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On work by M. Wachs published by others?

From “Spectra of symmetrized shuffling operators”
with F. Saliola and V. Welker:
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i 2002 regarding the random-to-top, random-to-random shuffliing operators, and for her
permission to include the results of some of these conversations here.
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On work by M. Wachs published by others?

From “Spectra of symmetrized shuffling operators”
with F. Saliola and V. Welker:

7. ACKNOWLEDGEMENTS

The first author thanks Michelle Wachs for several enlightening e-mail conversations
i 2002 regarding the random-to-top, random-to-random shuffliing operators, and for her
permission to include the results of some of these conversations here.

No, let’s talk instead about why her recent work is on the right
g-Narayana numbers!
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Some directions of Catalan generalization
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Where we’re headed

arbitrary g, t
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@ The g-numbers
@ g-Catalans
@ g-Kreweras, g-Narayana
@ Nilpotent orbits
e Properties
@ Principal-in-Levi orbits
@ Evaluations
@ The g-analogue of h-vector to f-vector
e Where do they come from ?
@ Springer fibers
@ A recursion of Shoji
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The numbers The numbers in type A

Narayana numbers as h-vector
The definitions in all types

Bell, Stirling, and unnamed numbers

Definition

Set partitions of {1,2, ..., n} are counted
@ in total by Bell numbers B(n),
@ via number of blocks by Stirling numbers S(n, k),
@ via block size partition A by unnamed numbers (?).

They have recurrences and generating functions,
but lack product formulas.
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The numbers The numbers in type A

Narayana numbers as h-vector
The definitions in all types

Bell, Stirling, and unnamed numbers

S(4,1)=1 X=(4):1 1

S4,2)=7 A=(2?):3

A= (31):4 12

B(4) = 15

/M N\ /N
S(4,3)=6 A=(21%):6 1 2 3 4 1 2 3 4 1 2 3 4

o~ PN PN

1 2 3 4 1 2 3 4 172 3 4

Kreweras for Weyl group.



The numbers The numbers in type A

Narayana numbers as h-vector
The definitions in all types

The spoilsports ...

S(4,2) =7
B(4) = 15
S(4,3) =6
S(4,1) =1

/\/\//—\\
i 2 3 4 1

A=(2%):3 2 3 4
nesting

WA WA
A=(31):4 1 2 3 4 1 2 3 4

VAVA A VA

12 3 4 1 2 3 4

/M N\ /N
A=(1%):6 1 2 3 4 1 2 3 4 12 3 4

PN PN P

1 2 3 4 12 3 4 12 3 4
A=(1%) 1 1 2 3 4
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The numbers The numbers in type A

Narayana numbers as h-vector
The definitions in all types

Catalan, Narayana, and Kreweras numbers

Definition
The noncrossing or nonnesting set partitions are counted

@ in total by Catalan numbers Cat(n),
@ via number of blocks by Narayana N(n, k) numbers,
@ via block size partition A by Kreweras numbers Krew(\).
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The numbers The numbers in type A

Narayana numbers as h-vector
The definitions in all types

Catalan, Narayana, and Kreweras numbers

Definition
The noncrossing or nonnesting set partitions are counted

@ in total by Catalan numbers Cat(n),
@ via number of blocks by Narayana N(n, k) numbers,
@ via block size partition A by Kreweras numbers Krew(\).

They’re better, IMHO.
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The numbers The numbers in type A

Narayana numbers as h-vector
The definitions in all types

Cat, Nar, Krew counting noncrossings

AYAVA
N(4,1) =1 Krew(4) = 1 1 2 3 4
AN /A\
N(4,2) =6  Krew(2?) =2 1 2 3 4 1 2 3 4
WA WA
Krew(31) = 4 1 2 3 4 1 2 3 4
VA A VAN

Cat(4) = 14

/M /N /N
N(4,3) =6 Krew(21?)=6 1 2 3 4 12 3 4 12 3 4
PN PN PN
12 3 4 12 3 4 12 3 4
N(4,1) =1  Krew(1%) =1 1 2 3 4
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The numbers The numbers in type A

Narayana numbers as h-vector
The definitions in all types

Cat, Nar, Krew counting nonnestings

IAVAVYAN
N(4,1) =1 Krew(4) = 1 1 2 3 4
/M /N
N(4,2) =6 Krew(2?) = 2 12 3 4
AN AN
Krew(31) = 4 12 3 4 1 2 3 4
TAVAN VAVA

Cat(4) = 14

/M /N /N
N(4,3) =6 Krew(21?)=6 1 2 3 4 12 3 4 12 3 4
PN PN PN
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The numbers The numbers in type A

Narayana numbers as h-vector
The definitions in all types

Catalan, Narayana, Kreweras formulas

They do have product formulas ...

Ca(n) = (2”)
0= l1) )

1 "y
1 ( n ) if A =1/12/23/3 ... partitions n.
Py s fhn

Krew()\) := P
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The numbers The numbers in type A

Narayana numbers as h-vector
The definitions in all types

Catalan, Narayana, Kreweras formulas

They do have product formulas ...

Ca(n) = (2”)
0= l1) )

1 "y
1 ( n ) if A =1/12/23/3 ... partitions n.
Py s fhn

Krew()\) := P

N N!
: = if <N.
<M1,.--,un> pal gt (N =30 i) Zu'

V. Reiner and E. Sommers g-Narayana, g-Kreweras for Weyl groups



The numbers The numbers in type A

Narayana numbers as h-vector
The definitions in all types

Kreweras sum to Narayana, which sum to Catalan

As one would expect, one can check these from the formulas:

n
Cat(n) = Y _N(n,k)
k=1
N(n.k)= Y Krew())

partitions
A of n:
o\ =k

where ((\) = ), ui Is the length or number of parts of .
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The numbers The numbers in type A

Narayana numbers as h-vector
The definitions in all types

Narayana numbers as h-vector of the associahedron

Definition
The d-dimensional associahedron is a simple polytope with
(n+ 3)-gon triangulations as vertices, diagonal flips as edges.

o
@/\\@

D
de /Mo »
& \@/ S The f-vector encodes its number of
\@ (vertices,edges,2-faces,3-faces):
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The numbers The numbers in type A

Narayana numbers as h-vector
The definitions in all types

Narayana numbers as h-vector of the associahedron

Definition
The d-dimensional associahedron is a simple polytope with
(n+ 3)-gon triangulations as vertices, diagonal flips as edges.

o
@/\\@

D
de /Mo »
& \@/ S The f-vector encodes its number of
\@ (vertices,edges,2-faces,3-faces):

(fo, i, B, 5) = (14,21,9,1)
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The numbers The numbers in type A

Narayana numbers as h-vector
The definitions in all types

Narayana numbers as h-vector of the associahedron

Definition
The d-dimensional associahedron is a simple polytope with
(n+ 3)-gon triangulations as vertices, diagonal flips as edges.

o
@/\\@

D
de /Mo »
& \@/ S The f-vector encodes its number of
\@ (vertices,edges,2-faces,3-faces):

(fo, i, B, 5) = (14,21,9,1)
(ho, hy, ho, h3) = (1,6,6,1)
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The numbers The numbers in type A

Narayana numbers as h-vector
The definitions in all types

The h-vector to f-vector transformation

For P a d-dimensional simple polytope with f; faces of
dimension i, one can define the h-vector (ho, ..., hy) via

d

th’ > h(1+ty

i=0

Zf(t—1 Z

Q
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The numbers The numbers in type A

Narayana numbers as h-vector
The definitions in all types

Narayana numbers as h-vector of the associahedron

Theorem (C. Lee 1989)
The Narayana numbers give the h-vector of the associahedron.

The 3-dimensional associahedra has

2 S

v)
/\\
@/\D /@\ D/\®
\@ @\ /@ @/
(fo,fi,fo,3) = (14,21,9,1) "~
A
(h07h17h27h3) = (176767 1)

144216492 + 18 =1+6(1 + 1) +6(1 + )2+ 1(1 + £)°.
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The numbers

The numbers in type A
Narayana numbers as h-vector
The definitions in all types

Quick review of W-noncrossing, nonnesting

Let W C GL,(R) be an irreducible finite reflection group.

Definition (Bessis, Brady-Watt, early 2000’s)
The W-noncrossing partitions are

NC( W) = [e; C]abs

Definition (Postnikov, mid-1990s)
The W-nonnesting partitions are

NN(W) := Antichains(®™)

N
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The numbers

The numbers in type A
Narayana numbers as h-vector
The definitions in all types

W-Catalan counts W-noncrossing, nonnesting

Theorem

INC(W)| = [NN(W)| = Cat(W) :=

where (eq, ..., e) are the exponents of the reflection
hyperplane arrangement for W, and h = max{e; + 1} is the
Coxeter number, the order of any Coxeter elementc = 81 --- Sy
if the Coxeter system (W, S) has S = {sy,...,Ss}.
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The numbers The numbers in type A

Narayana numbers as h-vector
The definitions in all types

Cat(W) in type A

Example
Type A,—1 has W = S actingon {x e R": >, x; = 0}.

One can choose S = {sy,...,5, 1} where s; = (i,i + 1).
The exponents are (1,2,...,n—1).

A choice of Coxeter elementisc=s1---s,_1 =(1,2,...,n),
an n-cycle, having order h = n=max{2,3,...,n}.

¢
h+ei+1
Cat(Ap_1) = Hi
pale e+ 1
_(n+2)-(n+3)---(n+n) 1 (2n
N 2.3---n  n+1 '
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The numbers The numbers in type A

Narayana numbers as h-vector
The definitions in all types

W-Narayana, Kreweras

To elements of NC(W) or NN(W) one associates a hyperplane
intersection subspace X, or parabolic subgroup Wy, having

@ a rank (= codimension of X),

@ a W-orbit [X], or W-conjugacy class for Wx.
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The numbers

The numbers in type A
Narayana numbers as h-vector
The definitions in all types

W-Narayana, Kreweras

To elements of NC(W) or NN(W) one associates a hyperplane
intersection subspace X, or parabolic subgroup Wy, having

@ a rank (= codimension of X),

@ a W-orbit [X], or W-conjugacy class for Wx.

Definition

The W-Narayana numbers N(W, k) count the elements of
NC(W) or NN(W) having a X of a fixed rank k.

They give the h-vector of the W-cluster complex or
W-associahedron of Fomin-Zelevinsky 2003.
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The numbers

The numbers in type A
Narayana numbers as h-vector
The definitions in all types

W-Narayana, Kreweras

To elements of NC(W) or NN(W) one associates a hyperplane
intersection subspace X, or parabolic subgroup Wy, having

@ a rank (= codimension of X),

@ a W-orbit [X], or W-conjugacy class for Wx.

Definition

The W-Narayana numbers N(W, k) count the elements of
NC(W) or NN(W) having a X of a fixed rank k.

They give the h-vector of the W-cluster complex or
W-associahedron of Fomin-Zelevinsky 2003.

Definition

The W-Kreweras numbers Krew (W, [X]) count the elements of
either NC(W) or NN(W) with a fixed W-orbit [X].
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The numbers

The numbers in type A
Narayana numbers as h-vector
The definitions in all types

Orlik-Solomon exponents give a product formula

Theorem (Broer, Douglass, Sommers, late 1990s)
Krew (W, [X]) has a product formula:

1

¢
Krew(W, [X]) = (h+1-¢)
(50 W5 L

where (ef, ..., ef) are the Orlik-Solomon exponents of the
reflection arrangement of W restricted to X.
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The numbers The numbers in type A

Narayana numbers as h-vector
The definitions in all types

Fuss and rational generalization

Say mis very good for ¢ if mis odd in types B, C, D, and if
gcd(m, h) = 1 in all other types, in which case define

Cat(W, m) = H 2—:_[1”
i=1 !
V4
Krew(W, [X], m) = o (Wl) Wi [I(m-e
i:1
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The numbers The numbers in type A

Narayana numbers as h-vector
The definitions in all types

Fuss and rational generalization

Say mis very good for ¢ if mis odd in types B, C, D, and if
gcd(m, h) = 1 in all other types, in which case define

e+ m
Cat(W, m) = ,1} P
V4
Krew(W, [X], m) := w (Wl) W] [I(m—ef)
i=1

This captures the
@ rational Catalan case gcd(m, n) = 1 in type A,_1,
@ W-Fuss-Catalan case m = sh+ 1 in any type,
@ and in particular, the usual W-Catalan case is m = h+ 1
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g-Catalans
q-Kreweras, g-Narayana
Nilpotent orbits

The g-numbers

No problem g-ifying the W-Catalan

Definition

14

Cat(W,q) = H

i=1

where [n]g:=1+q+q¢*+---+q"".
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g-Catalans
q-Kreweras, g-Narayana
Nilpotent orbits

No problem g-ifying the W-Catalan

The g-numbers

Definition

[h+ei+1]q
Cat(W,q) H 6+ 1l

where [n]g :=1+ g+ ¢? +---+q”‘1.

It's not silly, e.g., it satisfies a cyclic sieving phenomenon.
Theorem (Bessis-R. 2007)

For ¢ a primitive h'h root of unity,

Cat(W, g = ¢9)

counts elements of NC(W) = [e, clas fixed conjugating by cC.
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g-Catalans
q-Kreweras, g-Narayana
Nilpotent orbits

The g-numbers

And same for g-ifying Cat( W, m)

[eitmlq
1 [ei+1]q

When m is very good, Cat(W, m; q) := Hf: lies in N[q].

V. Reiner and E. Sommers g-Narayana, g-Kreweras for Weyl groups



g-Catalans
q-Kreweras, g-Narayana
Nilpotent orbits

The g-numbers

And same for g-ifying Cat(W, m)

[ej+m]q
[ei+1]q

Very sketchy proof.

m is very good if and only if this formula

When m is very good, Cat(W, m; q) := ]_[5;1

lies in N[q].

 det(1— g"w)
X(W) = ~5et = qw)

is a genuine graded W-character:
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g-Catalans
q-Kreweras, g-Narayana
Nilpotent orbits

And same for g-ifying Cat(W, m)

When m is very good, Cat(W, m; q) := []'_; [[ee”_:'ﬁ]; lies in N[q].

Very sketchy proof.
m is very good if and only if this formula

__det(1 —q"w)
X(W) = et = qu)
is a genuine graded W-character: the m-Parking space S/(0),

where S = C[xq,...,X/] and 6 = (04, ...,6,) is an hsop of
degree m whose span carries the reflection rep’n V.
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g-Catalans
q-Kreweras, g-Narayana
Nilpotent orbits

The g-numbers

And same for g-ifying Cat(W, m)

When m is very good, Cat(W, m; q) := []'_; [[ee”_:'ﬁ]; lies in N[q].

Very sketchy proof.
m is very good if and only if this formula

 det(1— g"w)
X(W) = ~5et = qw)

is a genuine graded W-character: the m-Parking space S/(0),
where S = C[xq,...,X/] and 6 = (04, ...,6,) is an hsop of
degree m whose span carries the reflection rep’n V.

Cat(W, m; q) is its W-fixed space (S/(0))" Hilbert series. O
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g-Catalans
g-Kreweras, g-Narayana
Nilpotent orbits

The g-numbers

nas in Wachs’ IMA talk 11/12/2014 ...

gu+1)

N(An,1,j, q) = W

b,

g-Narayana polynomials

The Narayana numbers have a closed form formula

- $20)(2)"

Recall that the Narayana numbers refine the Catalan numbers
N,y(1) = C,.

The Fiirlinger-Hofbauer g-Narayana polynomials are defined by

Mla.0) = S g L H L‘i IL ’

=0 [nlq

V. Reiner and E. Sommers i , g-Kreweras for Weyl gro



g-Catalans
g-Kreweras, g-Narayana
Nilpotent orbits

The g-numbers

. and type B g-Narayanas came later in her talk ...

N(Bn.j.q) := (¢?)° M E M &

Super g-Narayana polynomials (Krattenthaler and MW)

For n > s, define the super g-Narayana polynomials

N$(q,t) = Fj qugﬂ) mql mq L:SLH.

q j=0

Note Ngl)(q, t) = (1+ q)Nq(q,t).

N,(,O)(l7 t) is the type B Narayana polynomial.

Gessel proved N,(,S>(1,, t) € N[t] by deriving a v-positivity formula.
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g-Catalans
g-Kreweras, g-Narayana
Nilpotent orbits

The g-numbers

Several questions arise

@ Are there q-Kreweras polynomials of types A, B, C, D?
All types? Do they sum to Cat(W, q)?

@ Intypes A, B do they sum to the above q-Narayanas?
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g-Catalans
g-Kreweras, g-Narayana
Nilpotent orbits

The g-numbers

Several questions arise

@ Are there q-Kreweras polynomials of types A, B, C, D?
All types? Do they sum to Cat(W, q)?

@ Intypes A, B do they sum to the above q-Narayanas?

@ Do they exhibit a cyclic sieving phenomenon?
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g-Catalans
g-Kreweras, g-Narayana
Nilpotent orbits

The g-numbers

Several questions arise

@ Are there q-Kreweras polynomials of types A, B, C, D?
All types? Do they sum to Cat(W, q)?

@ Intypes A, B do they sum to the above q-Narayanas?
@ Do they exhibit a cyclic sieving phenomenon?

@ Do they give some g-analogue of the h- to f-vector map?

V.

V. Reiner and E. Sommers g-Narayana, g-Kreweras for Weyl groups



g-Catalans
g-Kreweras, g-Narayana
Nilpotent orbits

The g-numbers

Several questions arise

@ Are there q-Kreweras polynomials of types A, B, C, D?
All types? Do they sum to Cat(W, q)?

@ Intypes A, B do they sum to the above q-Narayanas?
@ Do they exhibit a cyclic sieving phenomenon?

@ Do they give some g-analogue of the h- to f-vector map?

V.

Answer

Sommers’ work answers yes to 1st question for Weyl groups,
if we associate a q-Kreweras number to each nilpotent orbit.

N

V. Reiner and E. Sommers g-Narayana, g-Kreweras for Weyl groups



g-Catalans
g-Kreweras, g-Narayana
Nilpotent orbits

The g-numbers

Several questions arise

@ Are there q-Kreweras polynomials of types A, B, C, D?
All types? Do they sum to Cat(W, q)?

@ Intypes A, B do they sum to the above q-Narayanas?
@ Do they exhibit a cyclic sieving phenomenon?
@ Do they give some g-analogue of the h- to f-vector map?

V.

Answer

Sommers’ work answers yes to 1st question for Weyl groups,
if we associate a q-Kreweras number to each nilpotent orbit.

N

Actually, yes to all above, but we don’t understand it uniformly!
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g-Catalans
g-Kreweras, g-Narayana
Nilpotent orbits

The g-numbers

What parametrizes a g-Kreweras number?

We won't just get a g-Kreweras number for each W-orbit [X] of
intersection subspace. Instead we will get

Krew(e, m, q)

for each ...
@ Weyl group W, with a root system ¢, and
@ a nilpotent orbit e in its Lie algebra g, and
@ a positive integer m which is very good for ®.
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The g-numbers

Type A nilpotent orbits

g-Catalans

q-Kreweras, g-Narayana

Nilpotent orbits

In type A,_1, G = SL,(C) conjugates g = sl,(C) = C™", and
nilpotent orbits are represented by Jordan canonical forms,

parametrized by partitions X of n.

Example

In sk(C), the partition A\ = 3221 corresponds to the SLg(C)-orbit of

0

1
0

o = O

V. Reiner and E. Sommers
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g-Catalans
q-Kreweras, g-Narayana
Nilpotent orbits

The g-numbers

Type A g-Kreweras formula

In type A,_1, very good for m means gcd(m, n) = 1.

For partitions A\ = 1#12/23#3 ... of n with gcd(m, n) =1,

1 m
Krew(ey, m; q) = m("_E(A))_C(A)[ ] -
ew(ex,m; q) =q [mlq [t n]

where

c(\) = Z AiAi4 1, with A" the transpose partition to A
J

[m] — (Mg
1)y il [rellqlm =325 il
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g-Catalans
q-Kreweras, g-Narayana
Nilpotent orbits

The g-numbers

Types B/C/D

) g Condition on A\ = 1#12+23k2 |
parametrizing nilpotent orbits

By || s02n41 | [\ =2n+1, and p; even for j even

Cnl| Spon |A| = 2n, and ; even for j odd

Dy || soop |A| = 2n, and ; even for j even

A slight lie in type Dp: these are O, orbits on so,,, not SO, ,-orbits, leading to an extra factor of 2 in some formulas.
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g-Catalans
q-Kreweras, g-Narayana
Nilpotent orbits

The g-numbers

Type B, C g-Kreweras formulas— the gestalt picture

Introduce notations

f=(lp1/2], lp2/2], ) it = (p1, p2, .. .).

For A = 1#M2K23ks | a type B, or type C,, partition, and m odd,

. ey
Krew(ex, m; q) = gt [m _“L(A)] @2 -1)
# @ =1
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g-Catalans
q-Kreweras, g-Narayana
Nilpotent orbits

The g-numbers

What was that power g®*™+¢ in front?

3 in type B,
e:=140 in type C,, for ¢(\) even,
1% intype C, for £()) odd.
and
N L(A
exp(A, m) :=m(n—£4(X\)) — C(;) +7(\) — (4)
with

T(A) = Z 14

JZ|A| mod 2
pj even

V. Reiner and E. Sommers
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g-Catalans
q-Kreweras, g-Narayana
Nilpotent orbits

The g-numbers

Type D g-Kreweras formulas

Here ;1 plays a special role. Define p>o := (u2, pa, - . ).

For m odd and \ a type D, partition,
Krew(ey, m; q) is g®P\7) times these:

7N P _ L(x)—1
- [m (e 1)} I @2 —1)
g2 =1
. . . . L(x
=i {mf ()\)] M+ 1 =L\ - \uzz\] ( )(q
Az | g H @ =

if pq odd,

if py even, some p; odd,

if j all even.

V. Reiner and E. Sommers
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g-Catalans
q-Kreweras, g-Narayana
Nilpotent orbits

The g-numbers

Type D g-Kreweras formulas

Here ;1 plays a special role. Define p>o := (u2, pa, - . ).

For m odd and \ a type D, partition,
Krew(ey, m; q) is g®P\7) times these:

7N P _ L(x)—1
- [m (e 1)} I @2 —1)
g2 =1
. . . . L(x
=i {mf ()\)] M+ 1 =L\ - \uzz\] ( )(q
Az | g H @ =

if pq odd,

if py even, some p; odd,

if j all even.

(Thanks, Ted Cruz!)

V. Reiner and E. Sommers
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g-Catalans
q-Kreweras, g-Narayana
Nilpotent orbits

The g-numbers

Defining the g-Narayana numbers in general

Later we define a mysterious statistic x(e) on nilpotent orbits e.

L ¢ r(€1) |
An—1 E(/\)
Bn/Cn ()
5 {E(A) if 111 is even,
5 I(\) =1 if pq is odd.

Given m very good for ® and 0 < k < /, define

Nar($®, m, k; q) : Z Krew(e, m; q).

e:x(e)=k
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g-Catalans
q-Kreweras, g-Narayana
Nilpotent orbits

The g-numbers

Type A, B, C g-Narayanas

The g-Narayana numbers in types A, B/C are ...
B Nar(®, m, k; q) ‘
1 n—1 m—1
A . q(nf1fk)(mf1fk) [ ] [ :|
" k+1]qg | k . ko],
2\(n—k)(fm—k) |1 m
B/ (@) HRER
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g-Catalans
q-Kreweras, g-Narayana
Nilpotent orbits

The g-numbers

Type A, B, C g-Narayanas

The g-Narayana numbers in types A, B/C are ...
B Nar(®, m, k; q) ‘
1 n—1 m—1
A . q(nf1fk)(mf1fk) [ ] [ :|
" k+1]qg | k . ko],
2\(n—k)(fm—k) |1 m
B/ (@) HRER

Its not hard to see that they lie in N[q].
At m = h+ 1 they give the g-Narayanas used by Wachs.
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g-Catalans
q-Kreweras, g-Narayana
Nilpotent orbits

The g-numbers

Type A, B, C g-Narayanas

The g-Narayana numbers in types A, B/C are ...
B Nar(®, m, k; q) ‘
1 n—1 m—1
A . q(nf1fk)(mf1fk) [ ] [ :|
" k+1]qg | k . ko],
2\(n—k)(fm—k) |1 m
B/ (@) HRER

Its not hard to see that they lie in N[q].
At m = h+ 1 they give the g-Narayanas used by Wachs.

Even at g = 1, do they relate to work of Friedman-Stanley?
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g-Catalans
q-Kreweras, g-Narayana
Nilpotent orbits

The g-numbers

But who are the type D g-Narayana’s?

The type D g-Narayana numbers are g-analogues of these:

[Nar(Dp, m, k; q)],_; = (7:) <Z> + (m: 1> <Z:§>

We only know simple formulas (not sums) for Nar(D,, m, k; q)
when k =0,1,n—1,n.
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g-Catalans
q-Kreweras, g-Narayana
Nilpotent orbits

The g-numbers

But who are the type D g-Narayana’s?

The type D g-Narayana numbers are g-analogues of these:

[Nar(Dp, m, k; q)],_; = (7:) <Z> + (m: 1> <Z:§>

We only know simple formulas (not sums) for Nar(D,, m, k; q)
when k = 0,1, n— 1, n. The formulas are consistent with this:

If m is very good for ®, then Nar(®, m, k; q) lies in N|[q].

Problem
Find simple formulas for all Nar(Dn, m, k; Q) making this clear.
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Principal-in-Levi orbits
Evaluations
The g-analogue of h-vector to f-vector

Properties

Regular-in-a-Levi nilpotent orbits

Various divisibility and evaluation properties of the g-Kreweras
numbers relate to a special subclass of nilpotent orbits.

Definition

For a W-orbit [X] of intersection subspaces X, let ex be the
G-orbit in g of the principal nilpotent in the Levi subalgebra gy

W-conjugacy classes of
parabolic subgroups

I
W-orbits of < nilpotent
intersection subspaces G-orbits in g
[X] = ex
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Principal-in-Levi orbits
Evaluations

Properti .
operties The g-analogue of h-vector to f-vector

All nilpotent orbits in type A are principal-in-Levi

Type As
g:S/e 6 6)\<—>S)\1XS)\2><---
— \
W= 5s 51
\
/42\
411 33
N —
321
e >~
222 3111
~ ~
2211
\
21111
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Principal-in-Levi orbits
Evaluations

Properti .
operties The g-analogue of h-vector to f-vector

Type B/C principal-in-Levi means at most one x; odd

Type C3
9 = SPe ?
W = Bs 4o
PN
411 33
N S
222
\
2211
\
21111
\
111111
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Principal-in-Levi orbits
Evaluations

Properti .
operties The g-analogue of h-vector to f-vector

Their corresponding paraboblic subgroups Wx < Bs

411 =8y x B, 33=5;
\ /
222282XB1

\
2211 = S, x S
\
21111 281 ><S1 XB1

\
111111 = Sy x Sy x Sy

V. Reiner and E. Sommers g-Narayana, g-Kreweras for Weyl groups



Principal-in-Levi orbits
Evaluations

Properties The g-analogue of h-vector to f-vector

Evaluating g-Kreweras, g-Narayanas at g = 1

Let m be very good for ¢.
For ex principal-in-a-Levi, Krew(®, e, m; q) lies in N[q],
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Principal-in-Levi orbits
Evaluations

Properties The g-analogue of h-vector to f-vector

Evaluating g-Kreweras, g-Narayanas at g = 1

Let m be very good for ¢.
For ex principal-in-a-Levi, Krew(®, e, m; q) lies in N[q],
has symmetric coefficients,
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Principal-in-Levi orbits
Evaluations

Properties The g-analogue of h-vector to f-vector

Evaluating g-Kreweras, g-Narayanas at g = 1

Let m be very good for ¢.
For ex principal-in-a-Levi, Krew(®, e, m; q) lies in N[q],
has symmetric coefficients, and

[Krew(®, ex, m; q)],_ = Krew(W, [X], m)
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Principal-in-Levi orbits
Evaluations
The g-analogue of h-vector to f-vector

Properties

Evaluating g-Kreweras, g-Narayanas at g = 1

Let m be very good for ¢.
For ex principal-in-a-Levi, Krew(®, e, m; q) lies in N[q],
has symmetric coefficients, and

[Krew(®, ex, m; q)],_ = Krew(W, [X], m)

Also x(ex) = dim(X) when ey is principal-in-Levi, implying this:

Nar(®,m ki @), = 3. Krew(W,[X], m)
[X]:dim(X)=k

= Nar(W, m, k).
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Principal-in-Levi orbits
Evaluations
The g-analogue of h-vector to f-vector

Properties

What about the not principal-in-Levi's at g = 17

Let m be very good for ®.
For e not principal-in-a-Levi,
@ Krew(®, e, m; q) vanishes at g = 1, and
@ s furthermore divisible by g™~ — 1.

V. Reiner and E. Sommers g-Narayana, g-Kreweras for Weyl groups



Principal-in-Levi orbits
Evaluations
The g-analogue of h-vector to f-vector

Properties

What about the not principal-in-Levi's at g = 17?

Let m be very good for ®.
For e not principal-in-a-Levi,
@ Krew(®, e, m; q) vanishes at g = 1, and
@ s furthermore divisible by g™~ — 1.

What do (m — 1)St root-of-unity evaluations, besides q = 1,
mean for Krew(®, ex, m; q) when ex is principal-in-Levi?
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Principal-in-Levi orbits
Evaluations
The g-analogue of h-vector to f-vector

Properties

A cyclic sieving phenomenon (CSP)

We know for the Fuss-Catalan very good values m = sh + 1.
Definition (Armstrong 2006)

The W-generalization of s-divisible noncrossing partitions is

NC)(W) := {s-multichainsw; < --- < ws in NC(W)} .
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Principal-in-Levi orbits
Evaluations
The g-analogue of h-vector to f-vector

Properties

A cyclic sieving phenomenon (CSP)

We know for the Fuss-Catalan very good values m = sh + 1.
Definition (Armstrong 2006)

The W-generalization of s-divisible noncrossing partitions is

NC)(W) := {s-multichainsw; < --- < ws in NC(W)} .

A cyclic group (c) = Z/(m — 1)Z naturally acts on NC)(W).
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Principal-in-Levi orbits
Evaluations
The g-analogue of h-vector to f-vector

Properties

A cyclic sieving phenomenon (CSP)

We know for the Fuss-Catalan very good values m = sh + 1.
Definition (Armstrong 2006)

The W-generalization of s-divisible noncrossing partitions is

NC)(W) := {s-multichainsw; < --- < ws in NC(W)} .

A cyclic group (c) = Z/(m — 1)Z naturally acts on NC)(W).

Conjecture
Letm=sh+1and( := er%. When ey is in principal-in-Levi,
[Krew(®, ex, m; q)],_

counts elements of NC8)(W) with V" in [X], fixed by c?.
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Principal-in-Levi orbits
Evaluations

Properties The g-analogue of h-vector to f-vector

At least in all the classical types

The CSP conjecture holds in classical types A, B, C, D:
for ex principal-in-Levi, [Krew(®, ex, m; q)],_.« counts the
elements of NC(9)(W) having V" in [X] that are fixed by c?.
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Principal-in-Levi orbits
Evaluations
The g-analogue of h-vector to f-vector

Properties

At least in all the classical types

Theorem

The CSP conjecture holds in classical types A, B, C, D:

for ex principal-in-Levi, [Krew(®, ex, m; q)],_.« counts the
elements of NC(9)(W) having V" in [X] that are fixed by c?.

Proof.

Bad: compare the g = ¢? evaluation to known counts.

V. Reiner and E. Sommers g-Narayana, g-Kreweras for Weyl groups



Principal-in-Levi orbits
Evaluations
The g-analogue of h-vector to f-vector

Properties

At least in all the classical types

Theorem

The CSP conjecture holds in classical types A, B, C, D:

for ex principal-in-Levi, [Krew(®, ex, m; q)],_.« counts the
elements of NC(9)(W) having V" in [X] that are fixed by c?.

Proof.

Bad: compare the g = ¢? evaluation to known counts.
(Thanks, Jang-Soo Kim!) O

In type A, it was (pretty much) known; types B, C, D are new.

In type D, the case structure is very intricate, a testament to the
“correctness” of the formulas for the g-Kreweras!
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Principal-in-Levi orbits
Evaluations

Properties The g-analogue of h-vector to f-vector

What'’s the g-analogue of the f-vector?

Finite cluster complexes do have a g-analogue of the f-vector.
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Principal-in-Levi orbits
Evaluations

Properties The g-analogue of h-vector to f-vector

What'’s the g-analogue of the f-vector?

Finite cluster complexes do have a g-analogue of the f-vector.
Recall when m is very good for ¢, graded W-rep'n S/(¢) has

Cat(W,m)  =dimc(S/(0)Y = (10V.S/(6))
Ca(W.m,q) = Hilb ((S/(8))" ,q) =32,(1°V.S/(9))q.
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Principal-in-Levi orbits
Evaluations
The g-analogue of h-vector to f-vector

Properties

What’s the g-analogue of the f-vector?
Finite cluster complexes do have a g-analogue of the f-vector.
Recall when m is very good for ¢, graded W-rep'n S/(¢) has
Cat(W,m)  =dimc(S/(0)Y = (10V.S/(6))
Ca(W.m,q) = Hilb ((S/(8))" ,q) =32,(1°V.S/(9))q.

Theorem (Armstrong-Rhoades-R. 2014)

The cluster complex of type ® has fx = fi (W, h+ 1) where

f(W, m) = (\KV,8/(0)) = multiplicity of A V in S/(6).
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Principal-in-Levi orbits
Evaluations
The g-analogue of h-vector to f-vector

Properties

What’s the g-analogue of the f-vector?
Finite cluster complexes do have a g-analogue of the f-vector.
Recall when m is very good for ¢, graded W-rep'n S/(¢) has
Cat(W,m)  =dimc(S/(0)Y = (10V.S/(6))
Ca(W.m,q) = Hilb ((S/(8))" ,q) =32,(1°V.S/(9))q.

Theorem (Armstrong-Rhoades-R. 2014)
The cluster complex of type ® has fx = fi (W, h+ 1) where

f(W, m) = (\KV,8/(0)) = multiplicity of A V in S/(6).

Definition

f(W,m; q) =Y (AV,S/(6))) g

i
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Properties

Principal-in-Levi orbits

Eva

luations

The g-analogue of h-vector to f-vector

The g-analogue of f-vectors in classical types

Intypes A, B/C, D, Gyoja, Nishiyama, Shimura 1999 give
fix(W, m; q) for m very good, not just m= h+ 1.

L | (W, m;q)
A (m[nl]q{n;qq[ern;k—qq
Ba/C |4 ) o )

V. Reiner and E. Sommers
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Principal-in-Levi orbits
Evaluations
The g-analogue of h-vector to f-vector

Properties

A g-analogue of h-to-f-vector

Thus the usual cluster complex h-to-f-vector identity would be

kaWh+1 = Nar(W,h+1,k)(1+1)f

| }

Theorem

ka n—1,M; q)t ZNar n—1,M, K; q) (=19; Q)«,

ka Bn/Cmm q ZNar Bn/Cnam k q)( tqr q2)k-

where (x; )k = (1 —x)(1 — gx)--- (1 — g¥1x),
so that (—1q; ")y is a g-analogue of (1 + )X,
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Principal-in-Levi orbits
Evaluations

Properties The g-analogue of h-vector to f-vector

A g-analogue of h-to-f-vector

The previous type A, B/C identities are both

special cases of a »¢1-transformation of Jackson:
_ (¢/b; q)n -N b bzqg~N/c

g™ b q
qyz}—(C;q)NCs(f)Z — bg'N/c 0

2<Z51[_ c
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Principal-in-Levi orbits
Evaluations

Properties The g-analogue of h-vector to f-vector

A g-analogue of h-to-f-vector

The previous type A, B/C identities are both
special cases of a »¢1-transformation of Jackson:

(c/b;q)n -N b bzqg~N/c

a™ b _ q
CLZ}— (DN 32| bg'N/c 0

2<Z51[_ c

q, CI]

(Thanks, Dennis Stanton!)
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Principal-in-Levi orbits
Evaluations
The g-analogue of h-vector to f-vector

Properties

A g-analogue of h-to-f-vector

However, they are also both instances of the following.

When m is very good for ,

L L

Z fi(®, m, k; )" = Z Something, (g, t)
k=0 k=0

for a fairly explicit product Something( W, m, k; g, 1),
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Principal-in-Levi orbits
Evaluations
The g-analogue of h-vector to f-vector

Properties

A g-analogue of h-to-f-vector

However, they are also both instances of the following.

When m is very good for ,

L L

Z fi(®, m, k; )" = Z Something, (g, t)
k=0 k=0

for a fairly explicit product Something( W, m, k; g, t), equal to ...
@ Nar(®, m, k)(1 + t)¥ when evaluated at g = 1 for any ¢,
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Principal-in-Levi orbits
Evaluations
The g-analogue of h-vector to f-vector

Properties

A g-analogue of h-to-f-vector

However, they are also both instances of the following.

When m is very good for ,

L L

Z fi(®, m, k; )" = Z Something, (g, t)
k=0 k=0

for a fairly explicit product Something( W, m, k; g, t), equal to ...
@ Nar(®, m, k)(1 + t)¥ when evaluated at g = 1 for any ¢,
® Nar(Ap_1,m, k; q)(—1q; q)x for & = A,_1,
@ Nar(B,,/Cn, m, k; q)(—1q; g°)x for & = B,/Cp.
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Springer fibers

A recursion of Shoji
Where do they come from ?

Remember Springer fibers?

Consider the nilcone

O := {all nilpotent elements ein g}
which is a singular variety inside g.
T. Springer’s desingularized it using the flag manifold

G/B = B = {all Borel subalgebras b in g}

by creating this space

O :={(e,b) € O x G/B:[e,b] C b}.
with its two coordinate projection maps:

20z
O B
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Springer fibers

A recursion of Shoji
Where do they come from ?

The boring fiber shows it's smooth

@,
T )
The projection 7> has as typical fiber an affine space

7T2_1(b+) _ @ Jo = Cl®-+|

a€¢+

The total space O is smooth.
The base B = G/B is smooth, the fiber is affine. O
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Springer fibers

A recursion of Shoji
Where do they come from ?

The Springer fiber is interesting

The Springer fibers are the fibers of the other projection 7 :
Be:=m'(e)={bec G/B:[eb] Cb]

Their cohnomology H*(Be) has an interesting graded W-action.

In type A, the ring H*(Be,), sometimes called A, has its
graded S,-Frobenius characteristic given by the modified
Hall-Littewood symmetric function g"")H,(x; g~ ").
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Springer fibers
A recursion of Shoji

Where do they come from ?

Shoji’s recursion

Shoji 1982 gave an identity that recursively determines the
graded W-characters H*(B;). Its coefficients involve

e cardinalities of nilpotent orbits e for an IF4-version G* of G,

V. Reiner and E. Sommers g-Narayana, g-Kreweras for Weyl groups



Springer fibers
A recursion of Shoji

Where do they come from ?

Shoji’s recursion

Shoji 1982 gave an identity that recursively determines the
graded W-characters H*(B;). Its coefficients involve

e cardinalities of nilpotent orbits e for an IF4-version G* of G,
@ for each e, a sum over a finite group

A(e) := Zg(e)/Z§(e)

called the component group of Zg(e),
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Springer fibers
A recursion of Shoji

Where do they come from ?

Shoji’s recursion

Shoji 1982 gave an identity that recursively determines the
graded W-characters H*(B;). Its coefficients involve

e cardinalities of nilpotent orbits e for an IF4-version G* of G,
@ for each e, a sum over a finite group

A(e) := Zg(e)/Z§(e)

called the component group of Zg(e),
which acts on Be, and commutes with W acting on H*(B5).
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Springer fibers
A recursion of Shoji

Where do they come from ?

Shoji’s recursion

Shoji 1982 gave an identity that recursively determines the
graded W-characters H*(B;). Its coefficients involve

e cardinalities of nilpotent orbits e for an IF4-version G* of G,
@ for each e, a sum over a finite group

A(e) := Zg(e)/Z§(e)

called the component group of Zg(e),
which acts on Be, and commutes with W acting on H*(B5).

This lets one refine the graded W-representations
H*(Be) = €D H*(Be)?
¢

into A(e)-isotypic components for A(e)-irreducibles ¢.
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Springer fibers
A recursion of Shoji

Where do they come from ?

Sommers’s reformulation: the rough idea

Sommers recast Shoji’s recursion in terms of W-irreducibles y:

H'B) o x =33 ale.o.x. q)H (Bo)”. (1)
e ¢
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Springer fibers
A recursion of Shoji

Where do they come from ?

Sommers’s reformulation: the rough idea

Sommers recast Shoji’s recursion in terms of W-irreducibles y:

H'B) o x =33 ale.o.x. q)H (Bo)”. (1)
e ¢

One can restate the graded character formula for m very good,
Xs/(0)(W; q) = det(1 — g"w)/ det(1 — qw),
‘
assaying S/(0) =) (-gMkserkv.
k=0
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Sommers’s reformulation: the rough idea

Sommers recast Shoji’s recursion in terms of W-irreducibles y:

H'B) o x =33 ale.o.x. q)H (Bo)”. (1)
e ¢

One can restate the graded character formula for m very good,
Xs/(0)(W; q) = det(1 — g"w)/ det(1 — qw),

¢
assaying S/(0) =) (-gMkserkv.
k=0
Then using H*(B) = S/(SY), and (1) at x = AKV, summed
over k =0,1,...,¢, Sommers proved a key result...
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How to define g-Kreweras using Sommers’s result

Theorem (Sommers 2011)

S/(0) = 3. 3 f(e, 6. m; q)H* (Bo)’.
e ¢

This was the starting point for everything, such as ...

Definition

Krew(®, e,m; q) := f(e,143), M; q)
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How to define g-Kreweras using Sommers’s result

Theorem (Sommers 2011)

S/(0) = 3. 3 f(e, 6. m; q)H* (Bo)’.
e ¢

This was the starting point for everything, such as ...
Definition

Krew(®, e,m; q) := f(e,143), M; q)

For example, it immediately implies

Cat(W,m; q) = Z Krew(®, e, m; q)
e

since the W-rep 1, appears only in HO(B, e) = HO(B, e) 4.
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How to define the g-Narayana statistic x(e)

Recall there was a mysterious statistic «(e) used in defining

Nar(®, m, k; q) := Z Krew(®, e, m; q)

e:x(e)=k

Definition

k(e) := (V, H*(Be)), the multiplicity of V in H*(Be).
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How to define the g-Narayana statistic x(e)

Recall there was a mysterious statistic «(e) used in defining

Nar(®, m, k; q) := Z Krew(®, e, m; q)

e:x(e)=k

Definition

k(e) := (V, H*(Be)), the multiplicity of V in H*(Be).

This definition works extremely well, as
@ x(e) =dim(X) when e = ey is principal-in-a-Levi,
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How to define the g-Narayana statistic x(e)

Recall there was a mysterious statistic «(e) used in defining

Nar(®, m, k; q) := Z Krew(®, e, m; q)

e:x(e)=k

Definition

k(e) := (V, H*(Be)), the multiplicity of V in H*(Be).

This definition works extremely well, as

@ x(e) =dim(X) when e = ey is principal-in-a-Levi,

@ for almost all nilpotent orbits e, knowing within H*(B,)
where V occurs (degrees, A(e)-isotypic components)
determines via a simple product formula where all other
ARV occur, by another result of Sommers 2011.
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Other properties of the f(e, ¢, m; q)

@ They lie in Z[q].
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Other properties of the f(e, ¢, m; q)

@ They lie in Z[q].
@ At g =1, they vanish unless e = ey is principal-in-Levi, in
which case for every ¢ they have value Krew(W, [X], m).
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Other properties of the f(e, ¢, m; q)

@ They lie in Z[q].

@ At g =1, they vanish unless e = ey is principal-in-Levi, in
which case for every ¢ they have value Krew(W, [X], m).

@ They can be computed via cardinalities of nilpotent orbits

over [Fq, together with (available!) info about the
W-representations H* (B, e).
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Thanks

Thanks for listening,
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Thanks

Thanks for listening,

and thank you, Michelle, for
having taught us so much!
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