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I. Extremal Betti numbers, algebrai
 shifting

An (abstra
t) simpli
ial 
omplex � on vertex

set [n℄ := f1;2; : : : ; ng is a 
olle
tion of subsets

F � [n℄ whi
h is 
losed under in
lusion, i.e.

F 2� and F

0

� F ) F

0

2�:

Example:

�= f?;

1;2;3;4;5;6;

23;24;25;26;34;35;45;46;56

235;246;256;345;456g

2

3 4

1

6

5
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What sorts of numeri
al (isomorphism) invari-

ants have been asso
iated with �, and have

people tried to 
hara
terize?

Some are 
ombinatorial, e.g.

� the dimension

dim(�) := maxfjF j : F 2�g � 1

� the f-ve
tor

f(�) := (f

�1

; f

0

; f

1

; : : : ; f

dim(�)

)

where f

i

is the number of fa
es F in � of

dimension i (i.e. jF j = i+1).
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E.g. � from before

2

3 4

1

6

5

has

� dim(�) = 2

� f(�) = (f

�1

; f

0

; f

1

; f

2

) = (1;6;9;5):
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Some are topologi
al

(homeomorphism, homotopy-type invariants),

e.g.

� the dimension (again)

� the (topologi
al, redu
ed) Betti numbers

or �-ve
tor over some �xed �eld k:

�

k

(�) := (�

�1

; �

0

; �

1

; : : : ; �

dim(�)

)

where �

i

:= dim

k

~

H

i

(�; k)

E.g. � from before

2

3 4

1

6

5

has

�

k

(�) = (�

�1

; �

0

; �

1

; �

2

) = (0;1;0;0):
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Some are algebrai
 invariants asso
iated with

the Stanley-Reisner ring

k[�℄ :=A=I

�

A :=k[x

1

; : : : ; x

n

℄

I

�

:=(x

i

1

� � �x

i

r

: fi

1

; : : : ; i

r

g 62�)

as a graded k-algebra and graded A-module:

� the Krull dimension

(= dim(�)+ 1, again!)

� the Hilbert fun
tion, Hilbert series

(equivalent to f-ve
tor again)

� the depth depth

A

(k[�℄)

� the homologi
al dimension hd

A

(k[�℄)

� the (Castelnuovo-Mumford) regularity reg

A

(k[�℄)

and perhaps most importantly ...
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the (algebrai
) Betti numbers �

ij

(�) from the

(�nite) minimal free resolution of k[�℄ (or I

�

)

as an A-module

0!

M

j

A(�j)

�

hd

A

(k(�));j

!

� � � !

M

j

A(�j)

�

2j

!

M

j

A(�j)

�

1j

!

A

1

! A=I

�

| {z }

=k[�℄

! 0

whi
h 
apture all of the previous numeri
al in-

variants...
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2

3 4

1

6

5

i1 : A = QQ[x1,x2,x3,x4,x5,x6℄;

i2 : Idelta = ideal(

x1*x2, x1*x3, x1*x4,x1*x5, x1*x6,

x3*x6,

x2*x3*x4, x2*x3*x6 );

i3 : MFR = resolution( Idelta );

o3 = A

1

 A

8

 A

15

 A

12

 A

5

 A

1

i4 : betti( MFR )

o4 =

total : 1 8 15 12 5 1

0 : 1 : : : : :

1 : : 6 11 10 5 1

2 : : 2 4 2 : :
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Why do the �

ij

(�) 
apture the rest?

HilbertSeries(k[�℄; t) :=

X

j�0

dim

k

k[�℄

j

t

j

=

X

d�0

f

d�1

t

d

(1� t)

d

=

X

i;j�0

(�1)

j

�

ij

t

j

(1� t)

n

hd

A

(k[�℄) := maxfi : �

ij

6= 0 for some jg

reg

A

(k[�℄) := maxfr : �

i;i+r

6= 0 for some ig

depth

A

(k[�℄) = n� hd

A

(k[�℄)

(via Auslander-Bu
hsbaum formula)


apturing

Hilbert series,

f-ve
tor,

dimension (= order of pole).

hd

A

(k[�℄);

reg

A

(k[�℄);

depth

A

(k[�℄)
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How do the �

ij

(�) 
apture the topologi
al

Betti numbers, i.e. the �-ve
tor?

The �

ij

(�) are a
tually a mixture of

topologi
al/
ombinatorial invariants (in disguise):

THEOREM(Ho
hster 1977)

�

ij

(�) =

X

V�[n℄:jV j=j

dim

k

~

H

j�i�1

(�j

V

; k):

In parti
ular, setting j = n, we have

�

i;n

|{z}

resolution

= dim

k

~

H

n�i�1

(�j

V

; k)

= �

n�i�1

| {z }

topologi
al

:
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Some sele
ted 
hara
terizations of numeri
al

invariants of simpli
ial 
omplexes:

f-ve
tors:

S
h�utzenberger, Kruskal, Katona, Harper,

Lindstr�om 1959

f-ve
tors when depth = dim+1

(i.e. � Cohen-Ma
aulay):

Stanley 1981

(f; �) pairs: Bjorner & Kalai 1985

(f; �;depth) triples: Bjorner 1996

(Likely too hard a ...)

PROBLEM: Chara
terize all possible resolu-

tion Betti numbers �

ij

(�) for simpli
ial 
om-

plexes �.
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Bayer-Charalambous-Popes
u 1999: Some of

the �

ij

are more important than others.

Say (i; j) is extremal for � if �

ij

6= 0,

but �

i

0

j

0

= 0 whenever

. i

0

� i, and

. j

0

� i

0

� j � i, and

. (i

0

; j

0

) 6= (i; j).

In other words, (i; j) is extremal if �

ij

is a

southeast 
orner of the non-vanishing entries

in the Ma
aulay diagram.

total : 1 8 15 12 5 1

0 : 1 : : : : :

1 : : 6 11 10 5 1

2 : : 2 4 2 : :
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Extremal Betti numbers 
apture all previous

invariants ex
ept f-ve
tor/Hilbert series:

/ The (non-zero) topologi
al Betti numbers

all show up among the extremal Betti num-

bers, lying on an antidiagonal in the Ma
aulay

diagram (sin
e �

n�i�1

= �

i;n

).

/ Lo
ation of the rightmost extremal Betti

number in the Ma
aulay diagram deter-

mines homologi
al dimension (and hen
e

also depth).

/ Lo
ation of the bottommost extremal Betti

number in the Ma
aulay diagram 
ontrols

regularity.
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(A more reasonable ...)

PROBLEM: Chara
terize all possible \pairs"

(f-ve
tor, lo
ations (i; j) and values �

i;j

of

extremal Betti numbers)

for simpli
ial 
omplexes �.

CONCERN:

How do we know extremal Betti numbers are

an important/natural invariant?
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Important?

BCP showed that for homogeneous ideals I in

A (like I

�

), the extremal Betti numbers are

un
hanged when one repla
es I by its

generi
 initial ideal Gin

grevlex

(I)

Using this and polarization, 
hara
terizing pairs

(f-ve
tor, extremal Betti number data)

for simpli
ial 
omplexes

would 
hara
terize the possible pairs

(Hilbert series, extremal Betti number data)

for homogeneous ideals in A.

NB: BCP note that extremal Betti data for

homogeneous ideals 
an be arbitrary (just as

Betti numbers of simpli
ial 
omplexes 
an be

arbitary).
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Natural?

They intera
t beautifully with two important


onstru
tions:

1. The 
anoni
al Alexander dual �

_

�

_

:= fF � [n℄ : [n℄� F 62�g

1 2

34
2

3 4

1
1 2

34
2

3 4

1

THEOREM (Alexander duality)

For any �eld k,

�

i

(�

_

) = �

n�3�i

(�):
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THEOREM(Eagon-R. 1998):

I

�

_

has a linear resolution

, k[�℄ is Cohen-Ma
aulay.

( THEOREM(Terai 1998):

reg

A

(I

�

_

) = hd

A

(S=I

�

):

( THEOREM(BCP 1999):

� (i; j) is extremal for �

_

if and only if

(j � i� 1; j) is extremal for �.

� The 
orresponding extremal Betti numbers

are equal:

�

i;j

(�

_

) = �

j�i�1;j

(�) if extremal:

(i.e. the extremal parts of the Ma
aulay dia-

grams for �

_

;� are \
ips" of ea
h other).

( THEOREM(E. Miller 2000):

A slight generalization of this.
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� from before had Ma
aulay diagram

total : 1 8 15 12 5 1

0 : 1 : : : : :

1 : : 6 11 10 5 1

2 : : 2 4 2 : :

�

_

has Ma
aulay diagram

total : 1 6 7 2

0 : 1 : : :

1 : : : : :

2 : : 5 6 2

3 : : : : :

4 : : 1 1 :

(
f. the statement of Alexander duality)
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2. The algebrai
 shift �

s

E := exterior algebra on e

1

; : : : ; e

n

J

�

:= (e

i

1

^ � � � ^ e

i

r

: fi

1

; : : : ; i

r

g 62�)

kf�g := E=J

�

=exterior fa
e ring

J

�

s

:= Gin(J

�

) with respe
t to grevlex

e.g. � has fa
ets f1;235;246;256;345;356g

 �

s

has fa
ets f6;123;124;125;134;135g:

2

3 4

1

6

5

6

1

2

3

54

s

�

s

enjoys the property of being shifted:

if i < j 2 F 2�

s

, and i 62 F ,

then F � fig [ fjg 2�

s

.
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THEOREM(Bj�orner and Kalai 1985):

� and �

s

have same f-ve
tor and �-ve
tor

over k.

(proof: not hard)

THEOREM(Kalai 1993):

� is Cohen-Ma
aulay if and only if �

s

is.

(proof: hard)

THEOREM(Duval and Rose 1995):

depth

A

k[�℄ = depth

A

k[�

s

℄.

(proof: apply previous result to skeleta)

THEOREM(Herzog and Terai 1999):

reg

A

k[�℄ = reg

A

k[�

s

℄.

(proof: note that algebrai
 shifting and Alexan-

der duality 
ommute, i.e. (�

s

)

_

= (�

_

)

s

)
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And more re
ently,

THEOREM(Aramova and Herzog 2000):

�;�

s

have same extremal Betti numbers!

(proof: Haven't absorbed it, but brings in the

data asso
iated with MFR of kf�g := E=J

�

as E-module)

Thanks to this, one really only needs to solve...

PROBLEM: Chara
terize all possible pairs

(f-ve
tor, extremal Betti number data)

for shifted simpli
ial 
omplexes �.
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II. Combinatorial Lapla
ians

The set-up:

C

i+1

(�; R )

�

i+1




�

T

i+1

C

i

(�; R )

�

i




�

T

i

C

i�1

(�; R )

De�ne the (
ombinatorial) Lapla
ian

L

i

:= �

T

i

�

i

| {z }

L

down

i

+ �

i+1

�

T

i+1

| {z }

L

up

i

: C

i

(�; R ) ! C

i

(�; R )

PROPOSITION(Hodge 1941, E
kmann 1945):

H

i

(�; R )

�

=

kerL

i

(= harmoni
 i-
hains)

So the 0-eigenspa
e of L is giving us homology.

What about the rest of the spe
trum of the

self-adjoint positive-semide�nite operator L?
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Is this spe
tral data atta
hed to a simpli
ial


omplex � worth studying?

In parti
ular, how does it intera
t with our old

friend, the 
anoni
al Alexander dual?

PROPOSITION(Duval and R. 2000):

The eigenvalues of L

i

(�) for any simpli
ial


omplex � on n verti
es lie in the range [0; n℄,

and

L

i

(�); L

n�i�3

(�

_

)

have the same spe
tra ex
ept for the multi-

pli
ity of the top eigenvalue n.
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Disturbing that spe
tra of L

i

are (nonnegative)

real numbers, not integers?

There are some interesting families dis
overed

re
ently where they are all integers:

Two 
ases where symmetry/representation the-

ory play a role:

� Chessboard 
omplexes (Friedman and Han-

lon 1998)

�Mat
hing 
omplexes (Dong and Wa
hs 2001)

Two 
ases with no symmetry, but with myste-

rious 
onne
tions...

� Matroid 
omplexes (Kook, R. and Stanton

2000)

� Shifted 
omplexes (Duval and R. 2000)
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The shifted 
ase

K a 
olle
tion of k-element subsets of [n℄.

�

K

:= simpli
ial 
omplex with fa
ets K.

d(K):= degree sequen
e of the vertex set [n℄

with respe
t to the set K of fa
ets, a partition

(parts in weakly de
reasing order).

e.g.

k = 3

n= 4

K = f123;124;234g

has

�

K

= f?;1;2;3;4;

12;13;14;23;24;34;

123;124;234g

d(K) = (3;2;2;2) =

� � �

� �

� �

� �

; d(K)

t

= (4;4;1)
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THEOREM

(Duval-R. 2000, Merris 1994 for k = 2):

For any shifted family K of k-element sets,

(non-zero) spe
trum of L

down

i

(�

K

) =

the transpose partition d(K)

t

.

CONJECTURE:

For any family K of k-element sets,

(non-zero) spe
trum of L

down

i

(�

K

)

is majorized by

the transpose partition d(K)

t

with equality if and only if K is shifted.
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The matroid 
ase

A matroid 
omplex �

M

: = independent sets of a matroid M ,

Kook, R. and Stanton gave a formula for spe
-

tra of L

i

, and asked whether it has a ni
e re-

formulation relating the spe
tra of L

i

for

M; M=e; M � e:

THEOREM(Kook 2000)

fspe
tra for �

M

g =fspe
tra for �

M�e

g[

fspe
tra for �

M=e

g[

fan expli
it error termg:
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Note that if � := �

M

, then

�

M�e

= del

�

(e)

�

M=e

= link

�

(e)

THEOREM(Duval 2001)

In this matroid setting, Kook's error term is

the spe
trum of the Lapla
ian for the relative

simpli
ial pair

(del

�

(e); link

�

(e))

AND the same re
ursion holds for shifted


omplexes (but not for all simpli
ial 
ompelexes).
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QUESTION: What's the deal with matroid and

shifted 
omplexes/families?

. Both shellable, even vertex-de
omposable.

. Both Lapla
ian integral, satisfying same re-


ursion.

.When k = 2, as families, both are determined

up to isomorphism by a partition.

� For rank 2 matroids, it's their parallelism

partition

� For shifted families of 2-subsets (graphs),

it's their degree sequen
e

. Compli
ated and ri
h already for k = 3.
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Matroids are better-studied, e.g.

� have more known invariants

� have good intrinsi
 
hara
terizations.

What about 
hara
terizing shifted families in-

trinsi
ally?

THEOREM

(Duval and Shareshian, work in progress)

For families of k-subsets, the obstru
tions to

being isomorphi
 to a shifted family all have ex-

a
tly 2k verti
es, in the following pre
ise sense:

. Any non-shifted k-family with more than 2k

verti
es has a nonshifted deletion, and

. any non-shifted k-family with less than 2k

verti
es has a nonshifted 
ontra
tion/link.
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For example, when k = 2, a 2-family is just a

graph, and graphs isomorphi
 to shifted fam-

ilies are 
alled threshold graphs. They have

several ni
e intrinsi
 
hara
terizations.

There are three vertex-indu
ed subgraphs well-

known to be the obstru
tions to being thresh-

old, and all have 4 = 2 � k verti
es:

When k = 3, there are nine obstru
tions (up

to 
ertain symmetry operations).
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