of a fixed cardinality
r, and for every choice of linear ordering ω on E, the collection
B has a maximum (and minimum) element under the associated

Gale ordering on
(
E
r

)
.
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Example 12.
For the bases B(M) = {ace, acf, ade, adf, cef, def} of the matroid M in Exam-
ple 10, the Gale ordering on B(M) associated with two different linear orderings
ω1, ω2 is shown. In both cases, there is a unique maximum and minimum base.

ω1 : a < c < d < e < f ω2 : a < d < f < c < e

def
|
cef
|
adf

� �
ade acf

� �
ace

cef
� �

ace def
� � �

acf ade
� �

adf

.

These last two axiomatizations have been the source of multiple threads in
matroid theory, including

• matroids and semimodular functions in optimization,
• greedoids – set systems that are not quite simplicial complexes but still

satisfy I3′′′; see [15].

• Coxeter matroids – one replaces
(
E
r

)
with the cosets W/WJ of a parabolic

subgroup WJ in a Coxeter system (W,S) and replaces the Gale ordering
associated to ω with a W -translate of the Bruhat order on W/WJ . See
the recent monograph by Borovik, Gelfand and White [4].

1.8. Oriented matroids. In two of our motivating families of examples of ma-
troids, the circuits C could have recorded more data about signs/orientations, as
we now explain.

In a graphic matroid coming from a graph G = (V,E), one must first pick
an arbitrary orientations for the edges to make it a directed graph. One then
obtains the signed circuits C from the directed cycles in G; the plus/minus signs
tell whether edges are traversed in the directed cycle agreeing/disagreeing with
the chosen inital orientation. E.g., if G is the digraph shown in Figure 10, then

C =

{
+
a
−
b

+
c
,

+
a
−
b

+
d
,

+
a
−
e

+
f
,

+
c
−
d
,

+
b
−
c
−
e

+
f
,

+
b
−
d
−
e

+
f
,

−
a

+
b
−
c
,
−
a

+
b
−
d
,
−
a

+
e
−
f
,
−
c

+
d
,
−
b

+
c

+
e
−
f
,
−
b

+
d

+
e
−
f

}
In a matroid represented over R, one obtains signed circuits C from recording

the signs of coefficients in the minimal linear dependences. For example, from
the vector configuration in Figure 9, one has these minimal dependences and
corresponding signed circuits:
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0 = a− b+ c  
+
a
−
b

+
c

0 = −a+ b− c  
−
a

+
b
−
c

0 = a− e+ f  
+
a
−
e

+
f

0 = c− d  
+
c
−
d

0 = b− c− e+ f  
+
b
−
c
−
e

+
f

0 = b− d− e+ f  
+
b
−
d
−
e

+
f

How do the circuit axioms for matroids morph into signed circuit axioms for
oriented matroids? First let’s establish some alternate terminology for signed
circuits: a signed circuit C can be thought of as a signed subset C = (C+, C−) of

E, as illustrated in the example C =
+
a
−
b

+
c

= ({a, c}, {b}). Its underlying subset

is C = C+ t C−, e.g. C = {a, b, c} in this example.

Definition 13.
A collection C of signed subsets of a finite set E forms the circuits of an oriented
matroid M on E (and say C = C(M)) if it satisfies these three axioms:

C0. ∅ (:= (∅,∅)) 6∈ C.
C1. C = −C.
C2. C1, C2 ∈ C and C1 ⊂ C2 implies C1 = ±C2.
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C3. (Signed circuit elimination) C1, C2 ∈ C with C1 6= −C2 and e ∈ C+
1 ∩C

−
2

implies there exists C3 ∈ C with

C+
3 ⊂(C+

1 ∪ C
+
2 )− {e},

C−3 ⊂(C−1 ∪ C
−
2 )− {e}.

Example 14.
In our example of circuit elimination from before:

C1 : 0 = a− e+ f

C2 : 0 = −b+ c+ e− f
implies

C3 : 0 = a− b+ c

one sees how the signs get carried along: C3 = (C+
3 , C

−
3 ) = ({a, c}, {b}) has

C+
3 = ac ⊂(C+

1 ∪ C
+
2 )− {e} = acf,

C−3 = b ⊂(C−1 ∪ C
−
2 )− {e} = bf.

Some other axiomatizations of oriented matroids ...

1.9. Covectors. Given the vector configuration V = {ve}e∈E in a real vector
space V , consider the hyperplane arrangement A in the dual space V ∗ whose
hyperplanes He = v⊥e are defined by (f, ve) = 0 (where here (−,−) denotes
the canonical pairing V ∗ × V → R.) This hyperplane arrangement decomposes
regions of V ∗ into various cones/cells according the sign pattern in {±1, 0}E of
the various functionals f as they evaluate on the vectors ve for e ∈ E. The
sign patterns which occur are called the covectors of the oriented matroid M
associated to V.

Example 15.
Figure 11 below depicts the arrangement associated with the vectors V given by
the columns of this matrix:

a b c d e f1 1 0 0 1 0
0 1 1 1 0 0
0 0 0 0 1 1

 .
Here the hyperplanes He (and the regions into which they decompose V ∗) are
shown as intersected with a sphere about the origin in V ∗, with a small vector
indicating the side of the hyperplane He on which the functionals f have f(ve) >
0. A few of the covectors have also been labelled by their sign pattern.

The collection of all covectors ofM satisfy a set of axioms (the covector axioms,
which we won’t write down here, but can be found in [3]) which can also be used
as an equivalent characterization/definition of oriented matroids.
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What is perhaps more important to point out here is the connection between
oriented matroids and the theory of hyperplane arrangements. Given an arbitrary
hyperplane arrangement A in a real vector space Rr, there are various combina-
torial, geometric, topological and algebraic invariants one can associate to it. In
particular, if one considers the same (complexified) arrangement AC within the
complex space Cr, the complement Cr −AC can have very interesting topology,
and has received much scrutiny since the second half of the 20th century. A
central theme in this subject has been the question(s) of which of these various
invariants can be computed purely in terms of the matroid data, or in terms of
the oriented matroid data, associated to the arrangement. As examples of some
famous answers (to be discussed a little further in a later lecture) for the complex
complement Cr −AC,

• the integral cohomology ring structure depends only upon the (unori-
ented) matroid data, and has a very simple presentation given by the
Orlik-Solomon algebra, while
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• its entire homotopy type can be computed from the oriented matroid
data using a simplicial complex defined by Salvetti, and even its home-
omorphism type can be recovered from a construction of Björner and
Ziegler, however,
• already its fundamental group cannot be computed purely from the (un-

oriented) matroid, as shown originally by an example of Rybnikov.

It is worth mentioning also that the Folkman-Lawrence representation theorem,
to be discussed later, shows that oriented matroids are almost the same things
as real hyperplane arrangements: the covectors of an oriented matroid of rank
r always come from an arrangement of pseudospheres (= “wiggly, non-linear”
codimension 1 spheres) inside a sphere of dimension r − 1.

1.10. Chirotopes. Another way to record finer sign data than just linear depen-
dence is to look at signs of determinants. Without loss of generality, if our ori-
ented matroidM has rank r and comes from a vector configuration V = {ve}e∈E
in a real vector space V , we may take V = Rr, and assume that the ve are the
columns of some r × n matrix over R, where n := |E|. By abuse of notation,
call this matrix M. Then the chirotope data associated to M is the following
function

χ : { ordered sequences (e1, . . . , er) : ei ∈ E} → {±1, 0}

defined by

χ(e1, . . . , er) = sign det (M|columns e1,...,er )

=

{
±1 if {e1, . . . , er} ∈ B(M)

0 otherwise .

This data satisfies certain axioms, coming from the fact that determinants are
alternating, and that they satisfy certain Plücker syzygies. We won’t state these
here (see [3]), but for example, the syzygy

det(a, b, e) det(c, e, f) = det(c, b, e) det(a, e, f) + det(f, b, e) det(c, e, a)

implies that if abe, cef are both bases of the matroid, then either cbe, aef are
bases, or both bef, ace are bases. And taking into account signs, if the chirotope
for the oriented matroid satisfies

χ(a, b, e)χ(c, e, f) = −1,

then either

χ(c, b, e)χ(a, e, f) = −1

or

χ(f, b, e)χ(c, e, a) = −1

(or both) must also hold.
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Remark 16.
The reference to Plücker syzygies suggests a useful alternate viewpoint on vector
configurations V of n vectors in Fr. The row space of the r × n matrix M is an
r-plane in Fn, which can be viewed as a point in the Grassmannian Gr(r,Fn).

The Plücker embedding embeds Gr(r,Fn) ↪→ P(n
r)−1

F by writing down the
(
n
r

)
homogeneous Plücker coordinates

pe1,...,er (M) := det (M|columns e1,...,er ) .

The basis form of the matroid data associated to M simply records which
Plücker coordinates are non-zero. If F = R or any ordered field, then the chiro-
tope form of the oriented matroid data simply records the signs of the Plücker
coordinates. From this viewpoint, matroids and oriented matroids give a natural
way of decomposing Grassmannians into “strata”. We’ll return to this later.
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2. Lecture 2: Constructions, representations, and realizations

In this lecture we’ll look at the most basic constructions for building new
matroids OM’s from old ones. This highlights the notion of minors, which play a
role in deciding what kinds of representations are possible for a matroid or OM.

2.1. The most basic constructions.

2.1.1. Direct sum (boring).

Given matroids M1,M2 on ground sets E1, E2, their direct sum M1 ⊕M2 is
the matroid on ground set E1 t E2 having independent sets

I(M1 ⊕M2) = I(M1)× I(M2)

or bases

B(M1 ⊕M2) = B(M1)× B(M2)

It models vector configurations V1,V2 in vector spaces V1, V2 being put together
as (V1⊕0)t(0⊕V2) inside V1⊕V2. For two graphs G1, G2, it models the disjoint
union G1 t G2 or the wedge G1 ∨v G2 (obtained by gluing G1 and G2 at some
common vertex v):

M(G1 tG2) = M(G1 ∨v G2) = M(G1)⊕M(G2).

For the associated lattices of flats, one has

L(M1 ⊕M2) = L(M1)× L(M2).

Equally simple/boring things happen in the oriented matroid setting.

2.1.2. Deletion (boring).

Given a matroid M on E, and e ∈ E, one says that e is an isthmus (or coloop)
if e lies in every base B ∈ B(M), or if it can be added to every independent set
I, with I ∪ {e} remaining independent. If e is not a coloop, define the deletion
M\e to be the matroid on ground set E − {e} having independent sets

I(M\e) = {I ∈ I(M) : e 6∈ I}
or bases

B(M\e) = {B ∈ B(M) : e 6∈ B}.
More generally, one can delete a subset from a matroid or restrict a subset

from a matroid: Given A = {e1, . . . , ek} ⊂ E, one has the deletion

M\A := ((M\a1)\a2) · · · \ak
or the restriction

M |A := M\(E −A).

Deletion clearly models removing vectors from a vector configuration, or re-
moving edges from a graph. If it happens that A is a flat of the matroid, then
on the level of lattices of flats one has that L(M |A) is the lower interval [0̂, A]
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within the lattice L(M). Again, the oriented matroid counterparts are equally
simple/boring.

2.1.3. Contraction (seems, a piori, less boring).

Given a matroid M on E, and e ∈ E, one says that e is a loop if e lies in none of
the independent sets I ∈ I(M), or equivalently, in none of the bases B ∈ B(M).
If e is not a loop, define the contraction M/e to be the matroid on ground set
E − {e} having independent sets

I(M/e) = {I − {e} : e ∈ I ∈ I(M)}

or bases

B(M/e) = {B − {e} : e ∈ B ∈ B(M)}.
More generally, one can contract on a subset: Given A = {e1, . . . , ek} ⊂ E,

one has the contraction

M/A := ((M/a1)/a2) · · · /ak.

The terminology comes from graph theory, where one can contract a (non-loop)
edge e from a graph G = (V,E) to form a contracted graph G/e; see Figure 12(a).
The forests/trees in G/e biject with the forests/trees in G that contain e, that
is, M(G/e) = M(G)/e.

For the matroid M associated to a vector configuration V = {ve}e∈E in a
vector space V , contraction models quotients or projections: given A ⊂ E, let
VA be the linear span of {ve}e∈A, and π : V → V/VA the canonical quotient
mapping (or if one prefers, π : V → V ⊥A is orthogonal projection with respect to
some nondegenerate bilinear form on V ). Then the contracted matroid M/A is
the matroid associated to the vector configuration {π(ve)}e∈E−A in the quotient
space V/VA (or in V ⊥A ). See Figure 12(b).

Thinking in terms of the hyperplane arrangement A in V ∗ associated to V, the
contraction M/e corresponds to the restriction hyperplane arrangement A|He

within the codimension 1 linear subspace He, whose hyperplanes are {He′ ∩
He}e′∈E−{e}. See Figure 12(c). This also suggests how one achieves contraction
on e at the oriented matroid level: the covectors of M/e should be obtained
from the covectors f of M having f(e) = 0 by restricting them to their values
on E − {e}.

On the level of lattices of flats, one has that L(M/A) is the upper interval [A, 1̂]
within the lattice L(M), where we recall that A is the closure of (or flat spanned
by) A.

2.1.4. Duality/Orthogonality (Fascinating!)

Given a matroid M on ground set E, its dual (or orthogonal) matroid M⊥ is
defined by

B(M⊥) := {E −B : B ∈ B(M)}
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Figure 12. Three views on the contraction M/e: (a) Con-
tracting the edge e from the (directed) graph G. (b) Quotient-
ing by the span of ve, or projecting on v⊥e . (c) Restricting the
arrangement to the hyperplane He.

It is not trivial to check that the basis axioms still hold for B(M⊥). One must
show that the basis axioms (or independent set axioms or circuit axioms) for M
imply a different version of the basis exchange axiom for M : given bases B1, B2
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Figure 13. Duality of planar (oriented) graphs. A (directed)
graph G, and its planar dual G⊥. (a) The associated dual orien-
tation, which is totally cyclic, because the original orientation is
acyclic. (b) A pair of dual spanning trees. (c) A directed cycle
and its dual directed bond.

in B(M) and b2 ∈ B2, there exists b1 ∈ B1 for which (B1 − {b1}) ∪ {b2} is again
a base in B(M).

At the oriented matroid level, one can define the associated dual chirotope
χM⊥ . One first prescribes an arbitrary linear ordering ω on E, and then defines
for {e1, . . . , en−r} ⊂ E having complementary set {e′1, . . . , e′r}

(1) χM⊥(e1, . . . , en−r) := sign(e1, . . . , en−r, e
′
1, . . . , e

′
r)χM(e′1, . . . , e

′
r)
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where the sign above is the sign of the permutation that sorts (e1, . . . , en−r, e
′
1, . . . , e

′
r)

into the ω-order.
This models duality of planar graphs G,G⊥, even taking into account edge

orientations. One must use the convention that every edge e of G and its crossing
edge e⊥ in G⊥ are oriented compatibly, so that locally at their crossing point they
look like a positively oriented basis for the plane R2. See Figure 13.

Many of the wonderful features of duality of planar graphs extend to matroids
and OM’s:

• Spanning trees/bases are complementary to dual spanning trees/dual bases:
a subset T ⊂ E(G) forms a spanning tree for G if and only if the com-
plementary set

(E − T )⊥ := {e⊥ : e ∈ E − T}

forms a spanning tree for G⊥.
• Deletion is dual to contraction: (M/e)⊥ = M⊥\e⊥.
• Loops are dual to isthmes (coloops): e lies in every base of M if and only

if it lies in no base of M⊥.
• Circuits are dual to cocircuits (= covectors of minimal support). A circuit

in the graphic (oriented) matroidM(G) corresponds to a directed cycle.
In the dual M(G⊥) =M(G)⊥ this corresponds to a directed bond, that
is, a collection of directed edges which go across a bipartition of the
vertices of G⊥ (directed from the vertices of G⊥ inside the original cycle
to those outside it).
• Acyclic orientations are dual to totally cyclic orientations. It is not hard

to see (Exercise 2) that acyclic orientations of the edges of a graph G
naturally biject with the top-dimensional cones/cells/chambers in the
decomposition of space given by the associated graphic hyperplane ar-
rangement; in the oriented matroid these correspond to covectors f of
M(G) which are non-zero (+ or −) on every e ∈ E, also called topes.

A totally cyclic orientation is one in which every edge lies in some
directed cycle; the corresponding OM concept is that of a vector (= sign
vector which is the “union” of signed circuits) which is non-zero on every
e ∈ E. Acyclic orientations of a planar graph G are identified with
totally cyclic orientations of the planar dual G⊥; more generally, acyclic
orientations of an oriented matroid M are identified with totally cyclic
orientations of the oriented matroid dual M⊥.

Hopefully you are now convinced that, since every graph (planar or not) has
an (oriented) matroid M and we have supplied a somewhat satisfactory “dual
object”, even for non-planar graphs!

For an OMM coming from a vector configuration V = {ve}e∈E in Rr, duality
(and particularly, the definition (1) of the dual chirotope) comes from an isomor-
phism between the Grassmannians Gr(r,Fn) and Gr(n − r,Fn) which sends an
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r-subspace to its perpendicular (n− r)-subspace, on the level of Plücker coordi-
nates. As before, let M also denote the r × n matrix having the ve as columns,
and let M⊥ be any (n − r) × n matrix whose row space is the perp to the row
space of M within Rn. Then the columns {v⊥e }e∈E of M⊥ turn out to real-
ize the orthogonal oriented matroid M⊥. More precisely (see Exercise 11), the
row spaces of M,M⊥ have the following relation between their Plücker coordi-
nates: there exists an overall scalar c ∈ F× such that for complementary sets
{e1 < · · · < er}, {e′1 < · · · < e′n−r} one has

(2) pe1,...,er (M) := c · sign(e1, · · · , er, e′1, · · · , e′n−r)pe′1,...,e′n−r
(M⊥).

Perhaps a word or two more is in order about the meaing of acyclic and totally
cyclic orientation for vector configurations V in Rr and oriented matroids.

The vectors V are acyclically oriented if there is a hyperplane containing all the
vectors in its positive (open) halfspace, that is, there is a covector in its oriented
matroid M which is all +. Equivalently, by a version of Farkas’ Lemma from
the theory of linear inequalities, there is no linear dependence among the vectors
that all has all + coefficients, i.e., every signed circuit in M must contain both
+ and − signs.

Dually, the vectors are totally cyclically oriented if there is a linear depen-
dence2 among the vectors that has all + coefficients. Equivalently, again by
Farkas’ Lemma, there is no hyperplane containing all the vectors in its nonnega-
tive (closed) halfspace, that is, every covector of M must contain both + and −
signs.

It turns out that these notions are consistent with our definitions for directed
graphs to be acyclically/totally cyclically oriented, and that a vector configura-
tion or OM is acyclically oriented if and only if its dual is totally cyclic oriented.

Example 17.
The vector configuration V = {a, b, c, e, f} given by the columns of this matrix
M

a b c e f1 1 0 1 0
0 1 1 0 0
0 0 0 1 1


has a dual vector configuration V⊥ = {a⊥, b⊥, c⊥, e⊥, f⊥} given by the columns
of this matrix M⊥

a⊥ b⊥ c⊥ e⊥ f⊥[
−1 1 −1 0 0
−1 0 0 1 −1

]
2We haven’t defined here the technical OM term “vector” because the terminology is slightly

confusing: a vector in an OM realized by a vector configuration over R means a sign pattern

achieve by the coefficients of some linear dependence among the vectors! For general OM’s,
they are exactly the covectors of the dual OM.
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Figure 14. A configuration of 5 vectors V in R3, along with
the dual configuration V⊥ in R2.

But one could also use any other matrix such that

rowspace(M⊥) = rowspace(M)⊥.

Note that the subsets of columns of M⊥ which do not form bases for their
span are the ones indexed by {b⊥c⊥, e⊥f⊥}, and these are exactly the ones
complementary to the sets {aef, abc} that index triples of vectors which do not
form bases for the span of the columns of M.

Note also that the vector configuration V is acyclically oriented, while its dual
V⊥ is totally cyclically oriented.

2.2. Duality in other guises. Matroid/OM duality is a highly non-trivial oper-
ation, with many powerful applications. We mention some other instances where
it arises, perhaps in disguised form.

2.2.1. Dual linear codes.

When working over finite fields, the relation among the row spaces M,M⊥ is
that of a (linear) code and its dual or orthgonal code. We will touch on this again
in a later lecture when discussing how the Tutte polynomial specializes to give
the weight enumerator of a linear code, and the MacWilliams identity.

2.2.2. Linear programming duality.

The theory of linear programming (including the simplex method, the duality
theorem of linear programming, complementary slackness of optimal primal/dual
solutions) all have a beautiful generalization to oriented matroids. In this theory,
one considers a triple (M, f, g) of an oriented matroid M on ground set E with
two distinguished elements f, g. The elements E − {f, g} play the role of the in-
equalities that define the feasible polyhedron, a regular CW -ball whose faces are
indexed by the covectors which are nonnegative on E−{f}. The element g plays
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Figure 15. An oriented matroid program (M, f, g). The four
pseudospheres 1, 2, 3, 4 define a quadrangular feasible region with
covector + + ++, lying entirely on the + side of the pseudo-
sphere g “infinity”. Since all four vertices of the feasible region
lie strictly on the + side of g, the feasible region is bounded.
The “objective function” f indicates how to direct some 1-cells
(edges) of the feasible region: as long as the unique pseudocircle
containing the edge does not lie inside f , orient the semicircle in
which this pseudocircle intersects the hemisphere H+

g from the
− side of f to the + side, and then take the induced orientation
on the edge.

the role of the hyperplane at infinity, converting between linear and affine hy-
perplanes/inequalities and defining the notion of unbounded/boundedness. The
element f plays the role of the objective function, by (partially) orienting the
edges of the feasible polyhedron; see Figure 15. The dual linear program then
corresponds to the triple (M⊥, g, f), in which the roles of g, f have been ex-
changed. See [3] for more on this.

2.2.3. Gale transforms.

Much of convex geometry deals with affine dependencies and convexity rela-
tions among a configuration of points A = {a1, . . . , an} in affine space, say of
dimension r − 1. A frequently recurring example is where A is the vertex set of
a convex polytope in Rr−1. A venerable and useful trick is to encode the same
information in a configuration of vectors in Rn−r as follows.

One considers the vector configuration V := {(a1, 1), . . . , (an, 1)} insider Rr,
whose oriented matroidM encodes all of the previous affine dependency/convexity
data aboutA. This same data is encoded in the dual oriented matroidM⊥, which
corresponds to the dual configuration of vectors (called the Gale transform) V⊥,
that is, the columns of any matrix whose row space is perpendicular to the row
space of the matrix having the V as column.

Gale transforms have been useful, for example, in reducing the dimension of the
problem under consideration (if the dimension r is large, but the codimension n−r
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Figure 16. A point configuration A = {a, b, c, e, f} in R2,
along with its Gale diagram, and the cones of its secondary fan
labelled by its five triangulations, all of which are coherent tri-
angulations.

is small), for encoding properties of particular matroids as properties of particular
polytopes (including interesting pathological examples), and for understanding
the set of triangulations of a point configurations A. See Ziegler’s book [31,
Lecture 6].

Example 18.
We cannot resist illustrating the connection between the Gale diagram of a point
configuration A = {a1, . . . , an} in Rr−1 and its set of (coherent) triangulations
of A. A triangulation of A = {a1, . . . , an} is a collection of geometric (r − 1)-
simplices, all spanned by subsets of A, having pairwise disjoint interiors, which
cover the convex hull of A, and which meet pairwise along common faces. These
triangulations need not use all of the ai as vertices; see Figure 16 for an example.

A triangulation of A is called coherent if it can be achieved by the following
geometric construction: lift the points A into Rr by appending an rth coordinate
to each ai, then take the convex hull of the resulting points in Rr, and project the
lower facets (= those facets whose outward normal has negative rth coordinate)
back down into Rr−1.

It turns out that the set of all coherent triangulations, along with certain
natural moves connecting them (called bistellar flips), is very nicely structured:
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it forms a graph which is the 1-skeleton (= vertices and edges) of an (n − r)-
dimensional convex polytope, called the secondary polytope of A. It also turns out
that the normal fan of the secondary polytope (called the secondary fan of A),
and hence this same graph structure, can be constructed from the Gale diagram
as follows.

Start with the vectors V⊥ in the Gale diagram for A, and consider all of the
simplicial cones one can obtain by taking the nonnegative span of some linearly
independent subset of V⊥. Because the vectors V⊥ are totally cyclically oriented
in Rn−r (due to the fact that their dual vectors V in Rr were acyclically oriented
since they came from a point configuration A in Rr−1), these simplicial cones
will cover all of Rn−r. Now take the common refinement of all of these simplicial
cones, and this gives the secondary fan.

The correspondence between a top-dimensional cone σ in the secondary fan
and a triangulation of A can be made explicit as follows. Write down the list of
all matroid bases for V⊥ that span a simplicial cone containing σ as a subcone.
Take the complements of these bases, which will give a list of matroid bases of
V. Then these bases span the simplices that make up a coherent triangulation
of A (!) For example, in Figure 16, the lower right triangulation is shown along
with a listing of the relevant bases for V⊥, and their complementary bases of V
that span the simplices in the triangulation.

2.3. Representability questions.

Given a matroid M , it is natural to ask whether it falls into one of the classes
that we’ve already considered: is it algebraic, linear representable, graphic,
transversal, orientable? Answers to these questions sometimes can be phrased
in terms of the minors of M (= matroids obtained by a sequence of deletions
and/or contractions).

2.3.1. Algebraic representability.

The question of which matroids are algebraic seems to be hard. Algebraic
matroids are (obviously) closed under deletion, and also (but not obviously)
closed under contraction, hence closed under minors. For a while it was not known
whether there exist non-algebraic matroids at all, but an example of Vámos
(see Figure 17(c)) was shown to be non-algebraic by Ingleton and Main (1975).
Surprisingly the following question remains open:

Problem 19. Are algebraic matroids closed under duality?

2.3.2. Linear representability.

Linear representability is much better behaved in some ways: the discussion
of basic constructions makes it clear that collection of matroids linearly repre-
sentable as a vector configuration over a fixed field F is closed under minors and
under duality. However, characterizing those matroids representable over at least
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Figure 17. Some examples of matroids that are not repre-
sentable over various fields. (a) The uniform matroids U2,4 and
U2,5. (b) The Fano and non-Fano matroids, in which def are
collinear (resp. non-collinear). (c) The Vámos matroid, in which
abcd, abef, cdgh, efgh are coplanar quadruples, but there are no
other non-obvious coplanarities. (d) The non-Pappus matroid,
in which abc are non-collinear.

one field or over a specific field can be quite difficult. We discuss some of the
famous results/examples in this regard. In this discussion, it will be convenient
to “draw” matroids of rank 2, 3, 4 as if they represent affine dependencies of
point configurations on a line or in a plane, where non-obvious collinearities or
coplanarities are indicated by drawing a line/plane through the points in ques-
tion.

Example 20.
The uniform matroid Ur,n of rank r on n elements has as bases all r-element
subsets of its n-element ground set E; it can be represented over any field with
sufficiently many elements, but for example, U2,q+2 cannot be represented over
the finite field Fq (because there exist only q + 1 different slopes possible for
vectors in F2

q). Note that uniform matroids are closed under duality: U(r, n)⊥ =
U(n− r, n).

It turns out that every matroid on 7 or fewer elements is representable over
at least one field, but the same example of Vámos mentioned above is a matroid
of rank 4 on 8 elements (shown in Figure 21(c)) which cannot be represented
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over any field. Similarly the non-Pappus matroid (shown in Figure 21(d)) is not
linearly representable. The Fano and non-Fano matroids shown in Figure 21(b)
have the property that the former is representable only over a field of charac-
teristic 2, while the latter is representable only over a field whose characteristic
is not 2 (see Exercise 9). Consequently, their direct sum is also not linearly
representable over any field.

Here is an omnibus sampling of same famous results characterizing repre-
sentability of various kinds. In each case, one direction is easy, and the other
direction is somewhat unpleasant (to varying degrees).

Theorem 21. (i) A matroid is representable over F2 if and only if it has
no minor isomorphic to U2,4 (Tutte 1958).

(ii) A matroid is representable over F3 if and only if it has no minor isomor-
phic to U2,5, U3,5, the Fano matroid, or its dual (Bixby 1979, Seymour
1979).

(iii) A matroid is representable over every field
if and only if it is regular, that is, it has a representation as the columns of
a totally unimodular integer matrix (one with all minor subdeterminants
±1, 0)
if and only if it has no minor isomorphic to U2,4, the Fano matroid, or
its dual (Tutte 1958).

(iv) A matroid is graphic if and only if it has no minor isomorphic to U2,4,
the Fano plane, its dual, the dual of M(K5), or the dual of M(K3,3)
(Tutte 1959).

One might be tempted to conclude from the previous results that every minor-
closed class of matroids has a characterization by a finite list of excluded minors–
this would be analogous to the celebrated result of Robertson and Seymour in
the mid 1990’s showing that every minor-closed class of graphs has such a char-
acterization. Unfortunately, for F any field of characteristic zero, the class of
matroids representable over F has infinitely many minor-minimal counterexam-
ples (Lazarson 1958).

Question 22. Fix a finite field Fq. Is there a finite list of excluded minors for
linear representability over Fq?

For example, such a list is conjectured explicitly for representability over F4;
see [18, §6.5].

2.3.3. Digression: How much of a graph is captured by its matroid?

Before turning to oriented matroids and representability questions over the
reals, we briefly discuss one of the first deep results in matroid theory, Whitney’s
2-isomorphism theorem, which tells us exactly how much of the structure of a
graph G = (V,E) is captured by its graphic matroid M(G); this is related to
Tutte’s characterization of graphic matroids in Theorem 21(iv) above.
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Figure 18. The twisting operation from Whitney’s 2-
isomorphism theorem, yielding isomorphic graphic matroids.

Since disjoint unions G1 t G2 of graphs as well as one-point wedges G1 ∨ G2

both have matroids given by the direct sum M(G1)⊕M(G2), it is clear that two
graphs obtained from each other by a sequence of replacements of G1 tG2 with
G1 ∨ G2, or vice-versa, in any order, will have the same matroids on the same
edge set E.

Of course, this only produces matroid isomorphisms between graphs which
are not 2-vertex connected, i.e. those which are either disconnected or can be
disconnected by removing a single vertex. Whitney observed another operation
that leaves the matroid M(G) invariant, applicable to a graph which can be
disconnected by removing two vertices, illustrated in Figure 18: if removing
vertices {u, v} disconnects G, then G can be viewed as a 2-vertex union of two
other disjoint graphsG1, G2, in which one identifies vertices u1 ∈ G1 with u2 ∈ G2

as u ∈ G and identifies vertices v1 ∈ G1 with v2 ∈ G2 as v ∈ G. Then the twisting
of G about {u, v} is obtained by instead identifying u1 with v2, and v1 with u2;
one can check (see Exercise 10) that G and its twist about {u, v} have the same
matroid. Say that two graphs G,G′ are 2-isomorphic if they can be obtained
from each other by a sequence of replacements of wedges with disjoint unions or
vice-versa, and twists.

Theorem 23. (Whitney’s 2-isomorphism theorem, 1933) Two graphs G on edge
set E have the same graphic matroid M(G) on E if and only if they are 2-
isomorphic.
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In particular, a graph G = (V,E) which is 3-vertex-connected (that is, con-
nected, not a wedge, and to which no twist is applicable) can be recovered
uniquely from its matroid M(G) on E; see Exercise 10.

An interesting application of Whitney’s result was given recently by [24], who
used it to show that the critical group of a graph is a matroid invariant.

2.4. Orientability, topological representations and realizations.

A related question to representability is that of orientability: when is a ma-
troid M the underlying matroid of some oriented matroid M? Clearly matroids
representable over R have this property, and various constructions preserve this
property, e.g. taking minors and duals.

Unfortunately, there is no good characterization known in general for orientable
matroids, and the list of minor-minimal counterexamples is known to include
infinitely many of rank 3 ! For example, the Fano plane is one such minor-
minimal counterexample, and if one combines this with Tutte’s characterizations
of binary and of regular matroids (Theorem 21(i) and (iii)), one concludes a result
of Bland and Las Vergnas asserting that binary matroids are orientable if and
only if they are regular.

In the other direction, given an oriented matroid M, one can ask whether it
has a representation over R, or some substitute for such a representation. A
wonderfully useful substitute is provided by the Folkman-Lawrence Topological
Representation Theorem, which says every OM comes from an arrangement of
pseudospheres.

Definition 24.
A pseudosphere S inside a d-sphere Sd is a subspace such that the pair (S, Sd)
is homeomorphic to a standard pair (Sd−1, Sd) of a (d− 1)-sphere in a d-sphere.
By the Jordan-Brouwer separation theorem, it divides Sd into two hemispheres
S+, S−.

An arrangement A = {Se}e∈E of pseudospheres in Sd is a finite subset of
pseudospheres such that

A1. Every non-empty intersection SA = ∩e∈ASe is homeomorphic to a sphere
of some dimension.

A2. For every such intersection SA and e ∈ E with SA 6⊆ Se, the intersection
SA ∩ Se is a pseudosphere in SA with sides SA ∩ S+

e and SA ∩ S−e .

Theorem 25. Arrangements of pseudospheres A in Sr−1 are in bijective cor-
respondence with oriented matroids M of rank r, once one fixes a positive side
for each pseudosphere. Under this correspondence, the covectors of M are ex-
actly the sign patterns achieved by the different points of Sr−1 with respect to
pseudospheres.

There are several different proofs of this result. The one given in the OM
bible [3] applies the technique of lexicographic shellability to the poset L(M) of
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Figure 19. A representation, á la Swartz, of the matroid U2,3

as an arrangement of three 0-spheres, {xi, yi} inside a homotopy
1-sphere.

covectors of M ordered by 0 < +,− componentwise, which ends up being the
face poset for the cell decomposition of Sr−1 induced by the pseudospheres.

Inspired by this theorem (and running counter to the received wisdom about
representability of matroids), E. Swartz recently proved [23] an analogous repre-
sentation theorem for all matroids, in which spheres/pseudospheres are replaced
by homotopy spheres; an example of a homotopy-sphere representation of U2,3 is
shown in Figure 19.

Not every oriented matroidM can be realized by a configuration of linear pseu-
dospheres, that is, by a vector configuration over R; the non-Pappus and Vámos
matroids give rise to counterexamples beginning with rank 3 on 9 elements, or
rank 4 with 8 elements. One can even perturb these example to obtain non-
realizable oriented matroids M whose underlying matroid is a uniform matroid
Ur,n.

2.4.1. Realization spaces and OM strata in the Grassmannian.

Given an oriented matroid M of rank r with n elements, one can define the
realization space R(M) as the space of r × n matrices whose r × r realize the
chirotope of M, modulo the action of GLr(R) by left-multiplication; implicitly
we topologize R(M) as a subspace of the Grassmannian Gr(r,Rn), where it is
called the oriented matroid stratum of the Grassmannian corresponding to M.

Note that R(M) is a semialgebraic subset (that is, defined by a conjunction
of polynomial equalities and inequalities) inside Gr(r,Rn), and realizability for
M is simply the question of whether R(M) is empty. The general question of
whether a real semialgebraic set is empty is a decision problem usually called
the existential theory of the reals, for which complexity bounds are known. A
theorem of Mnëv (1988) shows that R(M) can have the homotopy type of an
arbitrary real semialgebraic set; see [3, §8.6].

2.5. Passing between polytopes and matroids and OM’s.

Tangentially related to the question of realizability is the fact that there are
many ways to pass from a (realizable, oriented) matroid to a polytope, and
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Figure 20. (a) The polytope PM for the rank 2 matroid M
having bases B(M) = {12, 13, 14, 23, 24}; the vertices of PM are
the characteristic vectors of these bases. (b) A rank 3 vector
configuration V = {v1, v2, v3, v4} in which v1, v2, v3 are coplanar,
and its associated zonotope Z(V). Some of the edges of Z(V) are
labelled by their slope vector vi.

vice-versa, making the two subjects closely related. We discuss a few of these
constructions here.

2.5.1. Independent set and basis polytopes.

One of the historically earliest ways to get a polytope from a matroid was intro-
duced by Edmonds (1970). Given a matroid M on ground set E, he considered
the convex polytope P (M) in RE whose vertices are the characteristic vectors
{0, 1}E of the independent sets I(M). Edmonds described the facet inequalities
of PM , and proved that the intersection of two such polytopes PM ∩ PM ′ has
vertices with integer coordinates (but this fails for triple intersections).

One of the facets of PM , lying in the affine hyperplane of RE where the sum
of coordinates is r = rank(M), is the convex hull of the characteristic vectors
of the bases B(M); see Figure 20(a) for an example. The polytope PM has nice
properties, many of which generalize to the polytopes associated with Coxeter
matroids [4].

2.5.2. Zonotopes. Given a vector configuration V = {ve}e∈E in Rr, the zono-
tope generated by V is the convex polytope which is the Minkowski sum of line
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segments in the direction of the ve:

Z(V) :=

{∑
e∈E

ceve : ce ∈ [−1,+1]

}
.

In other words, Z(V) is the projection of the cube [−1,+1]E under the linear
map RE → Rr sending the standard basis vector of RE indexed by e ∈ E to ve
in Rr. Aside from being projections of cubes, zonotopes have many other nice
characterizations; see e.g. [3, Prop. 2.2.14].

The normal fan of Z(V) (= the decomposition of the linear functionals (Rr)∗

according to the face of Z(V) on which they maximize) is the hyperplane arrange-
ment A = {v⊥e }e∈E that we mentioned before. Consequently the face poset of
Z(V) is the poset of covectors of the oriented matroid M realized by V, ordered
by +,− < 0 componentwise, that is, the boundary complex of Z(V) is the regu-
lar CW -sphere polar dual to the Folkman-Lawrence sphere. More explicitly, the
covector f : E → {±1, 0} indexes the face F of Z(V) consisting of vectors of the
form

∑
e∈E ceve with ce = f(e) if f(e) ∈ {±1} and with ce ∈ [−1,+1] if f(e) = 0.

See Figure 20
For any oriented matroid M, since the Folkman-Lawrence sphere is a PL-

regular CW-sphere, it has a dual PL-regular CW-sphere, which plays the role of
a (not always polytopal) “zonotope”.

2.5.3. Matroid polytopes.

Consider a top-dimensional cell in the Folkman-Lawrence sphere of an oriented
matroid M of rank r, and let’s assume that M is acyclically oriented so that
this cell is indexed by the all + covector. The boundary the cell in question is a
(shellable, regular CW) (r− 2)-sphere, with the face poset of the cell (called the
Edmonds-Mandel face lattice Fem(M)) given by the componentwise 0 < +,−
order on the nonnegative covectors of M.

These cells model (polar duals of) convex (r − 1)-polytopes in the following
way. Given a convex (r− 1) polytope P in Rr−1 with vertex set {a1, . . . , an}, its
polar dual polytope in (Rr−1)∗ may be defined by

P∆ := {f ∈ (Rr−1)∗ : f(ai) ≥ −1, i = 1, . . . , n}.

If we consider the vector configuration V := {(a1, 1), . . . , (an, 1)} in Rr. Then
the chamber with all + covector in the associated hyperplane arrangement A =
{(ai, i)⊥} in (Rr)∗ is linearly isomorpic to the cone over P∆. Thus the face
lattice of P∆ is Fem(M) for the associated oriented matroid M. Consequently,
its opposite poset, called the Las Vergnas face lattice Flv(M).

Because every acyclic oriented matroid has Fem(M) equal to the face lattice of
a shellable (and hence PL) sphere, the opposite poset Flv(M) is the face lattice
of a sphere which is at least PL.

Question 26. Is the sphere having face lattice Flv(M) always shellable?
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These spheres, known as matroid polytopes, therefore generalize the bound-
aries of convex polytopes. The generalization can be shown to be strict using a
construction of J. Lawrence to be discussed next.

2.5.4. Lawrence polytopes.
Lawrence (1980) showed how to encode the structure of vector configuration
(resp. oriented matroid) into the face lattice of a convex polytope (resp. matroid
polytope). The construction for a configuration V = {ve}e∈E of n vectors of rank
r in Rr proceeds by

• forming the Gale transform V⊥ = {v∗e}e∈E in Rn−r,
• doubling the Gale transform by adding in (disjoint) copies of the nega-

tives of each Gale transform vector: V⊥ t −V⊥, still in Rn−r but now
with 2n vectors, and
• taking the Gale transform back again:

Λ(V) :=
(
V⊥ t −V⊥

)⊥ ⊂ Rn+r

In what way is Λ(V) a polytope? The central symmetry of the configuration
V⊥ t −V⊥ implies that it is totally cyclic (there is a linear dependence among
having + sign on every vector), and every open halfspace contains at least two
of its vectors, or in other words, its cocircuits all contain at least two + entries.
This means that its Gale transform Λ(V) is a configuration of vectors Rn+r which
is acyclic, and which has all circuits containing at least two + entries. In other
words, Λ(V) is a configuration of vectors lying in a halfspace and in which every
vector spans an extreme ray of their convex hull, so that they can be rescaled
to lie in on the vertices of some convex (n + r − 1)-polytope lying in an affine
hyperplane of Rn+r.

This whole construction can be mimicked without the vectors V, just using the
oriented matroid M, and then the Lawrence lifting of M is defined to be the
OM

Λ(M) = (M⊥ t −M⊥)⊥.

The oriented matroid Λ(M) has the property that it can be recovered entirely
from the Las Vergnas face lattice Flv(Λ(M)), that is, from the matroid polytope.
This leads to various counterexample constructions, such as matroid polytopes
that cannot be realized as convex polytopes in Rr, or convex polytopes that
cannot be realized with all vertex coordinates in Q.

The Lawrence construction also plays a prominent role in Richter-Gebert’s
version [20] of Mnëv’s universality theorem for realization spaces of polytopes:
the realization spaces of 4-dimensional polytopes can have the homotopy type of
an arbitrary semialgebraic set. This is in contrast to the realization spaces of
3-dimensional polytopes, which are always contractible by a version of Steinitz’s
Theorem [31, Lecture 4]
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3. Lecture 3: Invariants (enumerative, topological, algebraic)

3.1. Enumerative invariants.

The mother-of-all-matroid-invariants is surely the Tutte polynomial, intro-
duced in equivalent forms by Whitney (1932) and Tutte (1947) for graphs, and
then generalized to matroids by Crapo (1969).

Theorem 27. There exists an isomorphism invariant of matroid M on ground
set E in the form of a polynomial TM (x, y) in two variables x, y, called the Tutte
polynomial of M , having these properties:

T1. If e ∈ E is neither a loop nor coloop of M , then

TM (x, y) = TM\e(x, y) + TM/e(x, y)

T2. If e is a coloop of M , then TM (x, y) = xTM/e(x, y). If If e is a loop of
M , then TM (x, y) = yTM\e(x, y).

T2′ TM1⊕M2(x, y) = TM1(x, y)TM2(x, y).
T3. When E = {e} has cardinality 1,

TM (x, y) =

{
x if e is a coloop/isthmus.

y if e is a loop.

T4. TM⊥(x, y) = TM (y, x).

Furthermore, TM (x, y) is characterized by properties T1, T2, T3 above, or
alternatively by the properties T1, T2′, T3.

Proof. (sketch) Check that the above properties are satisfied by TM (x, y) :=
SM (x− 1, y − 1), where SM (x, y) is the Whitney corank-nullity polynomial

(3) SM (x, y) =
∑
A⊂E

xrank(M)−r(A)y|A|−r(A).

Once one knows there exists at least one polynomial with these properties, then
it is uniquely computable from the above properties using induction on |E|. �

The fact that many graph, matroid and oriented matroid invariants satisfy a
deletion-contraction recurrence similar to T1 and respect direct sums as in T2′

makes them specializiations of TM (x, y).

Proposition 28. Let Ψ(M) be any ismorphism invariant of matroids taking
values in a commutative ring R, satisfying these properties:

• Ψ(M1 ⊕M2) = Ψ(M1)Ψ(M2).
• When e is neither a loop nor an isthmus of M ,

Ψ(M) = aΨ(M\e) + bΨ(M/e).

• When E = {e} has cardinality 1,

Ψ(M) =

{
c if e is a coloop/isthmus.

d if e is an loop.
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Then

Ψ(M) = ar(M⊥)br(M)TM

(
c

b
,
d

a

)
.

Here are a series of examples of graph/matroid/OM invariants that are Tutte
polynomial specializations that are generally easy to prove, either directly from
(3) or using Proposition 28. Many of them are in fact specializations (for M or
M⊥) of the single variable characteristic polynomial

χM (t) :=
∑

X∈L(M)

µ(0̂, X)trank(M)−rank(X)

= (−1)rank(M)TM (1− t, 0)

where µ(−,−) denotes the Möbius function in the lattice of flats L(M).

3.1.1. Independent sets, spanning sets.

Recall that I(M) denotes the independent sets of M . Let S(M) denote the
spanning subsets of M , that is, those S ⊆ E for which S = E. Then

T (1 + t, 1) =
∑

I∈I(M)

trank(M)−|I|

T (1, 1 + u) =
∑

S∈S(M)

u|S|−rank(M).

3.1.2. Basis activities.

Let M be a matroid on ground set E, and fix an arbitrary linear ordering ω
of E. Given a base B of M and e ∈ B (resp. e 6∈ B ), say that e is internally
(resp.externally) active with respect to B if

e = min
ω
{e′ ∈ E : B − {e} ∪ {e′} ∈ B(M)}

(resp. e = min
ω
{e′ ∈ E : B ∪ {e} − {e′} ∈ B(M)}).

The internal (resp. external) activity of B, denoted iaω(B) (resp. eaω(B)), is
the number of elements which are internal (resp. externally) active with respect
to B. Then

TM (x, y) =
∑

B∈B(M)

xiaω(B)yeaω(B).

Note that it is not a priori clear from these definitions that the polynomial on
the right is independent of the choice of ω. But once one proves that it coincides
with the Tutte polynomial TM (x, y), this independence follows.
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3.1.3. Chromatic and flow polynomials.

For a graph G = (V,E) having c(G) connected components, and t, u nonnega-
tive integers,
(4)

χM(G)(t) = t−c(G)|{ proper vertex colorings of G with t colors}
χM(G)⊥(u) = |{ nowhere-zero Z/uZ-valued flows on the edges of G}|

TM(G)(1− t, 1− u) = (−t)rank(M)(−1)|V |
∑
(x,y)

(−1)|supp(y)|

in which the last sum is over pairs (x, y) with x a vertex t-coloring x of G,
y a Z/uZ-valued flow3 on the edges of G, and where x, y have complementary
supports: supp(x) t supp(y) = E.

3.1.4. Finite field intepretations.

More generally for any matroid M represented over Q by an integer matrix M ,
and for all pairs of finite field Fp,Fq with sufficiently large characteristics (large
enough so that all non-zero minor subdeterminants of M are invertible),

TM (1− p, 1− q) = (−1)rank(M)
∑
(x,y)

(−1)|supp(y)|

where the sum is over pairs (x, y) ∈ FEp × FEq of complementary support, with x
in the Fp-row-space of M , and y in theFq-kernel of M .

In particular, if A is a hyperplane arrangement over Fp with normal vectors
given by the columns of M ∈ Fd×np , then

χM (p) = |{ nowhere zero vectors in the Fp-row space of M}|

= prank(M)−d|Fdp −A|.

This interpretation (and the next one) have been used extensively under the
name of the finite field method to write down explicit characteristic polynomi-
als and Tutte polynomials explicitly for various infinite families of hyperplane
arrangements of interest.

3.1.5. Two-variable coloring.
There is a slightly different generalization of the chromatic polynomial interpre-
tation. For a graph G = (V,E) having c(G) connected components, and t a

3A flow is specified by first fixing an orientation of the edges of G, and then assigning a

value in Z/uZ to each directed edge in such a way that at every vertex, the sum of the values

on incoming edges equals the sum of the values on outgoing edges. Alternatively, a flow is a
1-cycle on the (directed) edges of G with coefficients in Z/uZ.
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nonnegative integer,

TM(G)

(
u+ t− 1

u− 1
, u

)
=

1

tc(G)(u− 1)|V |−c(G)

∑
f

umono(f)

where the sum ranges over all vertex t-colorings f of G, and mono(f) is the
number of monochromatic/improper edges in E, that is, those whose endpoints
receive the same color under f .

3.1.6. Acyclic and totally cyclic orientations.

For a graph G = (V,E) with c(G) connected components,
(5)

TM(G)(2, 0) = (−1)|V |−c(G)χM(G)(−1) = |{ acyclic orientations of G}|

TM(G)(0, 2) = (−1)|E|−|V |+c(G)χM(G)⊥(−1) = |{ totally cyclic orientations of G}|

and more generally for any oriented matroid M with underlying matroid M ,

TM (2, 0) = (−1)rank(M)χM (−1) = |{ acyclic orientations of M}|

TM (0, 2) = (−1)rank(M)⊥χM⊥(−1) = |{ totally cyclic orientations of M}|

For an oriented matroid coming from an arrangement of vectors over R, the
acyclic orientations/topes correspond to the top-dimensional cells (=chambers/regions)
in the associated hyperplane arrangement, and as mentioned earlier (see Exer-
cise 2), in the special case where this arrangement is graphic, these correspond
naturally to acyclic orientations of the graph.

3.1.7. Weight enumerators of linear codes.

Given an r-dimensional subspace of Fnq , thought of as an Fq-linear code C
consisting of codewords of codelength n, let M be its r × n generator matrix
having rowspace equal to the code C. Then the weight enumerator

WC(t) :=
∑
x∈C

tsupp(x)

is an evaluation of the Tutte polynomial for the matroid M represented by the
columns of M :

WC(t) = tn−r(1− t)rTM
(

1 + (q − 1)t

1− t
,

1

t

)
.

Property T4 of the Tutte polynomial then gives an immediate proof the MacWilliams
identity from coding theory, that determines the weight enumerator of a code from
that of its dual:

WC⊥(t) =
(1 + (q − 1)t)n

qr
WC

(
1− t

1 + (q − 1)t

)
.
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A curious coding-theory Tutte evaluation relates to binary codes and bicycles
(= codewords in the intersection C ∩ C⊥):

TM (−1,−1) = |C ∩ C⊥|.

3.1.8. Reliability polynomials.

For a graph G = (V,E) with c(G) connected components, if we choose a
random edge-subgraph G′ of G by including each edge e ∈ E with the same
probability p in (0, 1), then the probability that this subgraph has c(G′) = c(G)
is

(1− p)|E|−|V |+c(g)p|V |−c(g)TM(G)

(
1,

1

1− p

)
.

More generally, for a matroid M on ground set E, the probability that a random
subset A ⊆ E has rank(A) = rank(M) if each e ∈ E is included with probability
p is

(1− p)rank(M⊥)prank(M))TM

(
1,

1

1− p

)
.

Here are two more enumerative invariants thrown in for the fun of it ...

3.1.9. Crapo’s beta-invariant.

We will have more to say later about interpretations of the characteristic poly-
nomial χM (t), but we mention here one of its particularly interesting specializa-
tions: Crapo’s beta-invariant

β(M) := (−1)rank(M)−1

[
d

dt
χM (t)

]
t=1

= (−1)rank(M)
∑

X∈L(M)

µ(0̂, X)rank(X).

This has some nice properties, such as

• β(M) ≥ 0 for any matroid M ,
• β(M) = 0 if and only if M is disconnected (i.e. a non-trivial direct sum),

or just a single loop,
• β(M) ≤ 1 if and only if M is the graphic matroid for a series-parallel

graph (Brylawski 1971), and
• β(M⊥) = β(M) (except when |M | = 1).

Brylawski has given intepretations for other small values of β(M), such as
when β(M) = 2.
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3.1.10. The rank partition.

Our last enumerative invariant of matroids has been studied in recent years
mainly by Dias da Silva, Fernandes, and Fonseca, and (I think) deserves even
more study. The rank partition

ρ(M) = (ρ1 ≥ ρ2 ≥ · · · ρ` > 0)

is a partition of the number of non-loop elements in the ground set of E, defined
uniquely by requiring for each j that the partial sum ρ1 + ρ2 + · · · + ρj is the
maximum cardinality of a union I1 ∪ I2 ∪ · · · ∪ Ij of independent sets Ij ∈ I(M).
It is true, but not obvious, that this definition forces the parts of ρ to be weakly
decreasing: ρj ≥ ρj+1.

By definition, the first part ρ1 of the rank partition ρ(M) is just the rank(M).
The length ` of ρ(M) is sometimes called the covering number of M , or in the case
where M = M(G) is a graphic matroid, the arboricity of G; it is the minimum
number of independent sets required to cover the ground set of M . Dias da Silva
[9] has given a very interesting interpretation of ρ(M) when M is represented in
characteristic zero by a vector configuration V = {v1, . . . , vn}, in terms of the
nonvanishing of immanents (= symmetrizations by characters of the symmetric
group Sn) applied to the tensor v1 ⊗ · · · ⊗ vn.

3.2. Topological invariants.
We begin with four simplicial complexes (three of them shellable) derived from a
matroid M of rank r on ground set E, nicely discussed by Björner in [28, Chapter
7] (and where one can find much more detailed information about their topology,
homology bases, face numbers, etc.)

3.2.1. The independent sets I(M), and the nonspanning sets NS(M).
As was noted early on, the independent sets of M form a pure (r−1)-dimensional
simplicial complex which is shellable (Exercise 6). Since a pure shellable complex
is homotopy equivalent to a wedge of spheres of the same dimension, its homotopy
type is determined by the number of spheres in the wedge, which coincides with
the absolute value of its (reduced) Euler characteristic χ̃(I(M)). This can be
computed from knowledge of the number of independent sets of each cardinality,
which was the first our Tutte polynomial evaluations. Straightforward calculation
then shows that

χ̃(I(M)) = TM (0, 1) = TM⊥(1, 0) = µL(M⊥)(0̂, 1̂).

Example 29.

Let’s re-examine Example 10. There

B(M) = {acf, adf, ace, ade, cef, def}

and hence

B(M⊥) = {de, cd, df, cf, ad, ac}.
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This means that M⊥ is a direct sum of two of its rank 1 flats: the flat containing
the parallel elements c, d, and the flat containing the parallel elements a, e, f .
The lattice L(M⊥) is then a Boolean algebra of rank 2, having µL(M⊥)(0̂, 1̂) =
+1. This is consistent with the fact that I(M) is the boundary 2-sphere of a
bipyramid, as in Figure 8.

The collection of nonspanning sets

NS(M) := {A ⊂ E : A 6= E}

forms another natural simplicial complex on the set E associated with the matroid
M , which is closely related to I(M) by Alexander duality. Given an simplicial
complex ∆ on vertex set E, its canonical Alexander dual is the simplicial complex

∆∨ := {A ⊂ E : E −A 6∈ ∆}.

∆∨ is an Alexander dual to ∆ in the following sense: assuming that neither
of ∆,∆∨ is the full simplex 2E , they both can be naturally embedded inside
the (barycentric subdivision) of the boundary (|E| − 2)-sphere of this (|E| − 1)-
simplex, in such a way that one is a deformation retraction of the complement of
the other within this sphere. As a consequence, the Alexander duality theorem
asserts that their (co-)homology groups determine each other as follows:

H̃i(∆∨,Z) ∼= H̃|E|−3−i(∆,Z).

It is not hard to check (Exercise 13) that NS(M) = I(M⊥)∨, and hence the
results about the homotopy type of I(M⊥) tell us about the homology calculation
for NS(M). However, one can say more about the homotopy type of NS(M);
see the discussion of L(M) below.

3.2.2. The (non-reduced and reduced) broken circuit complexes NBC(M), NBC(M).
For simplicity in this discussion, assume that the matroid M is simple, that is,
it has no loops nor parallel elements. Fix a total ordering ω of the ground set E,
and define a broken circuit of M to be a subset of E of the form C − {c} where
C is a circuit and c is its ω-minimum element. A subset of E containing no
broken circuits will be called an nbc-set, and the collection of all nbc sets forms
a simplicial complex on E called NBC(M). A moments thought shows that
the simplicial complex NBC(M) has the ω-minimum element e0 of E as a cone
vertex, and hence is contractible. It is therefore more interesting topologically
to look at the reduced broken circuit complex NBC(M) which is the base of the
cone NBC(M).

It turns out (see Exercise 15) that NBC(M) is a pure (r − 1)-dimensional
shellable complex, so that NBC(M) is a pure shellable (r − 2)-complex. The
generating function for nbc-sets counted by cardinality turns out to be a rescaling
of the characteristic polynomial χM (t) (see Exercise 15):

(6) χM (t) =
∑

nbc-sets I

(−1)|I|trank(M)−|I|.
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In the case of a graphic matroid M(G), this is Whitney’s result intepreting the
coefficients of the chromatic polynomial of G. Setting t = 1 in (6), one deduces
that NBC(M) is homotopy equivalent to wedge of β(M) spheres of dimension
(r − 2), where β(M) is Crapo’s beta-invariant defined above.

Example 30.

Let M be the matroid of rank 3 on ground set {a, b, c, d, e} having the circuits
C = {abc, cde}, shown in Figure 21. Using the alphabetic linear order a < b <
c < d < e, the broken circuits are {bc, de}, and the nbc-sets are

{∅, a, b, c, d, e, ab, ac, ad, ae, bd, be, cd, ce, abd, abe, acd, ace}.

This forms a simplicial complex NBC(M) which is a cone having a as apex, with
base NBC(M) equal to the 4-cycle of edges bd, cd, ce, be.

The characteristic polynomial is easily computed to be

χM (t) = t3 − 5t2 + 8t− 4

whose coefficients count the nbc-sets by cardinality.

3.2.3. The order complex of the geometric lattice L(M). Geometric lattices are in
particular, (upper-)semimodular lattices, which are some of the original examples
of EL-shellable graded posets. An EL-labelling of a graded poset L having top
and bottom elements is a labelling of the edges in the Hasse diagram using labels
from some totally ordered set Λ in such a way that

• every interval [x, y] in L has a unique saturated chain on which the edge
labels are weakly increasing as one goes up the chain,
• the sequence of labels read on this unique increasing chain come lexico-

graphically earlier than any label sequence for other saturated chains in
[x, y].

In the case of an uppersemimodular lattice L, one can take the totally ordered
set Λ to be the set of join-irreducibles elements of L, totally ordered by any linear
extension of their induced partial order from L; the edge-labelling assigns to an
edge x < y in the Hasse diagram the Λ-smallest join-irreducible j having the
property that x ∨ j = y.

In the special case where L = L(M) is the geometric lattice of flats of a
(simple) matroid M , the join-irreducible elements of L correspond to the ground
set elements E, and the linear order Λ is just a total ordering ω on E.

For any EL-shellable poset L of rank r, the order complex ∆ := ∆(L−{0̂, 1̂})
of its proper part is shellable, where a shelling order on the facets is given by
listing the saturated chains in L according the Λ-lexicographic order on their
label sequences. Thus ∆ is homotopy equivalent to a wedge of (r − 2)-spheres,
and one can show that the number of spheres is the number of saturated chains in
L whose label sequence is strictly decreasing. It turns out that (see [28, Chapter
7]) when L = L(M) for a matroid M , these strictly decreasing label sequences



44 VICTOR REINER

b

c

d

e

NBC(M)

abc

d

e

a b c d e

abc ad ae bd be

abcde

cde

M

L(M)

b

c

d

e

NBC(M)

a

c d e

c

aaa

c b
b

Figure 21. A matroid M , its lattice of flats L(M), and re-
duced NBC complex NBC(M).



MATROIDS AND ORIENTED MATROIDS 45

are exactly the nbc-bases of M , and hence the number of spheres in the wedge is

|χ̃(∆)| = |µL(M)(0̂, 1̂)| = |{nbc-bases of M}|.

Example 31.
In Figure 21, the matroid M from Example 30 has a few of its edges of the geo-
metric lattice L(M) labelled according the above scheme. The strictly decreasing
label sequences occur on the maximal chains that are also darkened, and have
label sequences {(d, b, a), (e, b, a), (d, c, a), (e, c, a)}, corresponding exactly to the
four nbc-bases {abd, abe, acd, ace} of M computed before.

The order complex ∆(L(M)−{0̂, 1̂}) also turns out to have the same homotopy
type as the complex NS(M) of non-spanning sets of M ; the latter is the cross-cut
complex for the former, if one uses the atoms of L(M) as the cross-cut. See [2]
for the technique of cross-cuts.

Recently, the order complex of the proper part L(M) has come up in the theory
of tropical geometry as it is homeomorphic to the Bergman fan/complex of a linear
variety/subspace whose associated matroid is M ; see [1].

3.2.4. Some oriented matroid complexes. In our discussion of the Folkman-Lawrence
sphere, matroid polytopes and the Lawrence construction, we’ve already dis-
cussed some cell complexes which turn out to be homeomorphic to spheres. We
next discuss a trio of well-behaved (and homotopy equivalent) complexes/posets
defined in terms of an oriented matroid M: the convex, free, and acyclic sets.

When M is the oriented matroid realized by a vector configuration V =
{ve}e∈E over R, a subset A ⊂ E is acyclic if it lies on the strictly positive
side of some hyperplane, or equivalently (in OM terms) if the restricted oriented
oriented M|A is acyclic. Define the convex hull of A ⊂ E to be the set of all
vectors ve with e ∈ E which lie in the cone positively spanned by {va}a∈A; in OM
terms, e is in the convex hull of a if every covector f of M which has f(a) = +
for all a in A also has f(e) = +. Say A is convex if it equals its own convex hull.
Lastly, say that A is free if every element a in A has the property that it does
not lie in the convex hull of A− {a}. It turns out that the convex subsets form
a semilattice Lconvex(M) under inclusion, while the acyclic sets and the free sets
form simplicial complexes, ∆acyclic(M),∆free(M). Figure 22 shows the example
of a vector configuration V = {a, b, c, d} which are the columns of

a b c d[
1 1 1 −1
1 0 −1 0

]
along with the three objects Lconvex(M),∆acyclic(M),∆free(M).

It turns out [10] that the three have the same (predictable) homotopy type: the
face poset of ∆free(M) turns out to be a deformation retraction of (the proper
part of) Lconvex(M), which in turn is a deformation retraction of the face poset
of ∆acyclic(M). But then ∆acyclic(M) turns out to be the nerve of the good
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Figure 22. A vector configuration V = {a, b, c, d} in R2, along
with the semilattice Lconvex(M) of convex sets, and the simpli-
cial complexes of acyclic sets ∆acyclic(M) and ∆free(M) sets.

covering of the union of all the strictly positive hemispheres inside the Folkman-
Lawrence sphere, giving all of three objects homotopy equivalent to the the full
Folkman-Lawrence (rank(M)− 1)-sphere ifM is totally cyclic, and contractible
otherwise.

3.3. Topology of hyperplane complements. Arrangements of hyperplanes
along with their elementary enumerative aspects and relations to matroids are
discussed in the notes of Stanley [22]. A more topological viewpoint is dealt with
thoroughly in Orlik and Terao’s texts [16, 17]. We’ll only touch on a few points
here.

Let A be an arrangement hyperplanes in a vector space V over a field F,
with associated matroid M . The complement V − A has differing notions of
“topology”, depending upon the nature of the field F...

3.3.1. Finite fields: counting points. When F = Fq is a finite field of order q, we
saw in our discussion of Tutte polytnomial evaluations that one can count the
points in the complement by an evaluation of the characteristic polynomial:

|V −A| = qdimF V−rank(M)χM (q).

3.3.2. The field R: chambers, separating sets of hyperplanes, weak orders. When
F = R, the complement V −A decomposes into connected components (its cham-
bers/regions), each convex and hence contractible, so without much topology.



MATROIDS AND ORIENTED MATROIDS 47

123

231

213 132

312

321

x > x > x

x > x > x

x > x > x

x > x > x

x > x > x

x > x > x

1 3

x = x

x = x

2

2 3

1 23

13 2

1 2

13 2

32 1

312

x = x
1 3

B
o

Figure 23. The arrangement of reflecting hyperplanes for the
symmetric group W = S3, acting in the subspace of R3 where
x1 + x2 + x3 = 0, along with the associated weak order on the
chambers known as the weak Bruhat order. The base chamber
B0 is the one labelled by the identity permutation 123.

On the other hand, the number of these connected components is the number of
acyclic orientations/topes of the oriented matroid, which we have seen is another
evaluation of the characteristic polynomial

|{ regions of V −A| = (−1)rank(M)χM (−1).

Some interesting features arise from keeping track of the set sep(B,B′) of
hyperplanes H which separate two chambers B,B′. If one chooses a particular
base region B0, then the weak order P (A, B0) on the chambers of A with respect
to B0 is the partial order on the chambers defined by B ≤ B′ if sep(B0, B) ⊆
sep(B0, B

′). The weak order has the pleasant “visual” feature that its Hasse
diagram can be drawn as the 1-skeleton of the associated zonotope Z(V), where
V is collection of vectors normal to the hyperplanes of A.

When A is arrangement of reflecting hyperplanes for a finite reflection group
W , all choices of base chamber B0 are equivalent under the action of W , and this
gives the usual weak Bruhat order on W . See Figure 23for the case where W is
the symmetric group S3.

The weak order construction works for arbitrary oriented matroids M along
with the choice of a base tope B0, giving the tope poset T (M, B0), which plays
an important role in one of the proofs of the Folkman-Lawrence representation
theorem; the Folkman-Lawrence sphere can be shown to be a shellable regular
cellular sphere, using as a shelling order on the topes any linear extension of the
tope poset T (M, B0).

The weak order/tope poset, although not shellable in general, does have known
topology for its intervals (Edelman 1984). Say that two an interval [B,B′] of topes
is d-facial if it consists of all of the topes containing some particular covector X
that indexes a face of codimension r in the Folkman-Lawrence sphere. In the
realizable case, this is equivalent to saying that [B,B′] correspond to the set of
all vertices on an d-dimensional face of the zonotope Z(V). Then an open interval
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(B,B′) in a tope poset T (M, B0) is non-contractible if and only if it is d-facial
intervals for some d, in which case it is homotopy equivalent to a (d− 2)-sphere4

As a last glimpse of the combinatorics of chambers and separating sets, we
mention an amazing determinant evaluation of Varchenko (1993). For each hy-
perplane H of the arrangement, introduce an indeterminate aH , and then define
the Varchenko matrix VA to have rows and columns indexed by the chambers of
the arrangment A, having (B,B′) entry equal to

∏
H∈sep(B,B′) aH . Amazingly,

its determinant factors as follows:

det(VA) =
∏

0̂6=X∈L(M)

(
1−

∏
H⊂X

a2
X

)n(X)p(X)

where n(X) is the number of regions in the arrangement A restricted to the hy-
perplane X, or equivalently n(X) =

∑
Y≥X |µL(M)(X,Y )|, while p(X) is Crapo’s

beta-invariant for the subarrangement of hyperplanes H containing X.

3.3.3. The field C: topology of the complexified complement. When F = C, the
complement V − A has more obvious topology, some of which is still recovered
by the characteristic polynomial χM (t) of the matroid M .

It was conjectured by Arnold (1969) and proven by Brieskorn (1971) that
the (co-)homology of V − A is torsion-free. Brieskorn also showed that that its
Poincaré series

Poin(V −A, t) :=
∑
i≥0

rankZH
i(V −A,Z) ti

is simply a rescaling of the characteristic polynomial

(7) Poin(V −A, t) = trank(M)χM (−1

t
).

Arnold further conjectured that cohomology ring H∗(V − A,Z) should be gen-
erated by certain differential 1-forms in the deRham complex which are indexed
by the hyperplanes H: if H is the zero set of the linear form `H ∈ V ∗ then

ωH :=
1

2πi

d`H
`H

.

Brieskorn proved this also, and it was eventually shown by Orlik and Solomon
(1980) via a deletion-contraction induction, that the cohomology H∗(V − A,Z)
has a very simple abstract presentation with respect to this set of generators.
Consider an exterior algebra over Z

Λ = Z〈eH〉

4Here we are using a common topological combinatorics convention, interpreting a (−1)-

sphere to mean a simplicial/cell complex {∅} containing only the empty face ∅, and a (−2)-
spheres as an empty complex having no faces at all! Note that this is consistent with saying

that the Möbius function value µ(x, y) is the reduced Euler characteristic of the order complex

of the open interval (x, y), when one must deal with intervals of rank 1 (i.e. with only two
elements) and of rank 0 (i.e. with only one element).
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with degree one generators eH indexed by the hyperplanes. Then the kernel of
the map Λ → H∗(V − A,Z) that sends eH 7→ ωH turns out to be generated by
some fairly obvious relations dictated by the underlying matroid M : for each
circuit C = {H1, . . . ,Ht} in C(M), the kernel contains the relation

dC :=

t∑
i=1

(−1)i−1eH1
∧ · · · ∧ êHi

∧ · · · eHt

and the ideal IM in Λ generated by {dC}C∈C(M) generates the kernel. Hence
the Orlik-Solomon algebra AM := Λ/IM is isomorphic to H∗(V −A,Z), showing
that the integer cohomology ring structure is a matroid invariant of A.

Bearing this in mind, and comparing the interpretation of χ(M, t) in (7)
with the interpretation in terms of broken circuits (6) suggests a purely alge-
braic/combinatorial result of Jambu and Terao [14]: the Orlik-Solomon algebra
AM has as a Z-basis the monomials {eA := ∧H∈AeH}A an nbc-set of M . In fact,
this can be proven (see [30]) using Gröbner bases for ideals in exterior algebras:
one shows that {dC}C∈C(M) form a Gröbner basis for IA with respect to a cer-
tain term ordering, and that {eA}A an nbc-set of M are the associated standard
monomials.

In the case where A is the complexification of a real arrangement, there is a
simplicial complex due to Salvetti (see [3, §2.5]) having the same homotopy type
as the complex complement V − A, and which be written down very simply in
terms of the covectors of the associated oriented matroidM. Hence in this case,
all homotopy invariants of the complement V −A can in principle be determined
from the oriented matroid M.

For a while in the 1980’s it was wondered whether the homotopy type of a
complex hyperplane arrangement complement V − A could be recovered from
the weaker data of the underlying matroid M . An example of Rybnikov [21]
finally showed that this is not true– even the fundamental group π1(V − A) is
not determined by the matroid M alone.

3.4. Algebraic invariants.

3.4.1. Resonance varieties and AM as a chain complex. There is much work
recently that studies the Orlik-Solomon algebra AM endowed as a chain complex;
see Falk [11] for a nice survey. One first picks a vector λ = (λH)H∈A in CA
to define a linear form e :=

∑
HaHeH ∈ A1

M , and considers the differential

Ai
M

di→ Ai+1
M that multiplies by e. Since e∧ e = 0, the differential squared is zero,

and so one can define cohomology groups Hi(AM , e) := ker(di)/im(di+1). The
pth resonance variety Rp(M) is defined as the following locus in CA:

Rp(M) := {λ ∈ CA : Hi(AM , e) 6= 0}.

These loci have been useful in distinguishing matroids with non-isomorphic al-
gebras AM . Hi(AM , e) turns out to be the cohomology of a certain local system
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on the complement V −A, and relates to the theory of hypergeometric integrals
(see [17]).

Some well-behaved commutative rings/ideals are associated to matroids and
OM’s ...

3.4.2. Basis monomial rings. Given a matroidM on ground set E = {1, 2, . . . , n},
fix a field F, and consider the subalgebra RM of the polynomial ring F[t1, . . . , tn]
generated by the monomials {tB :=

∏
e∈B te}B∈B(M). These semigroup algebras

RM are sometimes called basis monomial rings, and were studied by N. White
[29], who showed that they were normal (= integrally closed in their field of frac-
tions, or equivalently, the semigroup generated by the monomials is saturated)
using the theory of polymatroids. This immediately implies they are Cohen-
Macaulay, by a result of Hochster [13]. White also conjectured that the ideal of
syzygies among the tB , that is, the (binomial) toric ideal I which is the kernel of
the map

S := F[xB ]B∈B(M) −→ RM := F[tB ]B∈B(M)

xB 7−→ tB

is generated by quadratic binomials, a question which remains open. Several
people (see Herzog and Hibi [12]) whether two successively stronger assertions
hold:

• Is the ring RM = S/I a Koszul algebra?
• Does the toric ideal I have a quadratic Gröbner basis?

Example 32.

Let M be the rank 2 matroid with

B(M) = {ab, ac, ad, bc, bd}
or in other words, a, b, c, d are represented by generic vectors in 2-dimensions
except for c, d being parallel. Then

RM = F[ab, ac, ad, bc, bd] ⊂ F[a, b, c, d]

and the toric ideal I ⊂ F[xab, xac, xad, xbc, xbd] turns out to be a principal ideal
generated by the syzygy xadxbc−xacxbd, coming from the fact that ad·bc−ac·bd =
0. Note that this syzygy comes from an exchange of an element between the
bases ad, bc; White’s originally conjecture says (roughly) that the toric ideal is
generated by such “basis-exchange” syzygies.

3.4.3. Matroidal and oriented matroid ideals. Given a matroid M on ground set
E = {1, 2, . . . , n}, Novik, Postnikov and Sturmfels [19] define the matroidal
ideal I to be the following monomial ideal I in the polynomial ring F[x] :=
F[x1, . . . , xn]:

I := 〈
∏
i 6∈F

xi : F a flat ofM}〉.
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Given an affine oriented matroid (M, g), that is, an oriented matroid M on
E = {1, 2, . . . , n} together with an extra element g representing the “hyperplane
at infinity”, they also define the oriented matroidal ideal J to be the following
monomial ideal in the polynomial ring F[x, y] := F[x1, . . . , xn, y1, . . . , yn]:

J :=

〈 ∏
i∈E:f(i)=+

xi
∏

i∈E:f(i)=−

yi : f a covector with f(g) = +

〉
They then produce combinatorially structured minimal free resolutions of I

and J as modules over their ambient polynomial rings. In the special case where
M is orientable (and furthermore augmented with an extra hyperplane g to make
an affine oriented matroid (M, g)), these resolutions of I, J have essentially the
same simple and beautiful structure, and are cellular resolutions in the sense
defined by Welker in his lectures for this summer school. In both cases, the cell
complex which carries the resolution is the bounded complex within the Folkman-
Lawrence sphere, whose cells are indexed by the covectors f for which f(g) = +.
This bounded complex is known to contractible by a result of Björner and Ziegler;
see [3, §4.5].
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4. Lecture 4: New directions (maps and Hopf algebras)

This lecture might discuss a bit about weak maps and strong maps of matroids
and oriented matroids. This could lead into a discussion of

• MacPhersonians and the recent result of D. Biss, and/or
• the Hopf algebra Mat of matroids, including some of the recent work of

Crapo and Schmitt, and even perhaps,
• work in progress with Billera on how the greedy algorithm leads to a

natural Hopf morphism

Mat→ QSym
where QSym is the Hopf algebra of the quasisymmetric functions.

(And as so often happens in mathematics, after starting the lectures, we discov-
ered that the previous lectures weren’t getting covered so quickly. Therefore, we
never ended up having to write this fourth lecture, and simply covered as much
as we could of the notes from the previous three!)
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5. Problems to accompany the lectures

Most of the problems are quite straightforward; there are few real challenges.
The starred problems are highly recommended to get a feeling for the subject.

5.1. Lecture 1 problems.

1*. (a) (Graphic matroids are linearly representable)
Given a graph G = (V,E), show that one can linearly represent its graphic
matroid over any field F as follows. In the vector space FV having standard basis
vectors εv indexed by the vertices v in V , represent the element e = {v, v′} in E
by the vector εv − εv′ .

In other words, show that the linearly independent subsets of these vectors are
indexed by the forests of edges in G.

(b) (Transversal matroids are linearly representable)
Given a bipartite graph G with vertex bipartition E ∪ F , show that one can
represent its transversal matroid in any field characteristic as follows. Let F(xe,f )
be a field extension of the field F by transcendentals {xe,f} indexed by all edges
{e, f} of G. Then in the vector space F(xe,f )F having standard basis vectors εf
indexed by the vertices f in F , represent the element e ∈ E by the vector∑

f∈F :{e,f}∈G

xe,f εf .

In other words, show that the linearly independent subsets of these vectors are
indexed by the subsets of vertices in E that can be matched into F along edges
of G.

(c) (Linearly representable matroids are algebraically representable)
Given a matroid M of rank r linearly represented by a set of vectors {v1, . . . , vn}
in the vector space Fr, represent M algebraically by elements of the rational
function field F(x1, . . . , xr) as follows. If vi has coordinates (vi1, . . . , vir) with
respect to the standard basis for Fr, then represent vi by fi :=

∑r
j=1 vijxj .

In other words, show that the algebraically independent subsets of these ratio-
nal functions fi are indexed the same as the linearly independent subsets of the
vi.

2*. (Acyclic orientations and chambers)
For a graph G = (V,E), consider the graphic hyperplane arrangement A having
hyperplanes of the form {xi = xj}{i,j}∈E . Explain how each top-dimensional cell

(or chamber or region) in the decomposition of RV cut out by the hyperplanes is
naturally labelled by an acyclic orientation of the edges of G, and why this gives
a bijection between the chambers and the acyclic orientations.
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3*. (The greedy algorithm works for matroids)
(a) Show that Kruskal’s greedy algorithm (described in Lecture 1) always finds a
maximum weight independent set in a matroid, regardless of the choice of weight
function w : E → R+.
(b) Show that that this property characterizes independent sets of matroids
among all simplicial complexes. In other words, given a simplicial complex I
for which the greedy algorithm always works, regardless of the weight function
w, show that I = I(M) for a matroid M . (Hint: One only needs to show that the
exchange axiom I3 holds. To do this, given I1, I2 in I with |I2| = |I1|+1 = k+1,
consider the weight function

w(e) :=

{
k+1
k+2 for e ∈ I1
k

k+1 for e ∈ I2 − I1
Explain why the greedy algorithm will build up I1 first, and then at the next step,
will exhibit an element of the form I1 ∪ {e} ∈ I with e ∈ I2 − I1. In particular,
explain why the algorithm will not just stop after having found I1 !)

4. (Circuit axioms are equivalent to independent set axioms)
Recall that the circuit axioms assert that C ⊆ 2E forms the circuits of a matroid
M on the finite set E if

C1. ∅ 6∈ C.
C2. If C,C ′ ∈ C and C ⊂ C ′, then C = C ′.
C3. Given C,C ′ ∈ C, with C 6= C ′ and e ∈ C ∩ C ′, there exists some C ′′ ∈ C

with C ′′ ⊆ C ∪ C ′ − {e}.
Show that circuits give an equivalent axiomatization of matroids as do indepen-
dents sets.

In other words, given a collection I ⊆ 2E of sets satisfying the independent set
axioms, show that the collection C of minimal subsets not in I satisfy C1− C3,
and conversely given a collection C satisfying C1− C3, show that the collection
I of subsets containing no subset from C satisfy the independent set axioms.

5. (Matroids are hereditarily pure) Show that restricting the independent sets of
a matroid M on E to a subset E′ of E always gives a pure simplicial complex on
E′. Show that this property characterizes independent sets of matroids among
all simplicial complexes.
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5.2. Lecture 2 problems.

6. (Independence complexes of matroids are characterized by lex shellings)
For a matroid M on E, show that for any linear ordering on E, the the induced
lexicographic ordering on bases of M gives a shelling order on the complex of
independent sets I. Show that this property characterizes independent sets of
matroids among all simplicial complexes.

7*. (Planar dual concepts from graph theory)
Staring at Figure 13, explain why for a planar graph G and a planar dual G⊥

(endowed with corresponding edge orientations as explained in § 2.1.4), one has
that
(a) deletion of an edge e in G corresponds to contraction of the crossing edge e⊥

in G⊥,
(b) loop edges in G correspond to isthmus edges in G⊥,
(c) a directed cycle in G⊥ corresponds to a directed bond (= edges going from one
side V ′ to other side V − V ′ in a vertex partition (V ′, V − V ′)) of G,
(d) a set of edges T ⊂ E forms a spanning tree in G if and only if the comple-
mentary set (E − T )⊥ := {e⊥ : e 6∈ T} forms a spanning tree in G⊥, and
(e) an acyclic orientation of the edges of G corresponds to a totally cyclic ori-
entation (= one in which every directed edge lies in some directed cycle) of the
edges of G⊥.

8*. (Independence complexes of matroids are vertex-decomposable)
Let ∆ be a simplicial complex on vertex set E. We do not assume that every
e ∈ E is actually used as a vertex of ∆. The concept of vertex-decomposability for
a simplicial complex ∆ on vertex set E is defined recursively: both the complex
∆ = ∅ having no faces at all (not even the empty face) and any complex ∆
consisting of a single vertex are defined to be vertex-decomposable, and then ∆
is said to be vertex-decomposable if it is pure, and there exists a vertex e ∈ E
for which both its deletion and link

del∆(e) := {F ∈ ∆ : e 6∈ F}
link∆(e) := {F − {e} : e ∈ F ∈ ∆}

are vertex-decomposable complexes.
(a) Show that vertex-decomposable complexes ∆ are shellable. (Hint: Obviously
one wants to use induction. Shell the facets in the deletion of e first, then those
in the star of e, which is the cone over the link with apex e.)
(b) Show that for a matroid M with ∆ = I(M) and any non-loop, non-coloop
element e ∈ E, one has

del∆(e) := I(M\e)
link∆(e) := I(M/e)

Deduce that independent set complexes I(M) of matroids are vertex-decomposable.
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9*. (Representability of Fano, non-Fano matroids)
Here is an approach to showing that the Fano matroid is coordinatizable only in
characteristic 2, and the non-Fano matroid is coordinatizable only in character-
istic not 2.
(a) First try to show that in any coordinatization V = {a, b, c, d, e, f, g} of either
the Fano or non-Fano matroids, with elements labelled as in Figure 21(b), one
can use the action of GL3(F) along with scaling of individual vectors to assume
that the representing matrix has columns looking like this:

a b c d e f g

1 0 0 1 1 0 γ
0 1 0 1 0 α δ
0 0 1 0 1 β ε


(b) Use some of the matroid dependencies to show that γ = δ = ε, and hence by
scaling, γ = δ = ε = 1.
(c) Use some more of the matroid dependencies to show that α = β.
(d) Use the last matroid dependence in the Fano (and its absence in the non-
Fano) to decide whether or not the characteristic of F is 2.

10*. (Whitney’s twists leave a graphic matroid unchanged)
(a) Explain why two graphs G,G′ that differ by a twist along a pair of vertices
will have the same matroids M(G) = M(G′).
(b) Can you see how to recover a 3-vertex-connected graph G = (V,E) from the
matroid M(G)? (Hint: for each vertex v ∈ V , can you show that the set of edges
H ⊂ E in the bond/cut that goes from {v} to V − {v} have the property that
M(G)\H remains a connected matroid, and that these are the minimal edge cuts
with respect to inclusion having this property).

11*.(Duality of Plücker coordinates and matrix-tree-type theorems)
Let M be an r × n matrix of (full) rank r over some field F, and by abuse
of notation, let M also denote the matroid on ground set E := {1, 2, . . . , n}
represented by the columns of M . Let M⊥ be (n − r) × n matrix whose rows
span the nullspace/kernel of M , so that M⊥ represents the orthogonal matroid
M⊥.

(a) Show that after re-ordering the column indices E = {1, 2, . . . , n}, there exist
P ∈ GLr(F), Q ∈ GLn−r(F) such that

PM = [Ir|A]

QM⊥ = [−AT |In−r].

for some r × (n− r) matrix A.



MATROIDS AND ORIENTED MATROIDS 57

(b) Prove the relationship (2) between complementary Plücker coordinates (Hint:
one way is to use part (a) to reduce to the case where M,M⊥ has the special
form given on the right-hand sides of part (a)).

(c) Use the Binet-Cauchy Theorem to prove the following generalization of Kirch-
hoff’s “matrix-tree theorem”. If D is an n×n diagonal matrix of indeterminates
{xe}e∈E , then

det(M DMT ) =
∑

bases B∈B(M)

det(M |B)2
∏
e∈B

xe.

(d) Deduce that when M is represented over F = Q by an integer matrix M , one
has an upper bound

|B(M)| ≤ det(MMT )

with equality if and only if every maximal minor of M is ±1 or 0.
Show that this equality occurs when M represents the graphic matroid M(G)

for a graph G as follows: M is a reduced version of its usual node-edge signed
incidence matrix (that is, the cellular boundary map C1(G;Z)→ C0(G;Z), after
orienting the edges arbitrarily) in which one deletes rows corresponding to a
choice of one vertex chosen from each connected component of G.

(e) Deduce from (b), (c) a dual version of part (d):

c2 · det(M⊥D (M⊥)T ) =
∑

bases B∈B(M)

det(M |B)2
∏
e 6∈B

xe

where c is the overall scalar present in (2).

(f) Deduce from (b), (c) the following self-dual version. If D(x) is an n × n
diagonal matrix of indeterminates {xe}e∈E , as before, and D(y) is the same
matrix after substituting xe for ye, then

c · det

[
MD(x)
M⊥D(y)

]
=

∑
bases B∈B(M)

det(M |B)2
∏
e∈B

xe
∏
e 6∈B

ye.
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5.3. Lecture 3 problems.

12*. (Various graphic Tutte specializations)
This problem gives a few standard deletion-contraction recurrences for graph-
theoretic quantities, that can be used to prove some of the Tutte polynomial
specializations asserted in the lecture.
(a) Let G = (V,E) be a graph, and for a positive integer t, let pG(t) denote the
number of proper colorings of V with t colors, i.e. pG(t) is Birkhoff’s chromatic
polynomial. Show that for any non-loop edge e ∈ E, one has the deletion-
contraction relation

pG−e(t) = pG(t) + pG/e(t).

and then explain how to use Proposition 28 to deduce the first equation in (4).
(Hint: for a proper coloring of G − e, did the endpoints {v, v′} of edge e get
colored with the same colors, or different colors?)
(b) Let G = (V,E) be a graph, and for a positive integer t, let p⊥G(t) denote
the number of nowhere-zero flows on E with values in Z/tZ. Show that for any
non-isthmus edge e ∈ E, one has the deletion-contraction relation

p⊥G/e(t) = p⊥G(t) + p⊥G−e(t)

and then explain how to use Proposition 28 to deduce the second equation in
(4). (Hint: for a nowhere-zero flow on G/e, if one “uncontracts” the edge e to go
from G/e to G, is the unique value that must be assigned to e to maintain the
flow conditions equal to zero or not?)
(c) Let G = (V,E) be a graph and aG the number of acyclic orientations of E.
Show that for any non-loop edge e ∈ E, one has the deletion-contraction relation

aG = aG−e + aG/e.

and then explain how to use Proposition 28 to deduce the first equation in (5).
One approach to this is as follows. Let αi for i = 0, 1, 2 be the number of acyclic
orientations of G − e that can be extended to G in exactly i ways by orienting
the edge e, and show that

α1 + 2α2 = aG

α2 = aG/e.

(d) Let G = (V,E) be a graph and a⊥G the number of totally cyclic orientations of
E. Show that for any non-isthmus edge e ∈ E, one has the deletion-contraction
relation

a⊥G = aG/e + aG−e.

and then explain how to use Proposition 28 to deduce the second equation in
(5). One approach to this is as follows. Let αi for i = 0, 1, 2 be the number of
totally cyclic orientations of G/e that can be extended to G in exactly i ways by
orienting the edge e, and show that

α1 + 2α2 = a⊥G

α2 = a⊥G−e.
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You may find it useful here to note that an orientation of E is totally cyclic if
and only if every connected component C in G is oriented in such a way that, as
a digraph, it is strongly connected, i.e. there are directed paths in both directions
between any pair of vertices in C.

13*. (Nonspanning sets are Alexander dual to independent sets)
Given a matroid M on ground set E, show that the simplicial complex of non-
spanning sets NS(M) is the canonical Alexander dual to the simplicial complex
of independent sets of M⊥. In other words, show that A ⊂ E is nonspanning
(A 6= E) if and only if E −A is not independent in M⊥.

14*. (Boolean hyperplane arrangements)
Boolean arrangements are the simplest examples of hyperplane arrangements.
Let F be any field, and consider the Boolean arrangement A consisting of all
coordinate hyperplanes {Hi}i=1,...,n in V = Fn where Hi is defined by xi = 0.
Consider also the associated matroid M , the oriented matroid M when F = R,
and the complement V −A (= the algebraic torus (F×)n).

(a) Compute the characteristic polynomial χM (t).

(b) Check that the complement V −A has

• for F = Fq, exactly qdimV−rank(M)χM (q) points,

• for F = R, exactly (−1)rank(M)χM (−1) chambers,
• for F = C, Poincaré polynomial (−t)rank(M)χM

(
− 1

t

)
, and cohomology

algebra structure agreeing with the Orlik-Solomon algebra AM .

15. (Broken circuit complexes)
Let M be a matroid of rank r on ground set E, totally ordered by ω.

(a) Show that NBC(M) = NBC(M̂) where M̂ denotes the simplification of M .

(b) Show that NBC(M) is pure of dimension r − 1 by showing that every nbc-
set I ⊂ E is independent, and that the ω-lexicographically first basis B of M
containing I is actually an nbc-set (i.e. an nbc-basis).

(c) Show that the ω-lexicographic order on NBC-bases gives a shelling order for
NBC(M) (and hence also for NBC(M)).

(c) Show that for any flat X in the geometric lattice of flats L(M), one has

µL(M)(0̂, X) = (−1)r(X)|{ nbc-sets I ⊆ E : Ī = X}|.

(Hint: Show the right-hand side satisfies the proper identity that defines µL(M)(∅, F ),
via a sign-reversing involution).
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(d) Deduce from (c) Whitney’s interpretation of the coefficients of the chro-
matic/characteristic polynomial given in (6):

χM (t) =
∑

nbc-sets I

(−1)|I|trank(M)−|I|.

(e) Conclude that Crapo’s beta-invariant and the reduced Euler characteristic of
NBC(M) are related by

χ̃(NBC(M)) = (−1)rβ(M).
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