q-Narayana and q-Kreweras numbers for Weyl groups

Victor Reiner (Univ. of Minnesota) Eric Sommers (U. Mass- Amherst)

The mathematics of Michelle Wachs
January 8, 2015

In alphabetical order:

Björner

- Björner
- Garsia

- Björner
- Garsia
- Stanley

- Björner
- Garsia
- Stanley
- Wachs

On work by M. Wachs published by others?

From "Spectra of symmetrized shuffling operators" with F. Saliola and V. Welker:

7. Acknowledgements

The first author thanks Michelle Wachs for several enlightening e-mail conversations in 2002 regarding the random-to-top, random-to-random shuffling operators, and for her permission to include the results of some of these conversations here.

On work by M. Wachs published by others?

From "Spectra of symmetrized shuffling operators" with F. Saliola and V. Welker:

7. Acknowledgements

The first author thanks Michelle Wachs for several enlightening e-mail conversations in 2002 regarding the random-to-top, random-to-random shuffling operators, and for her permission to include the results of some of these conversations here.

No, let's talk instead about why her recent work is on the right *q*-Narayana numbers!

Some directions of Catalan generalization

Where we're headed

- The numbers
 - The numbers in type A
 - Narayana numbers as h-vector
 - The definitions in all types

- The numbers
 - The numbers in type A
 - Narayana numbers as h-vector
 - The definitions in all types
- The q-numbers
 - q-Catalans
 - q-Kreweras, q-Narayana
 - Nilpotent orbits

- The numbers
 - The numbers in type A
 - Narayana numbers as h-vector
 - The definitions in all types
- 2 The *q*-numbers
 - q-Catalans
 - q-Kreweras, q-Narayana
 - Nilpotent orbits
- 3 Properties
 - Principal-in-Levi orbits
 - Evaluations
 - The *q*-analogue of *h*-vector to *f*-vector

- The numbers
 - The numbers in type A
 - Narayana numbers as h-vector
 - The definitions in all types
- 2 The *q*-numbers
 - q-Catalans
 - q-Kreweras, q-Narayana
 - Nilpotent orbits
- 3 Properties
 - Principal-in-Levi orbits
 - Evaluations
 - The q-analogue of h-vector to f-vector
- Where do they come from?
 - Springer fibers
 - A recursion of Shoji

Bell, Stirling, and unnamed numbers

Definition

Set partitions of $\{1, 2, ..., n\}$ are counted

- in total by Bell numbers B(n),
- via number of blocks by Stirling numbers S(n, k),
- via block size partition λ by unnamed numbers (?).

They have recurrences and generating functions, but lack product formulas.

Bell, Stirling, and unnamed numbers

$$S(4, 1) = 1$$
 $\lambda = (4) : 1$

$$S(4,2) = 7$$
 $\lambda = (2^2) : 3$

$$B(4) = 15$$

$$S(4,3) = 6$$
 $\lambda = (21^2):6$

$$S(4, 1) = 1$$
 $\lambda = (1^4) : 1$

2 3 4

The spoilsports ...

$$S(4, 1) = 1$$
 $\lambda = (4) : 1$

$$S(4,2) = 7$$
 $\lambda = (2^2):$

$$\lambda = (31) : 4$$

$$B(4) = 15$$

$$S(4,3) = 6$$
 $\lambda = (21^2):6$

$$S(4, 1) = 1$$
 $\lambda = (1^4) : 1$

Catalan, Narayana, and Kreweras numbers

Definition

The noncrossing or nonnesting set partitions are counted

- in total by Catalan numbers Cat(n),
- via number of blocks by Narayana N(n, k) numbers,
- via block size partition λ by Kreweras numbers Krew(λ).

Catalan, Narayana, and Kreweras numbers

Definition

The noncrossing or nonnesting set partitions are counted

- in total by Catalan numbers Cat(n),
- via number of blocks by Narayana N(n, k) numbers,
- via block size partition λ by Kreweras numbers Krew(λ).

They're better, IMHO.

Cat, Nar, Krew counting noncrossings

$$N(4,1) = 1$$
 Krew(4) = 1

$$N(4,2) = 6$$
 Krew $(2^2) = 2$

$$Krew(31) = 4$$

$$Cat(4) = 14$$

$$N(4,3) = 6$$
 Krew $(21^2) = 6$

$$N(4, 1) = 1$$
 Krew $(1^4) = 1$ 1 2 3

Cat, Nar, Krew counting nonnestings

$$N(4,1) = 1$$
 Krew(4) = 1

$$N(4,2) = 6$$
 Krew $(2^2) = 2$

$$Krew(31) = 4$$

$$Cat(4) = 14$$

$$N(4,3) = 6$$
 Krew $(21^2) = 6$ 1 2 3 4 1 2 3 4 1 2

$$N(4, 1) = 1$$
 Krew $(1^4) = 1$

Catalan, Narayana, Kreweras formulas

They do have product formulas ...

Definition

$$\operatorname{Cat}(n) := \frac{1}{n+1} {2n \choose n}$$

$$N(n,k) := \frac{1}{k} {n-1 \choose k-1} {n \choose k-1}$$

$$\operatorname{Krew}(\lambda) := \frac{1}{n+1} {n+1 \choose \mu_1, \dots, \mu_n} \text{ if } \lambda = 1^{\mu_1} 2^{\mu_2} 3^{\mu_3} \dots \text{ partitions } n.$$

Catalan, Narayana, Kreweras formulas

They do have product formulas ...

Definition

$$\operatorname{Cat}(n) := \frac{1}{n+1} \binom{2n}{n}$$

$$N(n,k) := \frac{1}{k} \binom{n-1}{k-1} \binom{n}{k-1}$$

$$\operatorname{Krew}(\lambda) := \frac{1}{n+1} \binom{n+1}{\mu_1, \dots, \mu_n} \text{ if } \lambda = 1^{\mu_1} 2^{\mu_2} 3^{\mu_3} \dots \text{ partitions } n.$$

$$\text{Convention}: \binom{\textit{N}}{\mu_1, \dots, \mu_n} := \frac{\textit{N}!}{\mu_1! \cdots \mu_n! (\textit{N} - \sum_{\textit{j}} \mu_{\textit{j}})!} \text{ if } \sum_{\textit{k}} \mu_{\textit{j}} \leq \textit{N}.$$

Kreweras sum to Narayana, which sum to Catalan

As one would expect, one can check these from the formulas:

Proposition

$$\operatorname{Cat}(n) = \sum_{k=1}^{n} N(n, k),$$

$$N(n, k) = \sum_{\substack{\text{partitions} \\ \lambda \text{ of } n: \\ \ell(\lambda) = k}} \operatorname{Krew}(\lambda)$$

where $\ell(\lambda) = \sum_i \mu_i$ is the length or number of parts of λ .

Definition

The *d*-dimensional associahedron is a simple polytope with (n+3)-gon triangulations as vertices, diagonal flips as edges.

The *f*-vector encodes its number of (vertices,edges,2-faces,3-faces):

Definition

The *d*-dimensional associahedron is a simple polytope with (n+3)-gon triangulations as vertices, diagonal flips as edges.

The f-vector encodes its number of (vertices, edges, 2-faces, 3-faces):

$$(f_0, f_1, f_2, f_3) = (14, 21, 9, 1)$$

Definition

The *d*-dimensional associahedron is a simple polytope with (n+3)-gon triangulations as vertices, diagonal flips as edges.

The *f*-vector encodes its number of (vertices,edges,2-faces,3-faces):

$$(f_0, f_1, f_2, f_3) = (14, 21, 9, 1)$$

 $(h_0, h_1, h_2, h_3) = (1, 6, 6, 1)$

The *h*-vector to *f*-vector transformation

Definition

For P a d-dimensional simple polytope with f_i faces of dimension i, one can define the h-vector (h_0, \ldots, h_d) via

$$\sum_{i=0}^{d} \frac{f_{i}}{t^{i}} t^{i} = \sum_{i=0}^{d} \frac{h_{i}}{h_{i}} (1+t)^{i}$$

$$\sum_{i=0}^{d} \frac{f_{i}}{h_{i}} (t-1)^{i} = \sum_{i=0}^{d} \frac{h_{i}}{h_{i}} t^{i}$$

Theorem (C. Lee 1989)

The Narayana numbers give the h-vector of the associahedron.

Example

The 3-dimensional associahedra has

$$(f_0, f_1, f_2, f_3) = (14, 21, 9, 1)$$

 $(h_0, h_1, h_2, h_3) = (1, 6, 6, 1)$

$$14 + 21t + 9t^2 + 1t^3 = 1 + 6(1+t) + 6(1+t)^2 + 1(1+t)^3.$$

Quick review of W-noncrossing, nonnesting

Let $W \subset GL_{\ell}(\mathbb{R})$ be an irreducible finite reflection group.

Definition (Bessis, Brady-Watt, early 2000's)

The W-noncrossing partitions are

$$NC(W) := [e, c]_{abs}$$

Definition (Postnikov, mid-1990s)

The W-nonnesting partitions are

$$NN(W) := Antichains(\Phi^+)$$

W-Catalan counts W-noncrossing, nonnesting

<u>Theorem</u>

$$|NC(W)| = |NN(W)| = \text{Cat}(W) := \prod_{i=1}^{\ell} \frac{e_i + h + 1}{e_i + 1}$$

where (e_1, \ldots, e_ℓ) are the exponents of the reflection hyperplane arrangement for W, and $h = \max\{e_i + 1\}$ is the Coxeter number, the order of any Coxeter element $c = s_1 \cdots s_\ell$ if the Coxeter system (W, S) has $S = \{s_1, \ldots, s_\ell\}$.

Cat(W) in type A

Example

Type A_{n-1} has $W = S_n$ acting on $\{x \in \mathbb{R}^n : \sum_i x_i = 0\}$.

One can choose $S = \{s_1, \dots, s_{n-1}\}$ where $s_i = (i, i+1)$.

The exponents are $(1, 2, \ldots, n-1)$.

A choice of Coxeter element is $c = s_1 \cdots s_{n-1} = (1, 2, \dots, n)$, an n-cycle, having order $h = n = \max\{2, 3, \dots, n\}$.

$$\operatorname{Cat}(A_{n-1}) = \prod_{i=1}^{\ell} \frac{h + e_i + 1}{e_i + 1}$$
$$= \frac{(n+2) \cdot (n+3) \cdots (n+n)}{2 \cdot 3 \cdots n} = \frac{1}{n+1} {2n \choose n}.$$

W-Narayana, Kreweras

To elements of NC(W) or NN(W) one associates a hyperplane intersection subspace X, or parabolic subgroup W_X , having

- a rank (= codimension of X),
- a W-orbit [X], or W-conjugacy class for W_X .

W-Narayana, Kreweras

To elements of NC(W) or NN(W) one associates a hyperplane intersection subspace X, or parabolic subgroup W_X , having

- a rank (= codimension of X),
- a W-orbit [X], or W-conjugacy class for W_X .

Definition

The W-Narayana numbers N(W, k) count the elements of NC(W) or NN(W) having a X of a fixed rank k.

They give the *h*-vector of the *W*-cluster complex or *W*-associahedron of Fomin-Zelevinsky 2003.

W-Narayana, Kreweras

To elements of NC(W) or NN(W) one associates a hyperplane intersection subspace X, or parabolic subgroup W_X , having

- a rank (= codimension of X),
- a W-orbit [X], or W-conjugacy class for W_X .

Definition

The W-Narayana numbers N(W, k) count the elements of NC(W) or NN(W) having a X of a fixed rank k.

They give the *h*-vector of the *W*-cluster complex or *W*-associahedron of Fomin-Zelevinsky 2003.

Definition

The W-Kreweras numbers Krew(W, [X]) count the elements of either NC(W) or NN(W) with a fixed W-orbit [X].

Orlik-Solomon exponents give a product formula

Theorem (Broer, Douglass, Sommers, late 1990s)

Krew(W, [X]) has a product formula:

Krew
$$(W, [X]) = \frac{1}{[N_W(W_X) : W_X]} \prod_{i=1}^{\ell} (h+1-e_i^X)$$

where (e_1^X, \dots, e_ℓ^X) are the Orlik-Solomon exponents of the reflection arrangement of W restricted to X.

Fuss and rational generalization

Definition

Say m is very good for Φ if m is odd in types B, C, D, and if gcd(m, h) = 1 in all other types, in which case define

$$\operatorname{Cat}(W, \mathbf{m}) := \prod_{i=1}^{\ell} \frac{e_i + \mathbf{m}}{e_i + 1}$$

$$\operatorname{Krew}(W,[X], \mathbf{m}) := \frac{1}{[N_W(W_X) : W_X]} \prod_{i=1}^{\ell} (\mathbf{m} - \mathbf{e}_i^X)$$

Fuss and rational generalization

Definition

Say m is very good for Φ if m is odd in types B, C, D, and if gcd(m, h) = 1 in all other types, in which case define

$$\operatorname{Cat}(W, \overset{\boldsymbol{m}}{\boldsymbol{m}}) := \prod_{i=1}^{\ell} \frac{e_i + \overset{\boldsymbol{m}}{\boldsymbol{m}}}{e_i + 1}$$

$$\operatorname{Krew}(W, [X], \overset{\boldsymbol{m}}{\boldsymbol{m}}) := \frac{1}{[N_W(W_X) : W_X]} \prod_{i=1}^{\ell} (\overset{\boldsymbol{m}}{\boldsymbol{m}} - e_i^X)$$

This captures the

- rational Catalan case gcd(m, n) = 1 in type A_{n-1} ,
- W-Fuss-Catalan case m = sh + 1 in any type,
- and in particular, the usual W-Catalan case is m = h + 1

No problem q-ifying the W-Catalan

Definition

$$Cat(W, q) := \prod_{i=1}^{\ell} \frac{[h + e_i + 1]_q}{[e_i + 1]_q}$$

where
$$[n]_q := 1 + q + q^2 + \cdots + q^{n-1}$$
.

No problem *q*-ifying the *W*-Catalan

Definition

$$Cat(W, q) := \prod_{i=1}^{\ell} \frac{[h + e_i + 1]_q}{[e_i + 1]_q}$$

where
$$[n]_q := 1 + q + q^2 + \cdots + q^{n-1}$$
.

It's not silly, e.g., it satisfies a cyclic sieving phenomenon.

Theorem (Bessis-R. 2007)

For ζ a primitive h^{th} root of unity,

$$\operatorname{Cat}(W, \boldsymbol{q} = \zeta^{\boldsymbol{d}})$$

counts elements of $NC(W) = [e, c]_{abs}$ fixed conjugating by c^d .

Theorem

When m is very good, $Cat(W, m; q) := \prod_{i=1}^{\ell} \frac{[e_i + m]_q}{[e_i + 1]_q}$ lies in $\mathbb{N}[q]$.

Theorem

When m is very good, $Cat(W, \underline{m}; q) := \prod_{i=1}^{\ell} \frac{[e_i + \underline{m}]_q}{[e_i + 1]_q}$ lies in $\mathbb{N}[q]$.

Very sketchy proof.

m is very good if and only if this formula

$$\chi(w) := \frac{\det(1 - q^{m}w)}{\det(1 - qw)}$$

is a genuine graded W-character:

Theorem

When m is very good, $Cat(W, m; q) := \prod_{i=1}^{\ell} \frac{[e_i + m]_q}{[e_i + 1]_q}$ lies in $\mathbb{N}[q]$.

Very sketchy proof.

m is very good if and only if this formula

$$\chi(w) := \frac{\det(1 - q'''w)}{\det(1 - qw)}$$

is a genuine graded W-character: the m-Parking space $S/(\theta)$, where $S = \mathbb{C}[x_1, \dots, x_\ell]$ and $\theta = (\theta_1, \dots, \theta_\ell)$ is an hsop of degree m whose span carries the reflection rep'n V.

Theorem

When m is very good, $Cat(W, \underline{m}; q) := \prod_{i=1}^{\ell} \frac{[e_i + \underline{m}]_q}{[e_i + 1]_q}$ lies in $\mathbb{N}[q]$.

Very sketchy proof.

m is very good if and only if this formula

$$\chi(w) := \frac{\det(1 - q^{m}w)}{\det(1 - qw)}$$

is a genuine graded W-character: the m-Parking space $S/(\theta)$, where $S = \mathbb{C}[x_1, \dots, x_\ell]$ and $\theta = (\theta_1, \dots, \theta_\ell)$ is an hsop of degree m whose span carries the reflection rep'n V. Cat(W, m; q) is its W-fixed space $(S/(\theta))^W$ Hilbert series.

A_{n-1} q-Narayanas in Wachs' IMA talk 11/12/2014 ...

$$N(A_{n-1},j,q) := \frac{q^{j(j+1)}}{[n]_q} \begin{bmatrix} n \\ j \end{bmatrix}_q \begin{bmatrix} n \\ j+1 \end{bmatrix}_q$$

q-Narayana polynomials

The Narayana numbers have a closed form formula

$$N_n(t) = \sum_{j=0}^{n-1} \frac{1}{n} \binom{n}{j} \binom{n}{j+1} t^j.$$

Recall that the Naravana numbers refine the Catalan numbers

$$N_n(1) = C_n$$

The Fürlinger-Hofbauer q-Narayana polynomials are defined by

$$N_n(q,t):=\sum_{j=0}^{n-1}q^{j(j+1)}\frac{1}{[n]_q}\begin{bmatrix}n\\j\end{bmatrix}_q\begin{bmatrix}n\\j+1\end{bmatrix}_qt^j.$$

... and type B q-Narayanas came later in her talk ...

$$N(B_n, j, q) := (q^2)^{j^2} \begin{bmatrix} n \\ j \end{bmatrix}_{q^2} \begin{bmatrix} n \\ j \end{bmatrix}_{q^2}$$

Super q-Narayana polynomials (Krattenthaler and MW)

For $n \ge s$, define the super q-Narayana polynomials

$$N_n^{(s)}(q,t) := \begin{bmatrix} 2s \\ s \end{bmatrix}_q \sum_{j=0}^{n-s} q^{j(j+1)} \begin{bmatrix} n \\ s \end{bmatrix}_q^{-1} \begin{bmatrix} n \\ j \end{bmatrix}_q \begin{bmatrix} n \\ j+s \end{bmatrix}_q t^j.$$

Note
$$N_n^{(1)}(q,t) = (1+q)N_n(q,t)$$
.

 $N_n^{(0)}(1,t)$ is the type B Narayana polynomial.

Gessel proved $N_n^{(s)}(1,t) \in \mathbb{N}[t]$ by deriving a γ -positivity formula.

Question

- Are there q-Kreweras polynomials of types A, B, C, D?
 All types? Do they sum to Cat(W, q)?
- In types A, B do they sum to the above q-Narayanas?

Question

- Are there q-Kreweras polynomials of types A, B, C, D?
 All types? Do they sum to Cat(W, q)?
- In types A, B do they sum to the above q-Narayanas?
- Do they exhibit a cyclic sieving phenomenon?

Question

- Are there q-Kreweras polynomials of types A, B, C, D?
 All types? Do they sum to Cat(W, q)?
- In types A, B do they sum to the above q-Narayanas?
- Do they exhibit a cyclic sieving phenomenon?
- Do they give some q-analogue of the h- to f-vector map?

Question

- Are there q-Kreweras polynomials of types A, B, C, D?
 All types? Do they sum to Cat(W, q)?
- In types A, B do they sum to the above q-Narayanas?
- Do they exhibit a cyclic sieving phenomenon?
- Do they give some q-analogue of the h- to f-vector map?

Answer

Sommers' work answers yes to 1st question for Weyl groups, if we associate a q-Kreweras number to each nilpotent orbit.

Question

- Are there q-Kreweras polynomials of types A, B, C, D?
 All types? Do they sum to Cat(W, q)?
- In types A, B do they sum to the above q-Narayanas?
- Do they exhibit a cyclic sieving phenomenon?
- Do they give some q-analogue of the h- to f-vector map?

Answer

Sommers' work answers yes to 1st question for Weyl groups, if we associate a q-Kreweras number to each nilpotent orbit.

Actually, yes to all above, but we don't understand it uniformly!

What parametrizes a *q*-Kreweras number?

We won't just get a q-Kreweras number for each W-orbit [X] of intersection subspace. Instead we will get

for each ...

- Weyl group W, with a root system Φ, and
- a nilpotent orbit e in its Lie algebra g, and
- a positive integer m which is very good for Φ.

Type A nilpotent orbits

In type A_{n-1} , $G = SL_n(\mathbb{C})$ conjugates $\mathfrak{g} = sI_n(\mathbb{C}) = \mathbb{C}^{n \times n}$, and nilpotent orbits are represented by Jordan canonical forms, parametrized by partitions λ of n.

Example

In $sl_8(\mathbb{C})$, the partition $\lambda = 32^21$ corresponds to the $SL_8(\mathbb{C})$ -orbit of

Type A q-Kreweras formula

In type A_{n-1} , very good for m means gcd(m, n) = 1.

Theorem

For partitions $\lambda = 1^{\mu_1} 2^{\mu_2} 3^{\mu_3} \cdots$ of n with gcd(m, n) = 1,

$$\operatorname{Krew}(\boldsymbol{e}_{\lambda}, m; q) = \boldsymbol{q}^{m(n-\ell(\lambda))-c(\lambda)} \frac{1}{[m]_q} \begin{bmatrix} m \\ \mu_1, \dots, \mu_n \end{bmatrix}_q.$$

where

$$c(\lambda) := \sum_{i} \lambda'_{j} \lambda'_{j+1}$$
, with λ' the transpose partition to λ

$$\begin{bmatrix} m \\ \mu \end{bmatrix}_q := \frac{[m]!_q}{[\mu_1]!_q \cdots [\mu_\ell]!_q [m - \sum_i \mu_i]!_q}$$

Types B/C/D

Ф	g	Condition on $\lambda = 1^{\mu_1} 2^{\mu_2} 3^{\mu_2} \dots$ parametrizing nilpotent orbits
B _n	<i>so</i> _{2<i>n</i>+1}	$ \lambda =2n+1,$ and μ_j even for j even
C _n	sp _{2n}	$ \lambda =$ 2 n , and μ_j even for j odd
D _n	so _{2n}	$ \lambda =$ 2 n , and μ_j even for j even

A slight lie in type D_n : these are O_{2n} orbits on so_{2n} , not SO_{2n} -orbits, leading to an extra factor of 2 in some formulas.

Type B, C q-Kreweras formulas—the gestalt picture

Introduce notations

$$\hat{N} := \lfloor N/2 \rfloor,$$
 $\hat{\mu} := (\lfloor \mu_1/2 \rfloor, \lfloor \mu_2/2 \rfloor, \ldots)$ if $\mu = (\mu_1, \mu_2, \ldots).$

Theorem

For $\lambda = 1^{\mu_1} 2^{\mu_2} 3^{\mu_3} \dots$ a type B_n or type C_n partition, and m odd,

$$\operatorname{Krew}(e_{\lambda}, m; q) = q^{\exp(\lambda, m) + \epsilon} \begin{bmatrix} \hat{m} - \hat{L}(\lambda) \\ \hat{\mu} \end{bmatrix}_{q^{2}} \cdot \prod_{i=1}^{L(\lambda)} (q^{m-2i+1} - 1)$$

What was that power $q^{\exp(\lambda,m)+\epsilon}$ in front?

$$oldsymbol{\epsilon} := egin{cases} rac{1}{4} & ext{in type B_n,} \\ 0 & ext{in type C_n for $\ell(\lambda)$ even,} \\ rac{1}{4} - rac{\ell(\lambda)}{2} & ext{in type C_n for $\ell(\lambda)$ odd.} \end{cases}$$

and

$$\exp(\lambda, m) := m(n - \hat{\ell}(\lambda)) - \frac{c(\lambda)}{2} + \tau(\lambda) - \frac{L(\lambda)}{4}$$

with

$$L(\lambda) := |\{i : \mu_i \text{ odd}\}|$$
 $au(\lambda) := rac{1}{2} \sum_{\substack{j
eq |\lambda| \mod 2 \ \mu_i \text{ even}}} \mu_j$

Type D q-Kreweras formulas

Here μ_1 plays a special role. Define $\mu_{>2} := (\mu_2, \mu_3, \ldots)$.

Theorem

For m odd and λ a type D_n partition, Krew(e_{λ} , m; q) is $q^{\exp(\lambda,m)}$ times these:

$$\begin{cases} q^{m-\frac{\ell(\lambda)}{2}+1} \begin{bmatrix} \hat{m} - (\hat{L}(\lambda)-1) \\ \hat{\mu} \end{bmatrix}_{q^2} \cdot \prod_{i=1}^{\hat{L}(\lambda)-1} (q^{m-2i+1}-1) & \text{if μ_1 odd,} \\ \\ q^{\frac{\ell(\lambda)}{2}-\mu_1(\lambda)} \begin{bmatrix} \hat{m} - \hat{L}(\lambda) \\ \hat{\mu} \geq 2 \end{bmatrix}_{q^2} \begin{bmatrix} \hat{m}+1-\hat{L}(\lambda)-|\hat{\mu}| \geq 2 \\ \hat{\mu}_1 \end{bmatrix}_{q^2} \cdot \prod_{i=1}^{\hat{L}(\lambda)} (q^{m-2i+1}-1) & \text{if μ_1 even, some μ_i odd,} \\ \\ q^{\frac{\ell(\lambda)}{2}-\tau(\lambda)} \begin{bmatrix} \hat{m} \\ \hat{\mu} \end{bmatrix}_{q^2} + q^{\frac{\ell(\lambda)}{2}-\mu_1} \begin{bmatrix} \hat{m} \\ \hat{\mu} \geq 2 \end{bmatrix}_{q^2} \begin{bmatrix} \hat{m}+1-|\hat{\mu}| \geq 2 \\ \hat{\mu}_1 \end{bmatrix}_{q^2} & \text{if μ_i all even.} \end{cases}$$

Type D q-Kreweras formulas

Here μ_1 plays a special role. Define $\mu_{>2} := (\mu_2, \mu_3, \ldots)$.

Theorem

For m odd and λ a type D_n partition, Krew(e_{λ} , m; q) is $q^{\exp(\lambda,m)}$ times these:

$$\begin{cases} q^{m-\frac{\ell(\lambda)}{2}+1} \begin{bmatrix} \hat{m} - (\hat{L}(\lambda)-1) \\ \hat{\mu} \end{bmatrix}_{q^2} \cdot \prod_{i=1}^{\hat{L}(\lambda)-1} (q^{m-2i+1}-1) & \text{if μ_1 odd,} \\ \\ q^{\frac{\ell(\lambda)}{2}-\mu_1(\lambda)} \begin{bmatrix} \hat{m} - \hat{L}(\lambda) \\ \hat{\mu} \geq 2 \end{bmatrix}_{q^2} \begin{bmatrix} \hat{m}+1-\hat{L}(\lambda)-|\hat{\mu} \geq 2| \\ \hat{\mu}_1 \end{bmatrix}_{q^2} \cdot \prod_{i=1}^{\hat{L}(\lambda)} (q^{m-2i+1}-1) & \text{if μ_1 even, some μ_i odd,} \\ \\ q^{\frac{\ell(\lambda)}{2}-\tau(\lambda)} \begin{bmatrix} \hat{m} \\ \hat{\mu} \end{bmatrix}_{q^2} + q^{\frac{\ell(\lambda)}{2}-\mu_1} \begin{bmatrix} \hat{m} \\ \hat{\mu} \geq 2 \end{bmatrix}_{q^2} \begin{bmatrix} \hat{m}+1-|\hat{\mu} \geq 2| \\ \hat{\mu}_1 \end{bmatrix}_{q^2} & \text{if μ_i all even.} \end{cases}$$

(Thanks, Ted Cruz!)

Defining the *q*-Narayana numbers in general

Later we define a mysterious statistic $\kappa(e)$ on nilpotent orbits e.

Example

Ф	$\kappa(oldsymbol{e}_{\lambda})$
A_{n-1}	$\ell(\lambda)$
B_n/C_n	$\hat{\ell}(\lambda)$
D	$\int \hat{\ell}(\lambda)$ if μ_1 is even,
D_n	$\left \begin{array}{cc} \hat{\ell}(\lambda) - 1 & \text{if } \mu_1 \text{ is odd.} \end{array} \right $

Definition

Given m very good for Φ and $0 \le k \le \ell$, define

$$\operatorname{Nar}(\Phi, m, k; q) := \sum_{e: r(e)=k} \operatorname{Krew}(e, m; q).$$

Type A, B, C q-Narayanas

Theorem

The q-Narayana numbers in types A, B/C are ...

$$\begin{array}{c|c} \Phi & \operatorname{Nar}(\Phi, m, k; q) \\ \hline A_{n-1} & q^{(n-1-k)(m-1-k)} \frac{1}{[k+1]_q} \begin{bmatrix} n-1 \\ k \end{bmatrix}_q \begin{bmatrix} m-1 \\ k \end{bmatrix}_q \\ B_n/C_n & (q^2)^{(n-k)(\hat{m}-k)} \begin{bmatrix} n \\ k \end{bmatrix}_{q^2} \begin{bmatrix} \hat{m} \\ k \end{bmatrix}_{q^2} \end{array}$$

Type A, B, C q-Narayanas

Theorem

The q-Narayana numbers in types A, B/C are ...

$$\begin{array}{|c|c|c|}\hline \Phi & \operatorname{Nar}(\Phi, m, k; q) \\ \hline A_{n-1} & q^{(n-1-k)(m-1-k)} \frac{1}{[k+1]_q} \begin{bmatrix} n-1 \\ k \end{bmatrix}_q \begin{bmatrix} m-1 \\ k \end{bmatrix}_q \\ \hline B_n/C_n & (q^2)^{(n-k)(\hat{m}-k)} \begin{bmatrix} n \\ k \end{bmatrix}_{q^2} \begin{bmatrix} \hat{m} \\ k \end{bmatrix}_{q^2} \end{array}$$

Its not hard to see that they lie in $\mathbb{N}[q]$.

At m = h + 1 they give the *q*-Narayanas used by Wachs.

Type A, B, C q-Narayanas

Theorem

The q-Narayana numbers in types A, B/C are ...

Ф	$Nar(\Phi, m, k; q)$
A_{n-1}	$q^{(n-1-k)(m-1-k)} \frac{1}{[k+1]_q} \begin{bmatrix} n-1 \\ k \end{bmatrix}_q \begin{bmatrix} m-1 \\ k \end{bmatrix}_q$
B_n/C_n	$(q^2)^{(n-k)(\hat{m}-k)} \begin{bmatrix} n \\ k \end{bmatrix}_{q^2} \begin{bmatrix} \hat{m} \\ k \end{bmatrix}_{q^2}$

Its not hard to see that they lie in $\mathbb{N}[q]$.

At m = h + 1 they give the *q*-Narayanas used by Wachs.

Question

Even at q = 1, do they relate to work of Friedman-Stanley?

But who are the type *D q*-Narayana's?

The type D q-Narayana numbers are q-analogues of these:

$$[Nar(D_n, m, k; q)]_{q=1} = {\hat{m} \choose k} {n \choose k} + {\hat{m}+1 \choose k} {n-2 \choose k-2}$$

We only know simple formulas (not sums) for $Nar(D_n, m, k; q)$ when k = 0, 1, n - 1, n.

But who are the type *D q*-Narayana's?

The type D q-Narayana numbers are q-analogues of these:

$$[Nar(D_n, m, k; q)]_{q=1} = \binom{\hat{m}}{k} \binom{n}{k} + \binom{\hat{m}+1}{k} \binom{n-2}{k-2}$$

We only know simple formulas (not sums) for $Nar(D_n, m, k; q)$ when k = 0, 1, n - 1, n. The formulas are consistent with this:

Conjecture

If m is very good for Φ , then $\operatorname{Nar}(\Phi, m, k; q)$ lies in $\mathbb{N}[q]$.

Problem

Find simple formulas for all $Nar(D_n, m, k; q)$ making this clear.

Regular-in-a-Levi nilpotent orbits

Various divisibility and evaluation properties of the q-Kreweras numbers relate to a special subclass of nilpotent orbits.

Definition

For a W-orbit [X] of intersection subspaces X, let e_X be the G-orbit in $\mathfrak g$ of the principal nilpotent in the Levi subalgebra $\mathfrak g_X$

```
W-conjugacy classes of parabolic subgroups \updownarrow W-orbits of \hookrightarrow nilpotent intersection subspaces G-orbits in \mathfrak g
```


All nilpotent orbits in type A are principal-in-Levi

Type
$$A_5$$

 $\mathfrak{g} = sI_6$
 $W = S_6$

$$e_{\lambda} \leftrightarrow S_{\lambda_1} \times S_{\lambda_2} \times \cdots$$

Type B/C principal-in-Levi means at most one μ_i odd

Type
$$C_3$$
 $g = sp_6$
 $W = B_3$

$$411$$

$$222$$

$$2211$$

$$21111$$

111111

Their corresponding paraboblic subgroups $W_X \leq B_3$

Evaluating q-Kreweras, q-Narayanas at q = 1

Theorem

Let m be very good for Φ .

For e_X principal-in-a-Levi, $Krew(\Phi, e, m; q)$ lies in $\mathbb{N}[q]$,

Evaluating q-Kreweras, q-Narayanas at q = 1

Theorem

Let m be very good for Φ .

For e_X principal-in-a-Levi, $Krew(\Phi, e, m; q)$ lies in $\mathbb{N}[q]$, has symmetric coefficients,

Evaluating q-Kreweras, q-Narayanas at q = 1

Theorem

Let m be very good for Φ .

For e_X principal-in-a-Levi, $Krew(\Phi, e, m; q)$ lies in $\mathbb{N}[q]$, has symmetric coefficients, and

$$[\operatorname{Krew}(\Phi, e_X, m; q)]_{q=1} = \operatorname{Krew}(W, [X], m)$$

Evaluating q-Kreweras, q-Narayanas at q = 1

Theorem

Let m be very good for Φ.

For e_X principal-in-a-Levi, $Krew(\Phi, e, m; q)$ lies in $\mathbb{N}[q]$, has symmetric coefficients, and

$$[\operatorname{Krew}(\Phi, e_X, m; q)]_{q=1} = \operatorname{Krew}(W, [X], m)$$

Also $\kappa(e_X) = \dim(X)$ when e_X is principal-in-Levi, implying this:

Corollary

$$[\operatorname{Nar}(\Phi, m, k; q)]_{q=1} = \sum_{[X]: \operatorname{dim}(X) = k} \operatorname{Krew}(W, [X], m)$$
$$= \operatorname{Nar}(W, m, k).$$

What about the not principal-in-Levi's at q = 1?

Theorem

Let m be very good for Φ. For e not principal-in-a-Levi,

- Krew(Φ , e, m; q) vanishes at q = 1, and
- is furthermore divisible by $q^{m-1} 1$.

What about the not principal-in-Levi's at q = 1?

Theorem

Let m be very good for Φ. For e not principal-in-a-Levi,

- Krew(Φ , e, m; q) vanishes at q = 1, and
- is furthermore divisible by $q^{m-1} 1$.

Question

What do $(m-1)^{st}$ root-of-unity evaluations, besides q=1, mean for $Krew(\Phi, e_X, m; q)$ when e_X is principal-in-Levi?

A cyclic sieving phenomenon (CSP)

We know for the Fuss-Catalan very good values m = sh + 1.

Definition (Armstrong 2006)

The W-generalization of s-divisible noncrossing partitions is

$$NC^{(s)}(W) := \{s\text{-multichains} w_1 \leq \cdots \leq w_s \text{ in } NC(W)\}.$$

A cyclic sieving phenomenon (CSP)

We know for the Fuss-Catalan very good values m = sh + 1.

Definition (Armstrong 2006)

The *W*-generalization of *s*-divisible noncrossing partitions is

$$NC^{(s)}(W) := \{s\text{-multichains} w_1 \leq \cdots \leq w_s \text{ in } NC(W)\}.$$

A cyclic group $\langle c \rangle \cong \mathbb{Z}/(m-1)\mathbb{Z}$ naturally acts on $NC^{(s)}(W)$.

A cyclic sieving phenomenon (CSP)

We know for the Fuss-Catalan very good values m = sh + 1.

Definition (Armstrong 2006)

The W-generalization of s-divisible noncrossing partitions is

$$NC^{(s)}(W) := \{s\text{-multichains} w_1 \leq \cdots \leq w_s \text{ in } NC(W)\}.$$

A cyclic group $\langle c \rangle \cong \mathbb{Z}/(m-1)\mathbb{Z}$ naturally acts on $NC^{(s)}(W)$.

Conjecture

Let
$$m=sh+1$$
 and $\zeta:=e^{\frac{2\pi i}{m-1}}$. When e_X is in principal-in-Levi, $[\operatorname{Krew}(\Phi,e_X,m;q)]_{q=\zeta^d}$

counts elements of $NC^{(s)}(W)$ with V^{w_1} in [X], fixed by c^d .

At least in all the classical types

Theorem

The CSP conjecture holds in classical types A, B, C, D: for e_X principal-in-Levi, $[Krew(\Phi, e_X, m; q)]_{q=\zeta^d}$ counts the elements of $NC^{(s)}(W)$ having V^{w_1} in [X] that are fixed by c^d .

At least in all the classical types

Theorem

The CSP conjecture holds in classical types A, B, C, D: for e_X principal-in-Levi, $[Krew(\Phi, e_X, m; q)]_{q=\zeta^d}$ counts the elements of $NC^{(s)}(W)$ having V^{w_1} in [X] that are fixed by c^d .

Proof.

Bad: compare the $q = \zeta^d$ evaluation to known counts.

At least in all the classical types

Theorem

The CSP conjecture holds in classical types A, B, C, D: for e_X principal-in-Levi, $[Krew(\Phi, e_X, m; q)]_{q=\zeta^d}$ counts the elements of $NC^{(s)}(W)$ having V^{w_1} in [X] that are fixed by c^d .

Proof.

Bad: compare the $q = \zeta^d$ evaluation to known counts. (Thanks, Jang-Soo Kim!)

In type A, it was (pretty much) known; types B, C, D are new.

In type *D*, the case structure is very intricate, a testament to the "correctness" of the formulas for the *q*-Kreweras!

Finite cluster complexes do have a *q*-analogue of the *f*-vector.

Finite cluster complexes do have a q-analogue of the f-vector. Recall when m is very good for Φ , graded W-rep'n $S/(\theta)$ has

$$Cat(W, m) = \dim_{\mathbb{C}} (S/(\theta))^{W} = \langle \wedge^{0} V, S/(\theta) \rangle$$

$$Cat(W, m, q) = Hilb \left((S/(\theta))^{W}, q \right) = \sum_{i} \langle \wedge^{0} V, S/(\theta)_{i} \rangle q^{i}.$$

Finite cluster complexes do have a q-analogue of the f-vector. Recall when m is very good for Φ , graded W-rep'n $S/(\theta)$ has

$$Cat(W, m) = \dim_{\mathbb{C}} (S/(\theta))^{W} = \langle \wedge^{0} V, S/(\theta) \rangle$$

$$Cat(W, m, q) = Hilb \left((S/(\theta))^{W}, q \right) = \sum_{i} \langle \wedge^{0} V, S/(\theta)_{i} \rangle q^{i}.$$

Theorem (Armstrong-Rhoades-R. 2014)

The cluster complex of type Φ has $f_k = f_k(W, \frac{h}{h} + 1)$ where

$$f_k(W, m) = \langle \wedge^k V, S/(\theta) \rangle = multiplicity of \wedge^k V in S/(\theta).$$

Finite cluster complexes do have a q-analogue of the f-vector. Recall when m is very good for Φ , graded W-rep'n $S/(\theta)$ has

$$Cat(W, m) = \dim_{\mathbb{C}} (S/(\theta))^{W} = \langle \wedge^{0} V, S/(\theta) \rangle$$

$$Cat(W, m, q) = Hilb \left((S/(\theta))^{W}, q \right) = \sum_{i} \langle \wedge^{0} V, S/(\theta)_{i} \rangle q^{i}.$$

Theorem (Armstrong-Rhoades-R. 2014)

The cluster complex of type Φ has $f_k = f_k(W, h+1)$ where

$$f_k(W, m) = \langle \wedge^k V, S/(\theta) \rangle = multiplicity of \wedge^k V in S/(\theta).$$

Definition

$$f_k(W, m; q) := \sum_i \langle \wedge^k V, S/(\theta)_i \rangle q^i$$

The *q*-analogue of *f*-vectors in classical types

In types A, B/C, D, Gyoja, Nishiyama, Shimura 1999 give $f_k(W, m; q)$ for m very good, not just m = h + 1.

Ф	$f_k(W,m;q)$
A_{n-1}	$q^{\binom{k+1}{2}} \frac{1}{[m]_q} \begin{bmatrix} n-1 \\ k \end{bmatrix}_q \begin{bmatrix} m+n-k-1 \\ n \end{bmatrix}_q$
B_n/C_n	$q^{k^2} \begin{bmatrix} \hat{m} \\ k \end{bmatrix}_{q^2} \begin{bmatrix} \hat{m} + n - k \\ \hat{m} \end{bmatrix}_{q^2}$
D _n	

Thus the usual cluster complex *h*-to-*f*-vector identity would be

$$\sum_{k} f_{k}(W, h+1) t^{k} = \sum_{k} \text{Nar}(W, h+1, k) (1+t)^{k}$$

Theorem

$$\sum_{k} f_{k}(A_{n-1}, m; q) t^{k} = \sum_{k} \operatorname{Nar}(A_{n-1}, m, k; q) (-tq; q)_{k},$$

$$\sum_{k} f_{k}(B_{n}/C_{n}, m; q) t^{k} = \sum_{k} \operatorname{Nar}(B_{n}/C_{n}, m, k; q) (-tq; q^{2})_{k}.$$

where
$$(x; q)_k = (1 - x)(1 - qx) \cdots (1 - q^{k-1}x)$$
, so that $(-tq; q^r)_k$ is a *q*-analogue of $(1 + t)_k^k$

The previous type A, B/C identities are both special cases of a $2\phi_1$ -transformation of Jackson:

$${}_{2}\phi_{1}\begin{bmatrix} q^{-N} & b \\ - & c \end{bmatrix}q,z \end{bmatrix} = \frac{(c/b;q)_{N}}{(c;q)_{N}} {}_{3}\phi_{2}\begin{bmatrix} q^{-N} & b & bzq^{-N}/c \\ - & bq^{1-N}/c & 0 \end{bmatrix}q,q \end{bmatrix}$$

The previous type A, B/C identities are both special cases of a $_2\phi_1$ -transformation of Jackson:

$${}_{2}\phi_{1}\begin{bmatrix}q^{-N} & b\\ - & c\end{bmatrix}q,z\end{bmatrix} = \frac{(c/b;q)_{N}}{(c;q)_{N}}{}_{3}\phi_{2}\begin{bmatrix}q^{-N} & b & bzq^{-N}/c\\ - & bq^{1-N}/c & 0\end{bmatrix}q,q\end{bmatrix}$$

(Thanks, Dennis Stanton!)

However, they are also both instances of the following.

Theorem

When m is very good for Φ ,

$$\sum_{k=0}^{\ell} f_k(\Phi, m, k; q) t^k = \sum_{k=0}^{\ell} Something_k(q, t)$$

for a fairly explicit product Something (W, m, k; q, t),

However, they are also both instances of the following.

Theorem

When m is very good for Φ ,

$$\sum_{k=0}^{\ell} f_k(\Phi, m, k; q) t^k = \sum_{k=0}^{\ell} Something_k(q, t)$$

for a fairly explicit product Something (W, m, k; q, t), equal to ...

• Nar(Φ , m, k)(1 + t)^k when evaluated at q = 1 for any Φ ,

However, they are also both instances of the following.

Theorem

When m is very good for Φ ,

$$\sum_{k=0}^{\ell} f_k(\Phi, m, k; q) t^k = \sum_{k=0}^{\ell} Something_k(q, t)$$

for a fairly explicit product Something (W, m, k; q, t), equal to ...

- Nar $(\Phi, m, k)(1 + t)^k$ when evaluated at q = 1 for any Φ ,
- Nar $(A_{n-1}, m, k; q)(-tq; q)_k$ for $\Phi = A_{n-1}$,
- Nar $(B_n/C_n, m, k; q)(-tq; q^2)_k$ for $\Phi = B_n/C_n$.

Remember Springer fibers?

Consider the nilcone

$$\mathcal{O} := \{ \text{all nilpotent elements } e \text{ in } \mathfrak{g} \}$$

which is a singular variety inside g.

T. Springer's desingularized it using the flag manifold

$$G/B \cong \mathcal{B} = \{\text{all Borel subalgebras } \mathfrak{b} \text{ in } \mathfrak{g}\}$$

by creating this space

$$\tilde{\mathcal{O}} := \{(e, \mathfrak{b}) \in \mathcal{O} \times G/B : [e, \mathfrak{b}] \subset \mathfrak{b}\}.$$

with its two coordinate projection maps:

The boring fiber shows it's smooth

The projection π_2 has as typical fiber an affine space

$$\pi_2^{-1}(\mathfrak{b}_+) = igoplus_{lpha \in \Phi_+} \mathfrak{g}_lpha \cong \mathbb{C}^{|\Phi_+|}$$

Corollary

The total space $\tilde{\mathcal{O}}$ is smooth.

Proof.

The base $\mathcal{B} = G/B$ is smooth, the fiber is affine.

The Springer fiber is interesting

The Springer fibers are the fibers of the other projection π_1 :

$$\mathcal{B}_{e} := \pi_{1}^{-1}(e) = \{ \mathfrak{b} \in G/B : [e, \mathfrak{b}] \subset \mathfrak{b} \}$$

Their cohomology $H^*(\mathcal{B}_e)$ has an interesting graded W-action.

Example

In type A, the ring $H^*(\mathcal{B}_{e_{\mu}})$, sometimes called R_{μ} , has its graded S_n -Frobenius characteristic given by the modified Hall-Littewood symmetric function $q^{n(\mu)}H_{\mu}(\mathbf{x};q^{-1})$.

Shoji 1982 gave an identity that recursively determines the graded W-characters $H^*(\mathcal{B}_e)$. Its coefficients involve

• cardinalities of nilpotent orbits e for an \mathbb{F}_q -version G^F of G,

Shoji 1982 gave an identity that recursively determines the graded W-characters $H^*(\mathcal{B}_e)$. Its coefficients involve

- cardinalities of nilpotent orbits e for an \mathbb{F}_q -version G^F of G,
- for each e, a sum over a finite group

$$A(e) := Z_G(e)/Z_G^0(e)$$

called the component group of $Z_G(e)$,

Shoji 1982 gave an identity that recursively determines the graded W-characters $H^*(\mathcal{B}_e)$. Its coefficients involve

- cardinalities of nilpotent orbits e for an \mathbb{F}_q -version G^F of G,
- for each e, a sum over a finite group

$$A(e) := Z_G(e)/Z_G^0(e)$$

called the component group of $Z_G(e)$, which acts on \mathcal{B}_e , and commutes with W acting on $H^*(\mathcal{B}_e)$.

Shoji 1982 gave an identity that recursively determines the graded W-characters $H^*(\mathcal{B}_e)$. Its coefficients involve

- cardinalities of nilpotent orbits e for an \mathbb{F}_q -version G^F of G,
- for each e, a sum over a finite group

$$A(e) := Z_G(e)/Z_G^0(e)$$

called the component group of $Z_G(e)$, which acts on \mathcal{B}_e , and commutes with W acting on $H^*(\mathcal{B}_e)$.

This lets one refine the graded W-representations

$$H^*(\mathcal{B}_e) = igoplus_\phi H^*(\mathcal{B}_e)^\phi$$

into A(e)-isotypic components for A(e)-irreducibles ϕ .

Sommers's reformulation: the rough idea

Sommers recast Shoji's recursion in terms of *W*-irreducibles χ :

$$H^*(\mathcal{B}) \otimes \chi = \sum_{\mathbf{e}} \sum_{\phi} \alpha(\mathbf{e}, \phi, \chi, \mathbf{q}) H^*(\mathcal{B}_{\mathbf{e}})^{\phi}.$$
 (1)

Sommers's reformulation: the rough idea

Sommers recast Shoji's recursion in terms of *W*-irreducibles χ :

$$H^*(\mathcal{B}) \otimes \chi = \sum_{\mathbf{e}} \sum_{\phi} \alpha(\mathbf{e}, \phi, \chi, \mathbf{q}) H^*(\mathcal{B}_{\mathbf{e}})^{\phi}.$$
 (1)

One can restate the graded character formula for *m* very good,

$$\chi_{\mathbf{S}/(\theta)}(w;q) = \det(1 - q^{\mathbf{m}}w)/\det(1 - qw),$$

as saying
$$S/(\theta) = \sum_{k=0}^{\ell} (-q^m)^k S \otimes \wedge^k V$$
.

Sommers's reformulation: the rough idea

Sommers recast Shoji's recursion in terms of *W*-irreducibles χ :

$$H^*(\mathcal{B}) \otimes \chi = \sum_{\mathbf{e}} \sum_{\phi} \alpha(\mathbf{e}, \phi, \chi, \mathbf{q}) H^*(\mathcal{B}_{\mathbf{e}})^{\phi}.$$
 (1)

One can restate the graded character formula for *m* very good,

$$\chi_{\mathbf{S}/(\theta)}(w;q) = \det(1 - q^{\mathbf{m}}w)/\det(1 - qw),$$

as saying
$$S/(\theta) = \sum_{k=0}^{\ell} (-q^m)^k S \otimes \wedge^k V$$
.

Then using $H^*(\mathcal{B}) \cong S/(S_+^W)$, and (1) at $\chi = \wedge^k V$, summed over $k = 0, 1, \dots, \ell$, Sommers proved a key result...

How to define *q*-Kreweras using Sommers's result

Theorem (Sommers 2011)

$$S/(\theta) = \sum_{e} \sum_{\phi} f(e, \phi, m; q) H^*(\mathcal{B}_e)^{\phi}.$$

This was the starting point for everything, such as ...

Definition

$$Krew(\Phi, e, m; q) := f(e, \mathbf{1}_{A(e)}, m; q)$$

How to define *q*-Kreweras using Sommers's result

Theorem (Sommers 2011)

$$S/(\theta) = \sum_{e} \sum_{\phi} f(e, \phi, m; q) H^*(\mathcal{B}_e)^{\phi}.$$

This was the starting point for everything, such as ...

Definition

$$Krew(\Phi, e, m; q) := f(e, \mathbf{1}_{A(e)}, m; q)$$

For example, it immediately implies

$$Cat(W, m; q) = \sum_{e} Krew(\Phi, e, m; q)$$

since the W-rep $\mathbf{1}_W$ appears only in $H^0(\mathcal{B}, e) = H^0(\mathcal{B}, e) \mathbf{1}_{4(e)}$.

How to define the q-Narayana statistic $\kappa(e)$

Recall there was a mysterious statistic $\kappa(e)$ used in defining

$$\operatorname{Nar}(\Phi, m, k; q) := \sum_{e: \kappa(e) = k} \operatorname{Krew}(\Phi, e, m; q)$$

Definition

 $\kappa(e) := \langle V, H^*(\mathcal{B}_e) \rangle$, the multiplicity of V in $H^*(\mathcal{B}_e)$.

How to define the q-Narayana statistic $\kappa(e)$

Recall there was a mysterious statistic $\kappa(e)$ used in defining

$$\operatorname{Nar}(\Phi, m, k; q) := \sum_{e: \kappa(e) = k} \operatorname{Krew}(\Phi, e, m; q)$$

Definition

$$\kappa(e) := \langle V, H^*(\mathcal{B}_e) \rangle$$
, the multiplicity of V in $H^*(\mathcal{B}_e)$.

This definition works extremely well, as

•
$$\kappa(e) = \dim(X)$$
 when $e = e_X$ is principal-in-a-Levi,

How to define the q-Narayana statistic $\kappa(e)$

Recall there was a mysterious statistic $\kappa(e)$ used in defining

$$\operatorname{Nar}(\Phi, m, k; q) := \sum_{e: \kappa(e) = k} \operatorname{Krew}(\Phi, e, m; q)$$

Definition

$$\kappa(e) := \langle V, H^*(\mathcal{B}_e) \rangle$$
, the multiplicity of V in $H^*(\mathcal{B}_e)$.

This definition works extremely well, as

- $\kappa(e) = \dim(X)$ when $e = e_X$ is principal-in-a-Levi,
- for almost all nilpotent orbits e, knowing within H*(Be) where V occurs (degrees, A(e)-isotypic components) determines via a simple product formula where all other \(\lambda^k \ V \) occur, by another result of Sommers 2011.

Other properties of the $f(e, \phi, m; q)$

• They lie in $\mathbb{Z}[q]$.

Other properties of the $f(e, \phi, m; q)$

- They lie in $\mathbb{Z}[q]$.
- At q = 1, they vanish unless $e = e_X$ is principal-in-Levi, in which case for every ϕ they have value Krew(W, [X], m).

Other properties of the $f(e, \phi, m; q)$

- They lie in $\mathbb{Z}[q]$.
- At q = 1, they vanish unless $e = e_X$ is principal-in-Levi, in which case for every ϕ they have value Krew(W, [X], m).
- They can be computed via cardinalities of nilpotent orbits over \mathbb{F}_q , together with (available!) info about the W-representations $H^*(\mathcal{B}, e)$.

Thanks

Thanks for listening,

Thanks

Thanks for listening,

and thank you, Michelle, for having taught us so much!