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I. Extremal Betti numbers, algebraic shifting

An (abstract) simplicial complex A on vertex
set [n] ;= {1,2,...,n} is a collection of subsets
F C [n] which is closed under inclusion, i.e.

FeAand FFCc F= F' € A.

Example:
A ={J,
1,2,3,4,5,6,
23,24,25,26,34,35,45,46,56
235,246,256,345,456}
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What sorts of numerical (isomorphism) invari-

ants have been associated with A, and have
people tried to characterize?

Some are combinatorial, e.q.

e the dimension

dim(A) :=max{|F|: Fe A} -1

e the f-vector

f(A) .= (f—lafO)fl) .. °7fdim(A))

where f; is the number of faces F' in A of
dimension i (i.e. |F| =14 1).



E.g. A from before

2
1
4
has
e dim(A) =2

o f(A)=C(f-1,f0,f1,f2) =(1,6,9,5).



Some are topological
(homeomorphism, homotopy-type invariants),

e.g.
e the dimension (again)

e the (topological, reduced) Betti numbers
or p-vector over some fixed field k:

Br(A) 1= (8-1,80,81,-- -, Bdim(a))
where (§; .= dlmk ﬁZ(A, k)

E.g. A from before

has

Bk(A) — (B—laﬁO)BlaBQ) — (Oa 1a070)
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Some are algebraic invariants associated with
the Stanley-Reisner ring

A =kl[xq1,...,xn]

IA ::(xil t Tg, : {i17'°°7i7“} g A)
as a graded k-algebra and graded A-module:

e the Krull dimension
(= dim(A) + 1, again!)

e the Hilbert function, Hilbert series
(equivalent to f-vector again)

e the depth depth 4(k[A])
e the homological dimension hd 4(k[A])
e the (Castelnuovo-Mumford) regularity reg 4(k[A]

and perhaps most importantly ...



the (algebraic) Betti numbers §;;(A) from the
(finite) minimal free resolution of k[A] (or IA)
as an A-module

0 — P A(—j) hdatan.i _,
J
%

P A(—j5)2 —
J

D AN -
J

Al 5 AJIA — 0

—k[A]

which capture all of the previous numerical in-
variants...



e N\

4

il : A = QQ[x1,x2,x3,x4,x5,x6];
i2 : Idelta = ideal(

x1*x2, x1*x3, x1*x4,x1*x5, x1*x6,
x3*x6,

x2*xx3%x4, x2*x3*x6 ) ;

i3 : MFR = resolution( Idelta );
03 = Al « A8 A5 L A12 . A5 . Al

i4 : Dbetti( MFR )

od =
total : 1 8 15 12 5 1
0 1 . . A
1 . 6 11 10 5 1

2 . 2 4 2



Why do the 3;;(A) capture the rest?

HilbertSeries(k[A],t) := Y dimy k[A];¢!

320
_ fa—1t
- cgo (1 —1t)d
. B +J
p— —1)/ vJ
o Va-o
hd 4(k[A]) := max{:: §;; # 0 for some j}
red 4(k[A]) := max{r : B; i3, # 0 for some i}

depthA(k[A]) = n — hdA(k[A])
(via Auslander-Buchsbaum formula)
capturing
Hilbert series,
f-vector,
dimension (= order of pole).
hd s (k[A]),
reg a(k[A]),
depth 4(k[A])
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How do the Bz-j(A) capture the topological
Betti numbers, i.e. the g-vector?

The 3;;(A) are actually a mixture of
topological/combinatorial invariants (in disguise):

THEOREM(Hochster 1977)

Bij(A) = Y., dimpHj_; 1(Aly k).
VCIn]:|V]=y

In particular, setting 3 = n, we have

Bin =dimgpH,_; 1(Aly; k)
v'
resolution
= Bn—i—1 -
N —
topological
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Some selected characterizations of numerical
invariants of simplicial complexes:

f-vectors:
Schutzenberger, Kruskal, Katona, Harper,
Lindstrom 1959

f-vectors when depth =dim 41
(i.,e. A Cohen-Macaulay):
Stanley 1981

(f,B) pairs: Bjorner & Kalai 1985
(f,3,depth) triples: Bjorner 1996

(Likely too hard a ...)

PROBLEM: Characterize all possible resolu-
tion Betti numbers 3;,;(A) for simplicial com-
plexes A.
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Bayer-Charalambous-Popescu 1999: Some of
the 8;; are more important than others.

Say (i,7) is extremal for A if 3;; # 0,
but S, = 0 whenever

> ¢/ >4, and
./ ./ . .
> 9" —12 >9 —1, and

> (i, 5") # (4, 7).

In other words, (i,7) is extremal if g;; is a
southeast corner of the non-vanishing entries
in the Macaulay diagram.

total : 1 8 15 12 5 1
0 1 .. A
1 . 6 11 10 5 1
2 . 2 4 2
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Extremal Betti numbers capture all previous
invariants except f-vector/Hilbert series:

< The (non-zero) topological Betti numbers
all show up among the extremal Betti num-
bers, lying on an antidiagonal in the Macaulay

diagram (since B,—;—1 = B n)-

4 Location of the rightmost extremal Betti
number in the Macaulay diagram deter-
mines homological dimension (and hence
also depth).

4 Location of the bottommost extremal Betti
number in the Macaulay diagram controls
regularity.
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(A more reasonable ...)
PROBLEM: Characterize all possible “pairs”

(f-vector, locations (i,5) and values j; ; of
extremal Betti numbers)

for simplicial complexes A.

CONCERN:

How do we know extremal Betti numbers are
an important/natural invariant?
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Important?
BCP showed that for homogeneous ideals I in

A (like Ip), the extremal Betti numbers are
unchanged when one replaces I by its

generic initial ideal Ging.cyjeq (1)
Using this and polarization, characterizing pairs

(f-vector, extremal Betti number data)
for simplicial complexes

would characterize the possible pairs

(Hilbert series, extremal Betti number data)
for homogeneous ideals in A.

NB: BCP note that extremal Betti data for
homogeneous ideals can be arbitrary (just as

Betti numbers of simplicial complexes can be
arbitary).
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Natural?
They interact beautifully with two important

constructions:

1. The canonical Alexander dual AV

AV :={FC[n]:[n]-F¢&A}

A A
T 3 4
E 2'\/
4 3 1
1 5
S\
A
4 3

THEOREM (Alexander duality)
For any field k,

Bi(AY) = Bp_3_i(D).
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THEOREM(Eagon-R. 1998):
IAv has a linear resolution
< k[A] is Cohen-Macaulay.

< THEOREM/(Terai 1998):
rega(Iav) = hd4(S/1p).

< THEOREM(BCP 1999):

e (i,7) is extremal for AV if and only if

(j —i—1,75) is extremal for A.

e [ he corresponding extremal Betti numbers
are equal:

Bi i (AY) = B;_;i_1 ;(A) if extremal.

(i.e. the extremal parts of the Macaulay dia-
grams for AV,A are “flips” of each other).

< THEOREM(E. Miller 2000):
A slight generalization of this.
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A from before had Macaulay diagram

total : 1 8 15 12 5 1

O 1 . . . ..
1 . 6 11 10 5 1
2 . 2 4 2

AV has Macaulay diagram

total : 1 6 7 2
-1

A WMNEO
0]
@)
N

(cf. the statement of Alexander duality)
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2. The algebraic shift A*

E = exterior algebra on eq,...,en

N— (eil/\---/\eir i1, 00 E D)
k{A} .= E/Ja=exterior face ring

Jas := Gin(Ja) with respect to grevlex

e.g. A has facets {1,235,246,256,345,356}
~ A® has facets {6,123,124,125,134,135}:

7 . 3

A?® enjoys the property of being shifted:
ife<jyge FeA® and 1 &€ F,
then F — {i} U{j} € AS.
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THEOREM(Bjorner and Kalai 1985):

A and A® have same f-vector and g-vector
over k.

(proof: not hard)

THEOREM(Kalai 1993):
A is Cohen-Macaulay if and only if A?® is.
(proof: hard)

THEOREM(Duval and Rose 1995):
depth 4k[A] = depth 4k[A%].
(proof: apply previous result to skeleta)

THEOREM(Herzog and Terai 1999):

reg 4k[A] = reg 4k[AF].

(proof: note that algebraic shifting and Alexan-
der duality commute, i.e. (A%)Y = (AVY)S)
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And more recently,

THEOREM(Aramova and Herzog 2000):

A, A° have same extremal Betti numbers!
(proof: Haven't absorbed it, but brings in the
data associated with MFR of k{A} ;= E/Ja
as E-module)

Thanks to this, one really only needs to solve...

PROBLEM: Characterize all possible pairs
(f-vector, extremal Betti number data)

for shifted simplicial complexes A.
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II. Combinatorial Laplacians

T he set-up:
0i11 0;
Cit1(AR) = Ci(AR) éjTCz'—l(A;R)
+1 7

Define the (combinatorial) Laplacian

L; = a:-lTaz- +@i+1vaz.T+11: C:(A;R) — C;(A;R)
Liown Lyp

7

PROPOSITION(Hodge 1941, Eckmann 1945):

H;(A;R) = ker L; (= harmonic i-chains)

So the 0-eigenspace of L is giving us homology.
What about the rest of the spectrum of the
self-adjoint positive-semidefinite operator L7
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Is this spectral data attached to a simplicial
complex A worth studying?

In particular, how does it interact with our old
friend, the canonical Alexander dual?

PROPOSITION(Duval and R. 2000):
The eigenvalues of L;(A) for any simplicial
complex A on n vertices lie in the range [0, n],
and

Li(A), Ly—i—3(AY)

have the same spectra except for the multi-
plicity of the top eigenvalue n.
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Disturbing that spectra of L; are (nonnegative)
real numbers, not integers?

There are some interesting families discovered
recently where they are all integers:

Two cases where symmetry/representation the-
ory play a role:

e Chessboard complexes (Friedman and Han-
lon 1998)

e Matching complexes (Dong and Wachs 2001)

Two cases with no symmetry, but with myste-
rious connections...

e Matroid complexes (Kook, R. and Stanton
2000)

e Shifted complexes (Duval and R. 2000)
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The shifted case

K a collection of k-element subsets of [n].
A= simplicial complex with facets K.
d(K):= degree sequence of the vertex set [n]
with respect to the set K of facets, a partition
(parts in weakly decreasing order).

e.g.
k=3
n=4
K = {123,124,234}

has

A =1{9,1,2,3,4,
12,13,14,23,24, 34,
123,124,234}

d(K) =(3,2,2,2) = . d(K)t = (4,4,1)
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THEOREM
(Duval-R. 2000, Merris 1994 for k = 2):
For any shifted family K of k-element sets,

(non-zero) spectrum of LIWP(Ag) =
the transpose partition d(K)?.

CONJECTURE:
For any family K of k-element sets,

(non-zero) spectrum of LIOWN(A )
IS majorized by

the transpose partition d(K)?

with equality if and only if K is shifted.
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The matroid case
A matroid complex Ay,

. = independent sets of a matroid M,

Kook, R. and Stanton gave a formula for spec-
tra of L;, and asked whether it has a nice re-
formulation relating the spectra of L; for

M, Mje, M —e.

THEOREM(Kook 2000)

{spectra for A} ={spectra for Ay;_.}U
{spectra for Ay tU
{an explicit error term}.
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Note that if A := A, then

A = dela(e)
App/e = linka (e)

THEOREM(Duval 2001)

In this matroid setting, Kook’'s error term is
the spectrum of the Laplacian for the relative
simplicial pair

(dela(e), linka(e))

AND the same recursion holds for shifted
complexes (but not for all simplicial compelexes).
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QUESTION: What's the deal with matroid and
shifted complexes/families?

> Both shellable, even vertex-decomposable.
> Both Laplacian integral, satisfying same re-
cursion.

> When kK = 2, as families, both are determined
up to isomorphism by a partition.

e For rank 2 matroids, it's their parallelism
partition

e For shifted families of 2-subsets (graphs),
it's their degree sequence

> Complicated and rich already for k£ = 3.
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Matroids are better-studied, e.q.
e have more known invariants
e have good intrinsic characterizations.

What about characterizing shifted families in-
trinsically?

THEOREM

(Duval and Shareshian, work in progress)

For families of k-subsets, the obstructions to
being isomorphic to a shifted family all have ex-
actly 2k vertices, in the following precise sense:

> Any non-shifted k-family with more than 2k
vertices has a nonshifted deletion, and

> any non-shifted k-family with less than 2k
vertices has a nonshifted contraction/link.
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For example, when k£ = 2, a 2-family is just a
graph, and graphs isomorphic to shifted fam-
illes are called threshold graphs. They have
several nice intrinsic characterizations.

There are three vertex-induced subgraphs well-
known to be the obstructions to being thresh-
old, and all have 4 = 2 - k vertices:

NS

When k = 3, there are nine obstructions (up
to certain symmetry operations).
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