Recent progress in the topology of simplicial complexes

Vic Reiner

School of Mathematics University of Minnesota Minneapolis, MN 55455 reiner@math.umn.edu

Outline

- I. Extremal Betti numbers, algebraic shifting
- II. Combinatorial Laplacians

Leitmotifs

- Alexander duality
- Shifted complexes

I. Extremal Betti numbers, algebraic shifting

An (abstract) simplicial complex Δ on vertex set $[n] := \{1, 2, ..., n\}$ is a collection of subsets $F \subset [n]$ which is closed under inclusion, i.e.

$$F \in \Delta$$
 and $F' \subset F \Rightarrow F' \in \Delta$.

Example:

$$\Delta = \{ \emptyset, \\ 1, 2, 3, 4, 5, 6, \\ 23, 24, 25, 26, 34, 35, 45, 46, 56 \\ 235, 246, 256, 345, 456 \}$$

What sorts of numerical (isomorphism) invariants have been associated with Δ , and have people tried to characterize?

Some are combinatorial, e.g.

• the dimension

$$\dim(\Delta) := \max\{|F| : F \in \Delta\} - 1$$

• the *f*-vector

$$f(\Delta) := (f_{-1}, f_0, f_1, \dots, f_{\dim(\Delta)})$$

where f_i is the number of faces F in Δ of dimension i (i.e. |F| = i + 1).

has

- dim(Δ) = 2
- $f(\Delta) = (f_{-1}, f_0, f_1, f_2) = (1, 6, 9, 5).$

Some are topological

(homeomorphism, homotopy-type invariants), e.g.

- the dimension (again)
- the (topological, reduced) Betti numbers or β -vector over some fixed field k:

 $\beta_k(\Delta) := (\beta_{-1}, \beta_0, \beta_1, \dots, \beta_{\dim(\Delta)})$ where $\beta_i := \dim_k \tilde{H}_i(\Delta; k)$

E.g. Δ from before

has

$$\beta_k(\Delta) = (\beta_{-1}, \beta_0, \beta_1, \beta_2) = (0, 1, 0, 0).$$

Some are algebraic invariants associated with the Stanley-Reisner ring

$$k[\Delta] := A/I_{\Delta}$$

$$A := k[x_1, \dots, x_n]$$

$$I_{\Delta} := (x_{i_1} \cdots x_{i_r} : \{i_1, \dots, i_r\} \notin \Delta)$$

as a graded k-algebra and graded A-module:

- the Krull dimension $(= \dim(\Delta) + 1, \text{ again}!)$
- the Hilbert function, Hilbert series (equivalent to *f*-vector again)
- the depth depth $A(k[\Delta])$
- the homological dimension $hd_A(k[\Delta])$
- the (Castelnuovo-Mumford) regularity $\operatorname{reg}_A(k[\Delta]$

and perhaps most importantly ...

the (algebraic) Betti numbers $\beta_{ij}(\Delta)$ from the (finite) minimal free resolution of $k[\Delta]$ (or I_{Δ}) as an *A*-module

$$0 \to \bigoplus_{j} A(-j)^{\beta_{\mathrm{hd}}A(k(\Delta)),j} \to$$
$$\cdots \to$$
$$\bigoplus_{j} A(-j)^{\beta_{2j}} \to$$
$$\bigoplus_{j} A(-j)^{\beta_{1j}} \to$$
$$A^{1} \to \underbrace{A/I_{\Delta}}_{=k[\Delta]} \to 0$$

which capture all of the previous numerical invariants...

i1 : A = QQ[x1,x2,x3,x4,x5,x6]; i2 : Idelta = ideal(x1*x2, x1*x3, x1*x4,x1*x5, x1*x6, x3*x6, x2*x3*x4, x2*x3*x6);

i3 : MFR = resolution(Idelta); o3 = $A^1 \leftarrow A^8 \leftarrow A^{15} \leftarrow A^{12} \leftarrow A^5 \leftarrow A^1$

i4 : betti(MFR) o4 = total : 1

otal	:	1	8	15	12	5	1
0	:	1	•	•	•	•	
1	:	•	6	11	10	5	1
2	:		2	4	2	•	

9

Why do the $\beta_{ij}(\Delta)$ capture the rest? HilbertSeries $(k[\Delta], t) := \sum_{j \ge 0} \dim_k k[\Delta]_j t^j$ $= \sum_{d \ge 0} \frac{f_{d-1}t^d}{(1-t)^d}$ $= \sum_{i,j \ge 0} (-1)^j \frac{\beta_{ij}t^j}{(1-t)^n}$

 $hd_A(k[\Delta]) := \max\{i : \beta_{ij} \neq 0 \text{ for some } j\}$ $reg_A(k[\Delta]) := \max\{r : \beta_{i,i+r} \neq 0 \text{ for some } i\}$

 $depth_A(k[\Delta]) = n - hd_A(k[\Delta])$ (via Auslander-Buchsbaum formula)

capturing Hilbert series, f-vector, dimension (= order of pole). $hd_A(k[\Delta]),$ $reg_A(k[\Delta]),$ $depth_A(k[\Delta])$ How do the $\beta_{ij}(\Delta)$ capture the topological Betti numbers, i.e. the β -vector?

The $\beta_{ij}(\Delta)$ are actually a mixture of topological/combinatorial invariants (in disguise):

THEOREM(Hochster 1977)

$$\beta_{ij}(\Delta) = \sum_{V \subset [n]: |V| = j} \dim_k \tilde{H}_{j-i-1}(\Delta|_V; k).$$

In particular, setting j = n, we have

$$\underbrace{\beta_{i,n}}_{resolution} = \dim_k \tilde{H}_{n-i-1}(\Delta|_V;k)$$
$$= \underbrace{\beta_{n-i-1}}_{topological}.$$

Some selected characterizations of numerical invariants of simplicial complexes:

f-vectors: Schützenberger, Kruskal, Katona, Harper, Lindström 1959

f-vectors when depth = dim +1 (i.e. Δ Cohen-Macaulay): Stanley 1981

 (f,β) pairs: Bjorner & Kalai 1985

 $(f, \beta, depth)$ triples: Bjorner 1996

(Likely too hard a ...) **PROBLEM**: Characterize all possible resolution Betti numbers $\beta_{ij}(\Delta)$ for simplicial complexes Δ . Bayer-Charalambous-Popescu 1999: Some of the β_{ij} are more important than others.

Say (i, j) is extremal for Δ if $\beta_{ij} \neq 0$, but $\beta_{i'j'} = 0$ whenever

 \triangleright $i' \geq i$, and

 $\triangleright j' - i' \geq j - i$, and

 $\triangleright (i',j') \neq (i,j).$

In other words, (i, j) is extremal if β_{ij} is a southeast corner of the non-vanishing entries in the Macaulay diagram.

total	:	1	8	15	12	5	1
0	:	1	•	•	•	•	•
1	:	•	6	11	10	5	1
2	:	•	2	4	2	•	•

Extremal Betti numbers capture all previous invariants except f-vector/Hilbert series:

- ⊲ The (non-zero) topological Betti numbers all show up among the extremal Betti numbers, lying on an antidiagonal in the Macaulay diagram (since $\beta_{n-i-1} = \beta_{i,n}$).
- Location of the rightmost extremal Betti number in the Macaulay diagram deter- mines homological dimension (and hence also depth).
- Location of the bottommost extremal Betti number in the Macaulay diagram controls regularity.

(A more reasonable ...) PROBLEM: Characterize all possible "pairs"

(*f*-vector, locations (i, j) and values $\beta_{i,j}$ of extremal Betti numbers)

for simplicial complexes Δ .

CONCERN:

How do we know extremal Betti numbers are an important/natural invariant?

Important?

BCP showed that for homogeneous ideals I in A (like I_{Δ}), the extremal Betti numbers are unchanged when one replaces I by its

generic initial ideal $Gin_{grevlex}(I)$

Using this and polarization, characterizing pairs

(*f*-vector, extremal Betti number data) for simplicial complexes

would characterize the possible pairs

(Hilbert series, extremal Betti number data) for homogeneous ideals in A.

NB: **BCP** note that extremal Betti data for homogeneous ideals can be arbitrary (just as Betti numbers of simplicial complexes can be arbitary).

Natural?

They interact beautifully with two important constructions:

1. The canonical Alexander dual Δ^{\vee}

$$\Delta^{\vee} := \{ F \subset [n] : [n] - F \not\in \Delta \}$$

THEOREM (Alexander duality) For any field k,

$$\beta_i(\Delta^{\vee}) = \beta_{n-3-i}(\Delta).$$

THEOREM(Eagon-R. 1998): $I_{\Delta^{\vee}}$ has a linear resolution $\Leftrightarrow k[\Delta]$ is Cohen-Macaulay.

 $\leftarrow \mathsf{THEOREM}(\mathsf{Terai 1998}):$ $\mathsf{reg}_A(I_{\Delta^{\vee}}) = \mathsf{hd}_A(S/I_{\Delta}).$

\leftarrow THEOREM(BCP 1999):

• (i, j) is extremal for Δ^{\vee} if and only if (j - i - 1, j) is extremal for Δ .

• The corresponding extremal Betti numbers are **equal**:

 $\beta_{i,j}(\Delta^{\vee}) = \beta_{j-i-1,j}(\Delta)$ if extremal.

(i.e. the extremal parts of the Macaulay diagrams for Δ^{\vee}, Δ are "flips" of each other).

 \leftarrow THEOREM(E. Miller 2000): A slight generalization of this.

Δ from before had Macaulay diagram

total	:	1	8	15	12	5	1
0	:	1	•	•	•	•	•
1	:	•	6	11	10	5	1
2	:	•	2	4	2	•	•

 Δ^{\vee} has Macaulay diagram

total	:	1	6	7	2
0	:	1	•	•	•
1	:	•	•	•	•
2	:	•	5	6	2
3	:	•	•	•	•
4	:	•	1	1	•

(cf. the statement of Alexander duality)

2. The algebraic shift Δ^s

 $E := \text{ exterior algebra on } e_1, \dots, e_n$ $J_{\Delta} := (e_{i_1} \wedge \dots \wedge e_{i_r} : \{i_1, \dots, i_r\} \not\in \Delta)$ $k\{\Delta\} := E/J_{\Delta} = \text{exterior face ring}$

 $J_{\Delta^s} := \text{Gin}(J_{\Delta})$ with respect to *grevlex* e.g. Δ has facets {1,235,246,256,345,356} $\rightsquigarrow \Delta^s$ has facets {6,123,124,125,134,135}:

 Δ^s enjoys the property of being shifted: if $i < j \in F \in \Delta^s$, and $i \notin F$, then $F - \{i\} \cup \{j\} \in \Delta^s$.

THEOREM(Björner and Kalai 1985):

```
\Delta and \Delta^s have same f-vector and \beta-vector over k.
(proof: not hard)
```

THEOREM(Kalai 1993):

 Δ is Cohen-Macaulay if and only if Δ^s is. (proof: hard)

THEOREM(Duval and Rose 1995):

depth_A $k[\Delta]$ = depth_A $k[\Delta^s]$. (proof: apply previous result to skeleta)

THEOREM(Herzog and Terai 1999):

```
\begin{split} \operatorname{reg}_A k[\Delta] &= \operatorname{reg}_A k[\Delta^s]. \\ (\text{proof: note that algebraic shifting and Alexander duality commute, i.e. } (\Delta^s)^{\vee} &= (\Delta^{\vee})^s) \end{split}
```

And more recently,

THEOREM(Aramova and Herzog 2000):

 Δ, Δ^s have same extremal Betti numbers! (proof: Haven't absorbed it, but brings in the data associated with MFR of $k\{\Delta\} := E/J_{\Delta}$ as *E*-module)

Thanks to this, one really only needs to solve...

PROBLEM: Characterize all possible pairs

(*f*-vector, extremal Betti number data)

for shifted simplicial complexes Δ .

II. Combinatorial Laplacians

$$C_{i+1}(\Delta;\mathbb{R}) \stackrel{\partial_{i+1}}{\underset{\partial_{i+1}}{\rightrightarrows}} C_i(\Delta;\mathbb{R}) \stackrel{\partial_i}{\underset{\partial_i}{\rightrightarrows}} C_{i-1}(\Delta;\mathbb{R})$$

Define the (combinatorial) Laplacian

$$L_{i} := \underbrace{\partial_{i}^{T} \partial_{i}}_{L_{i}^{down}} + \underbrace{\partial_{i+1} \partial_{i+1}^{T}}_{L_{i}^{up}} : C_{i}(\Delta; \mathbb{R}) \to C_{i}(\Delta; \mathbb{R})$$

PROPOSITION(Hodge 1941, Eckmann 1945):

 $H_i(\Delta; \mathbb{R}) \cong \ker L_i$ (= harmonic *i*-chains)

So the 0-eigenspace of L is giving us homology. What about the rest of the spectrum of the self-adjoint positive-semidefinite operator L? Is this spectral data attached to a simplicial complex Δ worth studying?

In particular, how does it interact with our old friend, the canonical Alexander dual?

PROPOSITION(Duval and R. 2000):

The eigenvalues of $L_i(\Delta)$ for any simplicial complex Δ on n vertices lie in the range [0, n], and

$$L_i(\Delta), L_{n-i-3}(\Delta^{\vee})$$

have the same spectra except for the multiplicity of the top eigenvalue n.

Disturbing that spectra of L_i are (nonnegative) real numbers, not integers?

There are some interesting families discovered recently where they are all integers:

Two cases where symmetry/representation theory play a role:

- Chessboard complexes (Friedman and Hanlon 1998)
- Matching complexes (Dong and Wachs 2001)

Two cases with no symmetry, but with mysterious connections...

- Matroid complexes (Kook, R. and Stanton 2000)
- Shifted complexes (Duval and R. 2000)

The shifted case

K a collection of k-element subsets of [n]. $\Delta_K :=$ simplicial complex with facets K. d(K) := degree sequence of the vertex set [n]with respect to the set K of facets, a partition (parts in weakly decreasing order).

e.g.

$$k = 3$$

$$n = 4$$

$$K = \{123, 124, 234\}$$

has

$$\Delta_K = \{\emptyset, 1, 2, 3, 4,$$

$$12, 13, 14, 23, 24, 34,$$

$$123, 124, 234\}$$

$$d(K) = (3, 2, 2, 2) = \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \end{bmatrix}, \quad d(K)^t = (4, 4, 1)$$

THEOREM (Duval-R. 2000, Merris 1994 for k = 2): For any shifted family K of k-element sets,

(non-zero) spectrum of $L_i^{down}(\Delta_K) =$ the transpose partition $d(K)^t$.

CONJECTURE:

For any family K of k-element sets,

(non-zero) spectrum of $L_i^{down}(\Delta_K)$ is majorized by the transpose partition $d(K)^t$

with equality if and only if K is shifted.

The matroid case

A matroid complex Δ_M : = independent sets of a matroid M,

Kook, R. and Stanton gave a formula for spectra of L_i , and asked whether it has a nice reformulation relating the spectra of L_i for

 $M, \quad M/e, \quad M-e.$

THEOREM(Kook 2000)

 $\{ \text{spectra for } \Delta_M \} = \{ \text{spectra for } \Delta_{M-e} \} \cup \\ \{ \text{spectra for } \Delta_{M/e} \} \cup \\ \{ \text{an explicit error term} \}.$

Note that if $\Delta := \Delta_M$, then $\Delta_{M-e} = \operatorname{del}_{\Delta}(e)$ $\Delta_{M/e} = \operatorname{link}_{\Delta}(e)$

THEOREM(Duval 2001)

In this matroid setting, Kook's error term is the spectrum of the Laplacian for the relative simplicial pair

```
(\operatorname{del}_{\Delta}(e), \quad \operatorname{link}_{\Delta}(e))
```

AND the same recursion holds for shifted complexes (but not for all simplicial compelexes).

QUESTION: What's the deal with matroid and shifted complexes/families?

▷ Both shellable, even vertex-decomposable.

▷ Both Laplacian integral, satisfying same recursion.

 \triangleright When k = 2, as families, both are determined up to isomorphism by a partition.

- For rank 2 matroids, it's their parallelism partition
- For shifted families of 2-subsets (graphs), it's their degree sequence
- \triangleright Complicated and rich already for k = 3.

Matroids are better-studied, e.g.

- have more known invariants
- have good intrinsic characterizations.

What about characterizing shifted families intrinsically?

THEOREM

(Duval and Shareshian, work in progress) For families of k-subsets, the obstructions to being isomorphic to a shifted family all have exactly 2k vertices, in the following precise sense:

 \triangleright Any non-shifted k-family with **more** than 2k vertices has a nonshifted deletion, and

▷ any non-shifted k-family with less than 2k vertices has a nonshifted contraction/link. For example, when k = 2, a 2-family is just a graph, and graphs isomorphic to shifted families are called threshold graphs. They have several nice intrinsic characterizations.

There are three vertex-induced subgraphs wellknown to be the obstructions to being threshold, and all have $4 = 2 \cdot k$ vertices:

When k = 3, there are nine obstructions (up to certain symmetry operations).