
Math 8502 — Homework II
due Friday, March 28. Write up any 4 of these 5 problems.

1. The Lagrange points of the planar, circular, restricted three-body prob-
lem were shown to be critical points of the function

V (x, y) = 1
2(x2 + y2) +

1− µ
r13

+
µ

r23

where r213 = (x+µ)2 +y2, r223 = (x+µ−1)2 +y2. Let the collinear Lagrange
points be denoted Li = (xi, 0), i = 1, 2, 3, where x1 < −µ < x2 < 1−µ < x3.

The second partial derivatives of the potential, V , played a crucial role in
analyzing the dynamics. Show that Vxx(x, 0) > 0 and Vxy(x, 0) = 0 for all
x and that Vyy(xi, 0) < 0 at the Lagrange points.

2. Suppose φt(x) is a flow on Rn and x0 is a periodic point of minimal
period T > 0, i.e., φT (x0) = x0 but φt(x0) 6= x0, 0 < t < T .
a. Show that φt+T (x0) = φt(x0) for all t ∈ R. Show that every point
x1 = φt1(x0) on the orbit of x0 also has minimal period T .
b. Let x1 = φt1(x0). Show that the monodromy matrices DφT (x0) and
DφT (x1) are similar.
c. Let Σ0 be a Poincaré section through x0. Let x1 = φt1(x0) and Σ1 a
Poincaré section through x1. Then for i = 0, 1, there are neighborhoods Ui

of xi, smooth return-time functions τi : Ui → R, τi(xi) = T and Poincaré
maps ψi : Ui ∩ Σi → Σi where ψi(x) = φτi(x)(x). Show that these two
Poincaré maps are locally conjugate, i.e., there are neighborhoods Vi and a
homeomorphism h : V0 ∩Σ0 → V1 ∩Σ1 such that h ◦ψ0 = ψ1 ◦ h. Hint: use
the flow to define h.

3. Here is an example which shows that the hypothesis about integer mul-
tiples of eigenvalues in the Lyapunov center theorem is necessary. Consider
the system of ODEs:

ẋ1 = y1 + x1x2 − y1y2 ẋ2 = −2y2 + 1
2(x2

1 − y2
1)

ẏ1 = −x1 − y1x2 − x1y2 ẏ2 = 2x2 − x1y2

a. Verify that the system is Hamiltonian with

H(x1, x2, y1, y2) = 1
2(x2

1 + y2
1)− (x2

2 + y2
2) + x1y1x2 + 1

2(x2
1 − y2

1)y2.

Show that the origin is a nondegenerate critical point of H with eigenvalues
±i,±2i. Thus the linearized flow has periodic orbits with frequencies ω1 = 1
and ω2 = 2.
b. Show that the two-dimensional plane x1 = y1 = 0 is filled with periodic
orbits of the nonlinear system with frequency ω2. (This is the family guaran-
teed by the Lyapunov center theorem applied to the imaginary eigenvalues
±2i)
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c. On the other hand, you will now show that there are no other periodic
solutions. Note that outside the plane in part b, the squared radius α =
x2

1 + y2
1 > 0. Show that α̈ > 0 for any such solution (this means that α(t)

is a strictly convex function of time and so cannot be periodic). Hint: The
computation is a bit messy. One way to organize it is to begin by showing

α̇ = 2x2γ − 2y2β β̇ = −2γ − 2y2α γ̇ = 2β + 2x2α

where α = x2
1 + y2

1, β = 2x1y1, γ = x2
1 − y2

1.

4. Suppose that the ODE ż = f(z) admits k independent first integrals
Hi(z), i = 1 . . . , k (this means that the derivatives DHi(z0) are linearly
independent). Let z0 be a periodic point of minimal period T > 0. Show that
the monodromy matrix DφT (z0) has µ = 1 as an eigenvalue of multiplicity
at least k+1. Let the other n−k−1 eigenvalues be denoted µ1, . . . , µn−k−1.

Suppose the periodic orbit lies on the level set M(h1, . . . , hk) where
Hi(z) = hi, i = 1, . . . , k. (M(h1, . . . , hk) is a submanifold of Rn of di-
mension n− k, at least locally near z0.) If Σ is a Poincaré section through
z0 we can restrict the Poincaré map to get a map ψ : Σ ∩M(h1, . . . , hk) →
Σ∩M(h1, . . . , hk). Show that the eigenvalues of Dψ(x0) are µ1, . . . , µn−k−1.

5. Hill’s problem is a simplified version of the restriced three-body problem
given by the following system of differential equations

ẋ = u u̇ = 2v + Vx

ẏ = v v̇ = −2u+ Vy

where V (x, y) = 3
2x

2 + 1√
x2+y2

.

a. Show that this is a Lagrangian system. Do a Legendre transform to find
the corresponding Hamiltonian system. Express the energy integral in terms
of (x, y, u, v).
b. Find the equilibrium points and their eigenvalues. Show that there are
families of periodic orbits nearby and use the linearized ODE to find how
they move in the (x, y)-plane.
c. Consider the related system:

Ẋ = U U̇ = 2ε3V +WX

Ẏ = V V̇ = −2ε3U +WY

where W (X,Y ) = 3
2ε

6X2 + 1√
X2+Y 2

and ε is a small parameter. When ε = 0
this system describes a two-body problem. Show that the simple, circular
periodic solutions of this problem can be continued for ε 6= 0 sufficiently
small.

If (X(t), Y (t)) is a periodic solution of this system for ε 6= 0 (such as those
just obtained by continuation), show that

(x(t), y(t)) = ε2(X(t/ε3), Y (t/ε3))

is a periodic solution of Hill’s equation.


