
TOPICS IN CELESTIAL MECHANICS

RICHARD MOECKEL

1. The Newtonian n-body Problem

Celestial mechanics can be defined as the study of the solution of Newton’s differ-
ential equations formulated by Isaac Newton in 1686 in his Philosophiae Naturalis
Principia Mathematica.

The setting for celestial mechanics is three-dimensional space:

R3 = {q = (x, y, z) : x, y, z ∈ R}
with the Euclidean norm:

|q| =
√
x2 + y2 + z2.

A point particle is characterized by a position q ∈ R3 and a mass m ∈ R+. A motion
of such a particle is described by a curve q(t) where t runs over some interval in R;
the mass is assumed to be constant. Some remarks will be made below about why
it is reasonable to model a celestial body by a point particle. For every motion of
a point particle one can define:

velocity: v(t) = q̇(t)

momentum: p(t) = mv(t).

Newton formulated the following laws of motion:

Lex.I. Corpus omne perservare in statu suo quiescendi vel movendi uniformiter in
directum, nisi quatenus a viribus impressis cogitur statum illum mutare 1

Lex.II. Mutationem motus proportionem esse vi motrici impressae et fieri secundem
lineam qua vis illa imprimitur. 2

Lex.III Actioni contrarium semper et aequalem esse reactionem: sive corporum
duorum actiones in se mutuo semper esse aequales et in partes contrarias
dirigi. 3

The first law is statement of the principle of inertia. The second law asserts the
existence of a force function F : R4 → R3 such that:

ṗ = F (q, t) or mq̈ = F (q, t).

In celestial mechanics, the dependence of F (q, t) on t is usually indirect; the force
on one body depends on the positions of the other massive bodies which in turn
depend on t. The third law postulates the symmetry of the mutual interaction of
two bodies which will apply, in particular, to the gravitational interaction.

Date: May 4, 2020.
1Every body continues in its quiescent state or moves uniformly in direction, unless it is

compelled by impressed forces to change its state.
2The change of momentum is proportional to the motive force impressed and takes place along

the line where this force is impressed.
3To every action there is always an equal and opposite reaction: the actions of two bodies on

one another are always equal and aimed in opposite directions.
1



2 RICHARD MOECKEL

The n-body problem is about the motion of n point particles under the influence
of their mutual gravitational attraction. Each particle has a mass mi > 0 and
position, velocity and momentum vectors qi, vi, pi ∈ R3. The whole system can be
described using the vectors q, v, p ∈ R3n where

q = (q1, q2, . . . , qn) v = (v1, v2, . . . , vn) p = (m1v1,m2v2, . . . ,mnvn).

According to Newton, the gravitational force acting on particle i due to the
presence of particle j is

Fij =
Gmimj(qj − qi)
|qi − qj |3

where G is a constant. Note that Fij acts along the line containing the masses.
It’s proportional to the product of the two masses and inversely proportional to
the distance between them (see Figure 1). The force produced on mj by mi is
Fji = −Fij by Newton’s third law. By choosing the units of mass, one can arrange
that G = 1 and this will be assumed from now on (see Exercise 1.1).
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Figure 1. Newtonian gravitational forces.

The force on the i-th mass due to the other n− 1 masses is:

Fi =
∑
j 6=i

Fij =
∑
j 6=i

mimj(qj − qi)
|qj − qi|3

.

This can be written:
Fi(q) = ∇iU(q)

where

(1) U(q) =
∑
(i,j)
i<j

mimj

|qi − qj |

and ∇i is the partial gradient operator:

∇iU =

(
∂U

∂xi
,
∂U

∂yi
,
∂U

∂zi

)
∈ R3.

The function U(q) will be called the Newtonian gravitational potential function.
V (q) = −U(q) is the gravitational potential energy. Newton’s second law becomes

ṗi = miq̈i = ∇iU(q) i = 1,. . . ,n.

or, more concisely

(2) ṗ = ∇U(q) or Mq̈ = ∇U(q)
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where ∇ is the gradient operator in R3n and M is the 3n× 3n mass matrix

M = diag(m1,m1,m1, . . . ,mn,mn,mn).

It is worth digressing at this point to note two important, special features of the
Newtonian interparticle potential:

mimj

|qi − qj |
.

First of all, the presence of the factor mimj has the effect that the equation for the
acceleration of the i-th mass,

q̈i =
1

mi
Fi

is independent of mi. This corresponds to the observation, notably by Galileo, that
the trajectory of a falling body is independent of its mass.

Figure 2. Masses falling from a tower.

Second, the fact that the potential is inversely proportional to the distance be-
tween the particles provides some justification for the modeling of celestial bodies
by point particles. While such bodies are not even approximately pointlike, they are
approximately spherically symmetric. It turns out that with the Newtonian poten-
tial, spherically symmetric bodies behave as if their total mass were concentrated
at their centers.

To see this, consider a more general massive body, specified by giving a bounded
subset B ⊂ R3 together with a continuous mass density functions ρ. The gravita-
tional force exerted by such a mass distribution on a point mass m at position q is
F = ∇U(q) where

U(q) =

∫
B

m

|q − p|
dm

where the triple integral is over p = (x, y, z) ∈ B and dm = ρ(x, y, z)dxdydz.
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Proposition 1.1. Suppose B is a ball of radius R centered at q0 ∈ R3 and ρ is
a spherically symmetric density function. Then the mutual Newtonian potential of
the ball and a mass m at any point q with |q| > R is

U(q) =
m0m

|q0 − q|
where m0 is the total mass in the ball.

Proof. Using the symmetry of the Euclidean distance under rotations and trans-
lations, it is no loss of generality to assume q0 = (0, 0, 0) and q = (0, 0, z), z > R.
Using spherical coordinates (x, y, z) = r(cos θ sinφ, sin θ sinφ, cosφ), the spherical
symmetry means that the density function depends only on r and then

U(q) =

∫ R

0

∫ π

0

∫ 2π

0

miρ(r)r2 sinφdθ dφ dr√
r2 + z2 − 2rz cosφ

.

It is an exercise to carry out the first two integrals to show

U(q) =
m0m

z
m0 =

∫ R

0

4πr2ρ(r) dr.

QED

There is an alternative proof of this result, based on the fact that f(x, y, z) =
1/|q − p| is a harmonic function of p = (x, y, z), that is, fxx + fyy + fzz = 0.
The well-known mean value theorem for harmonic functions states that the average
value of a harmonic function over a sphere is equal to the value at the center of
the sphere, which can be proved using the divergence theorem (see exercise 1.3).
Fixing a value of r and applying this to the function f(x, y, z) = mρ(r)/|q− p| and
the sphere Sr = {|q − q0| = r} gives∫

Sr

f =
4πr2ρ(r)m

|q0 − q|
.

Then integration over 0 ≤ r ≤ R completes the proof.
Although R3 is the natural home of celestial mechanics, it is useful and interesting

to consider the point-mass n-body problem in Rd for any positive integer d. In this
case the position vectors are q1, . . . , qn ∈ Rd and the vectors q, v, p are elements of
Rdn. Newton’s equations (2) form a system of real-analytic, second order differential
equations on the configuration space, X = Rdn \∆, where

∆ = {q : qi = qj for some i 6= j}
is the collision set. It can be transformed in the usual way into a first-order system
in the phase space:

TX = X × Rdn = {(q, v) : q ∈ X and v ∈ Rdn}
namely:

(3)
q̇ = v

v̇ = M−1∇U(q).

The notation TX takes note of the fact that the phase space is the tangent bundle
of X. The Newtonian n-body problem is to study the solutions of equations (3).

A solution to (3) is a differentiable curve (q(t), v(t)) where the time t lies in
some interval I. Since the differential equation is given by real-analytic functions
on phase space, the solutions will be real-analytic functions of time and of their
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initial conditions, that is, they are given locally by convergent power series. Since
the phase space is not compact, it may not be possible to extend solutions for
all time t ∈ R. In general the maximal interval of existence will be of the form
I = (a, b) with −∞ ≤ a < b ≤ ∞. By the general theory of ordinary differential
equations, if b < ∞ then as t → b−, (q(t), v(t)) must leave every compact subset
of Rdn \∆ × Rdn and similarly for a > −∞. For example, this can happen if q(t)
converges to a collision configuration q̄ ∈ ∆ (see exercise 1.5).

Exercise 1.1. Using units of kilograms for mass, meters for distance and seconds

for time, the gravitational constant is G ' 6.674× 10−11 m3

kg·sec2 .

i. The radius of Earth is rE ' 6.378×106m and 1 day = 24×60×60 seconds.

Show that G ' 1.92× 10−21
r3E

kg·day2 .

ii. Use units rE for distance and days for time. Define a new mass unit, call

it a chunk, where 1 chunk = 5.2076 × 1020 kg. Show that G ' 1
r3E

ch·day2 .

The mass of Earth is M ' 5.972× 1024 kg. Show that this is equivalent to
M ' 11468 ch.

Exercise 1.2. Carry out the integrals to complete the proof of Proposition 1.1

Exercise 1.3. Let f(x, y, z) be a harmonic function in an open set U ⊂ R3 con-
taining the origin and let

F (r) =
1

4πr2

∫
Sr

f(x, y, z) dA

be the average value of f on the sphere Sr = {x2 + y2 + z2 = r2}, for r such that
the solid ball of radius r is contained in U . Here dA is the surface area element on
the sphere.

i. Show that F (r) =
1

4π

∫
S1

f(rx, ry, rz) dA. Note that F (0) = f(0, 0, 0), the

value of f at the center of the sphere.

ii. Show that F ′(r) =
1

4π

∫
S1

∇f(x, y, z) · (x, y, z) dA.

iii. Use Gauss’s theorem (the divergence theorem) to prove the mean value
property for harmonic function in R3.

Exercise 1.4. Let (q(t), v(t)), t ∈ I be a solution of the n-body problem in Rd.
Let t0 ∈ I and assume that the initial positions qi(t0) and initial velocities vi(t0) all
belong to Rk×{0} for some k < d. Show that qi(t) ∈ Rk×{0} and vi(t) ∈ Rk×{0}
for all t ∈ I. In other words, the n-body problem in Rk can be viewed as an
invariant set for the n-body problem in Rd. Hint: First show that if q ∈ Rk × {0}
then also ∇iU(q) ∈ Rk ×{0}. Apply the standard existence and uniqueness theory
for differential equations in TX, first with X = Rkn \∆ then with X = Rdn \∆.

Exercise 1.5. (A simple collision). Consider the two-body problem in R1 with
equal masses m1 = m2 = 1. Show that for a certain choice of the constant k, the
functions

q1(t) = (kt)
2
3 q2(t) = −(kt)

2
3

solve Newton’s equations for all t 6= 0. At t = 0 there is a collision at the origin.
Strictly speaking, there are two separate solutions, one with maximal interval of
existence I = (−∞, 0) and one with I = (0,∞). Show that the velocities vi become
infinite as t→ 0.
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2. Variational Formulations

Newton’s laws of motion can be derived from the variational principles of La-
grange or Hamilton. This is of some philosophical interest, but also has the practical
effect of simplifying the computation of the equations of motion in non-Cartesian
coordinate systems

2.1. Lagrangian Formulation. Lagrangian mechanics is based on the principle
of “least” action. The this section contains some of the general theory of Lagrangian
Mechanics. Let X be an open subset of a Euclidean space Rm (such as the config-
uration space of the n-body problem where m = 3n) and let TX = X ×Rm denote
the tangent bundle. A Lagrangian is a smooth function L : TX → R, that is, a
smooth real-valued function L(q, v). More generally, one can also allow Lagrangians
L(q, v, t) which depend explicitly on time. The dimension of the configuration space,
m, is called the number of degrees of freedom.

For the n-body problem the Lagrangian will be

(4) L(q, v) =
1

2
v ·Mv + U(q) =

1

2
vTMv + U(q)

where, in the second formula, v is viewed as a column vector and its transpose vT is
the corresponding row vector. The first term K = 1

2

∑
mi|vi|2 is the kinetic energy

and the second U(q) = −V (q) where V (q) is the gravitational potential energy.
The recipe

(5) Lagrangian = Kinetic Energy− Potential Energy

holds for many other physical systems as well.
Given a Lagrangian and a curve q(t) ∈ X, the action of the curve on the interval

[a, b] is:

A(q) =

∫ b

a

L(q(t), q̇(t), t) dt.

Thus the action is a function on the space of curves in X. For now, it is sufficient
to work with C2 curves. A variation of a curve q(t) on [a, b] is a C2 family of curves
qs(t) in X, where t ∈ [a, b] and s ∈ (δ, δ) for some δ > 0. The variation has fixed
endpoints if qs(a) = q(a) and qs(b) = q(b). If qs(t) is a variation of q then to first
order in s

qs(t) = q(t) + sα(t) + . . . α(t) =
∂qs(t)

∂s

∣∣∣∣
s=0

.

α(t) can be viewed a vectorfield along the curve q(t) (see Figure 3). It will be
called the variation vectorfield corresponding to the variation qs(t). Note every
vectorfield α(t) along q is the variation vectorfield of some variation, for example
qs(t) = q(t) + sα(t).

The principle of least action states that if q(t) is a possible motion of Lagrangian
system then the first variation of the action should be zero, for every fixed endpoint
variation. That is, for every fixed endpoint variation qs(t) satisfies

δA =
d

ds
A(qs)

∣∣∣∣
s=0

= 0

This is a necessary but not sufficient condition for q to have the least action among
all nearby curves with the same endpoints. In any case, q(t) can be called a sta-
tionary curve or critical curve of A on [a, b].
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Figure 3. Variation of a curve and the variation vectorfield.

The following proposition is a standard result in the calculus of variations:

Proposition 2.1. A curve, q(t), is a stationary curve of A on [a, b] if and only if
the conjugate momentum

(6) p(t) = Lv(q(t), v(t), t)

satisfies the Euler-Lagrange (EL) equation on [a, b]:

(7) ṗ(t) = Lq(q(t), v(t), t).

Before giving a proof, a digression on covectors is in order. The subscripts in this
proposition denote partial derivatives with respect to the vectors q, v ∈ Rm. The
derivative of the real-valued function L(q, v) is a linear function DL(q, v) : R2m → R
and the partial derivatives Lq, Lv are linear functions from Rm to R. Using other
terminologies, they are linear forms, one forms, dual vectors or covectors rather than
vectors. Thus the Euler-Lagrange equation is fundamentally an equation between
two covectors. The space of all covectors on Rm is the also called the dual space
and is denoted Rm∗.

A partial derivative covector like p = Lv can be represented in coordinates as a
vector of partial derivatives

p = (p1, . . . , pm) =

(
∂L

∂v1
, . . . ,

∂L

∂vm

)
.

Alternatively, it can be represented as the 1×m Jacobian matrix

p =
[
p1 . . . pm

]
=
[
∂L
∂v1

. . . ∂L
∂vm

]
.

Ordinary vectors w ∈ Rm can also be represented in two ways, as coordinate vectors
or m× 1 matrices

w = (w1, . . . , wn) =

w1

...
wm

 .
Then the value of the linear function p on the vector w is

p(w) = p1w1 + . . .+ pmwm = (p1, . . . , pm) · (w1, . . . , wm) =
[
p1 . . . pm

] w1

...
wm

 .
Thus, evaluating a covector on a vector amounts to taking the dot product of their
coordinate vectors or multiplying their matrices.
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Proof of Proposition 2.1. The action of qs is

A(qs) =

∫ b

a

L(qs(t), q̇s(t), t) dt.

Differentiating with respect to s under the integral sign and using the chain rule
gives

δA =

∫ b

a

Lq(q(t), v(t), t) · α(t) + p(t) · α̇(t) dt

where v(t) = q̇(t), α(t) is the variation vectorfield and p(t) = Lv(q(t), v(t), t). Since
q(t) is C2, p(t) is C1, and the second term can be integrated by parts. Using the
fact that α(a) = α(b) = 0 this gives

(8) δA =

∫ b

a

[Lq(q(t), v(t), t)− ṗ(t)] · α(t) dt.

Since α(t) is an arbitrary C2 fixed endpoint vectorfield along q(t), the following
lemma shows that the function in square brackets must vanish, which is equivalent
to the Euler-Lagrange equation (7). QED

Lemma 2.1. Suppose f : [a, b]→ Rm is a continuous function such that∫ b

a

f(t) · α(t) dt = 0

for all C∞ functions α : [a, b] → Rm with α(a) = α(b) = 0. Then f(t) = 0 for all
t ∈ [a, b].

Proof. Exercise 2.1. QED

Newton’s equation (2) are the Euler-Lagrange equations for the Lagrangian (4).
In fact, let U(q) be any smooth function on an open set X ⊂ Rm and M any
invertible, symmetric m×m matrix. The 1×m partial derivative matrices of the
Lagrangian (4) are

Lv = vTM Lq = DU(q)

and the Euler-Lagrange equation is v̇TM = DU(q). Taking transposes gives New-
ton’s equation Mv̇ = ∇U(q).

In this case, the Euler-Lagrange equations amount to a second order differential
equation for q on X or, equivalently, a first-order differential equation for (q, v) on
TX. More generally, this will be true whenever it is possible to invert the equation
p = Lv(q, v) defining the conjugate momentum.

Definition 2.1. A Lagrangian L(q, v) is nondegenerate if the equation p = Lv(q, v)
can be solved for v as a smooth function v(q, p).

The utility of the Lagrangian point of view lies in the fact that the Euler-
Lagrange equations are invariant under changes of coordinates. Consider a time-
independent Lagrangian L(q, v) and a smooth coordinate change given by a diffeo-
morphism Q = φ(q), φ : X → Y where Y ⊂ Rm is another open set. The inverse
map will be written q = ψ(Q). The velocity variables are related by v = Dψ(Q)V
and the Lagrangian becomes

L̃(Q,V ) = L(ψ(Q), Dψ(Q)V ).

Writing things like this in terms of the “backward” coordinate change map ψ instead
of φ, it actually suffices to assume that ψ is a local diffeomophism.
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Proposition 2.2. Let ψ : Y → X be a local diffeomorphism. A C2 curve Q(t)

solves the Euler-Lagrange equations for L̃ if and only if the corresponding curve
q(t) = ψ(Q(t)) solves the Euler-Lagrange equations for L.

Proof. First suppose ψ is really a diffeomorphism with inverse φ. It suffices to show
that q is a stationary curve for the action A if and only if Q is a stationary curve
for the action Ã of L̃. Suppose q is stationary for L and let Qs(t) be any fixed
endpoint variation of Q. Then qs(t) = ψ(Qs(t)) is a fixed endpoint variation of q

with q̇s(t) = Dψ(Qs(t))Q̇s(t). The actions satisfy

A(qs) =

∫ b

a

L(qs, q̇s) dt =

∫ b

a

L(ψ(Qs), Dψ(Qs)Q̇s) dt =

∫ b

a

L̃(Qs, Q̇s) dt = Ã(Qs)

It follows that δÃ(Q) = δA(q) = 0, so Q is stationary for Ã. Reversing the roles of
q,Q completes the proof when ψ is a diffeomorphism.

To handle the case of a local diffeomorphism, let t0 ∈ [a, b] and let U, V be
neighborhoods of q(t0), Q(t0) such that ψ : V → U is a diffeomorphism. There is
some interval I = [c, d] with t0 ∈ I ⊂ [a, b] such that q(t) ∈ U,Q(t) ∈ V for all
t ∈ I. The previous proof applies to fixed endpoint variations on the interval I, so
at time t0, q solve the EL equations for L if and only if Q solves the EL equations
for L̃. Since t0 is arbitrary, the proof is complete. QED

Actually, this result is still true for time-dependent Lagrangians and time-depen-
dent coordinate changes (see exercise 2.5). Its main practical consequence is that to
find the transformed differential equations, it suffices to transform the Lagrangian
and then compute the Euler-Lagrange equation in the new variables. Here is a
simple example – the central force problem in the plane.

Example 2.1. Consider a point particle with mass m and position vector q ∈ R2

subjected to a force F (q) = f(|q|)q where f is a real-valued function. Thus the
force vector is always pointing toward or away from the “center”, q = 0. Suppose
further that F (q) = ∇U(|q|) for some potential function depending only on |q|.
Newton’s equations are the Euler-Lagrange equations for the Lagrangian

L(q, v) =
m

2
|v|2 + U(|q|).

Let r, θ be the usual polar coordinates in the plane. Then the backward coordinate
change is a local diffeomorphism away from the origin:

q = r(cos θ, sin θ) v = ṙ(cos θ, sin θ) + rθ̇(− sin θ, cos θ)

and the transformed Lagrangian is

L̃(r, θ, ṙ, θ̇) =
m

2
(ṙ2 + r2θ̇2) + U(r).

The conjugate momentum vector is

p = (pr, pθ) = (Lṙ, Lθ̇) = (mṙ,mr2θ̇)

and the Euler-Lagrange equations are

ṗr = mr̈ = Lr = U ′(r) + 2rθ̇2

ṗθ = 0.



10 RICHARD MOECKEL

The zero in the second equation comes from the fact that the L̃ is independent of
the position variable θ. It follows that

pθ = r2θ̇ = C

for some constant, C and the equations become

(9) mr̈ = U ′(r) +
2C2

r3
θ̇ =

C

r2
.

Using the coordinate invariance property of the Euler-Lagrange equations, it
is also possible to generalize to Lagrangian systems on manifolds. If X is an m-
dimensional manifold then it is covered by a system of local coordinate patches
diffeomorphic to open subsets in Rm. Using local coordinate, the tangent bundle
TX is parametrized by variables (q, v) as above and a Lagrangian L : TX → R
takes the form L(q, v) as above. Assuming the Lagrangian is nondegenerate, the
Euler-Lagrange equations define a first order system of differential equations in
each coordinate patch. Proposition 2.2 shows that these locally defined differential
equations fit together consistently to give a differential equation on TX. In practice,
it is better to use some tricks to avoid local coordinates.

Example 2.2. Consider a pendulum consisting of a mass m attached to a rigid
rod of length l swinging in a vertical plane, say the (x, z) plane. The configuration
manifold is the circle X = {(x, z) : x2 + z2 = l2}. Instead of using local coor-
dinates, X can be parametrized by an angle θ using (x, z) = l(sin θ,− cos θ) and

then the velocity is (ẋ, ż) = l(cos θ, sin θ)θ̇ (the parametrization is such that θ = 0
represents the bottom of the circle). Assume that the gravitational force is given
by F = (0,−mg) where g is constant. This is the gradient of U(z) = −mgz. The
Lagrangian is of the standard form (5)

L =
1

2
m(ẋ2 + ż2)−mgz =

1

2
ml2θ̇2 +mgl cos θ

and the EL equation is

θ̈ +
g

l
sin θ = 0.

For a spherical pendulum, that is, not confined to the plane, the configuration
manifold is X = {(x, y, z) : x2 + y2 + z2 = l2}. This time there is no global
parametrization. Spherical coordinates

(x, y, z) = l(sin θ cosφ, sin θ sinφ,− cos θ)

cover the sphere but have singularities at {θ = 0}. Stereographic projections
(x, y, z) = l(2u, 2v,±(1− u2 − v2)/(1 + u2 + v2) could be used to give nonsingular
local coordinates omitting only (0, 0,±l). An alternative is to find a Lagrangian
system on TR3 for which TX is invariant and whose Lagrangian has the right values
on TX.

Let q = (x, y, z) and v = q̇ and consider the “homogenized” Lagrangian

L(q, v) =
1

2

ml2|v|2

|q|2
− mglz

|q|
.

If (q, v) ∈ TX = {|q| = l, q · v = 0} then the homogenizing factors cancel out and
L(q, v) give the correct standard Lagrangian (5). Moreover, TX is an invariant set
for the EL equations of L. It follows that restricting L to TX gives the correct
solutions for the spherical pendulum (see exercise 2.2).
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The method used in this example is justified by the following proposition, whose
proof is exercise 2.3

Proposition 2.3. Let L : TRm → R be a nondegenerate Lagrangian and let X ⊂
Rm be submanifold such that TX is invariant under the EL equations of L. Let
L̃ : TX → R be the restriction of L to TX. Suppose a curve (q(t), v(t)) ∈ TX

solves the EL equations for L. Then it solves the EL equations for L̃ (in every local
coordinate system).

Exercise 2.1. Prove lemma 2.1. Hint: For each t0 ∈ (a, b) consider a variation
vectorfielod α(t) = b(t)f(t0) where b(t) is a real-valued C∞ bump function vanishing
outside a small neighborhood of t0.

Exercise 2.2. Consider the spherical pendulum of Example 2.2.

i. Find the Lagrangian L(θ, φ, θ̇, φ̇) in spherical coordinates and verify that
pφ = ∂L

∂φ̇
is constant along solutions of the EL equations. Show that there are

simple periodic solutions where the pendulum moves on the circles θ(t) = c.
ii. Find the Lagrangian L(u, v, u̇, v̇) using the stereographic local coordinate

system (x, y, z) = l(2u, 2v, u2 + v2 − 1)/(1 + u2 + v2).
iii. Show that TX is an invariant set for the EL equations of the homogenenized

Lagrangian, that is, if |q| = l and q · v = 0 at a certain time t0 then these
equations continue to hold for all time. Hint: Find the EL equations and
calculate the time derivatives of |q|2 and q · v along a solution.

Exercise 2.3. Prove Proposition 2.3. Hint: q is a critical curve for variations qs
in Rm and, in particular, for variations in X.

Exercise 2.4. Show that for any Lagrangian L(q, v) which does not depend ex-
plicitly on t, the function H(q, v) = p · v−L(q, v) is constant along solutions of the
Euler-Lagrange equations. Show that for the Lagrangian (4),

H(q, v) =
1

2
vTMv − U(q) = Kinetic energy + Potential energy = Total Energy.

Exercise 2.5. Show that Proposition 2.2 can be generalized to the case where
L = L(q, v, t), q = ψ(Q, t) and L̃(Q,V, t) = L(ψ(Q, t), Dψ(Q, t)V + ψt(Q, t), t)
where Dψ still denotes the derivative with respect to Q.

2.2. Hamiltonian Formulation. There is an alternative variational formulation
of mechanics where the velocity v is replaced by the momentum p and the La-
grangian by the Hamiltonian. For simplicity, only the time-independent case will
be discussed here, but everything generalizes to the case of time-dependent La-
grangians and Hamiltonians.

Let X be an open subset of Rm and consider a Lagrangian L : TX → R of the
form

L(q, v) =
1

2
vTMv + U(q)

where M is an invertible m×m matrix. The tangent bundle of X is just the product
space

TX = X × Rm = {(q, v) : q ∈ X, v ∈ Rm}.
Using matrix representations, the conjugate momentum covector p = Lv(q, v) ∈

Rm∗ and the velocity v ∈ Rm are related by

p = vTM v = M−1pT .
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The transformation (x, v) 7→ (x, p) can be viewed as a diffeomorphism TX ' T ∗X
where

T ∗X = X × Rm∗ = {(q, p) : q ∈ X, p ∈ Rm∗}
is the cotangent bundle of X.

More generally, for any nondegenerate Lagrangian, one can solve the equation
p = Lv(q, v) for v = v(q, p). Then define the Hamiltonian function H : T ∗X → R
by

(10) H(x, p) = p · v − L(q, v)|v=v(q,p)
where the · denotes multiplication of 1×m and m×1 matrices or, equivalently, the
result of evaluating the covector p on the vector v. If L(q, v) = 1

2v
TMv + U(q), as

in the n-body problem, then

H(q, p) =
1

2
pM−1pT − U(q).

(11) Hamiltonian = Kinetic Energy + Potential Energy = Total Energy.

The process of going from L(q, v) to H(q, p) is sometimes called the Legendre trans-
form. One can recover the Lagrangian from the Hamiltonian by

(12) L(q, v) = p · v −H(q, p)|p=p(q,v)
where p(q, v) = Lv(q, v).

Proposition 2.4. Let L be a nondegenerate Lagrangian and let H(q, p) be the cor-
responding Hamiltonian. Then a curve (q(t), v(t)) ∈ TX solves the Euler-Lagrange
equation for L if and only if the curve (q(t), p(t)) ∈ T ∗X solves Hamilton’s equa-
tions for H:

(13)
q̇ = Hp(q, p)

ṗ = −Hq(q, p).

Proof. Differentiating (10) with respect to p gives

Hp(q, p) =
∂

∂p
[p · v(q, p)− L(q, v(q, p))] = v + [p− Lv(q, v(q, p))]

∂v

∂p
.

The quantity in square brackets vanishes by definition of v(q, p) so Hp(q, p) = v = q̇
which is the first of Hamilton’s equations.

Similarly, differentiating (10) with respect to q gives

Hq(q, p) = −Lq(q, v(q, p)) + [p− Lv(q, v(q, p))]
∂v

∂q
= −Lq(q, p).

Setting this equal to −ṗ is equivalent to both the Euler-Lagrange equation and to
the second of Hamilton’s equations. QED

Since p is a covector, the partial derivative Hp(q, p) is a linear function Rm∗ → R,
that is, it is an element of the dual space of the dual space. Such a function is
naturally identified with an ordinary vector. Thus the first equation in (13) is an
equation between vectors while the second is between covectors.

The form of Hamilton’s equations lends itself to a short proof of the conservation
of energy. Compare exercise 2.4.

Proposition 2.5. If (q(t), p(t)) solves Hamilton’s equations (13) then the total
energy H(q(t), p(t)) = h is constant.
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Proof. By the chain rule

d

dt
H(q(t), p(t)) = Hq(q(t), p(t))q̇(t) +Hp(q(t), p(t))ṗ(t)

= Hq(q(t), p(t)) ·Hp(q(t), p(t))−Hp(q(t), p(t)) ·Hq(q(t), p(t)) = 0.

QED

Hamilton’s equations make sense for any smooth function H : T ∗X → R, even
if it does not arise as the Legendre transform of a Lagrangian. In fact the domain
does not have to be T ∗X but could be any open subset Z ⊂ Rm×Rm∗. Motivated
by (12), define the action of a curve (q(t), p(t)) ∈ Z, t ∈ [a, b] as

(14) A(q, p) =

∫ b

a

p(t)q̇(t)−H(q(t), p(t)) dt.

This is the basis of a variational interpretation of Hamilton’s equations. For this q
and p are allowed to vary independently.

Proposition 2.6. Let H : Z → R be a smooth Hamiltonian, where Z is open in
Rm × Rm∗. Then a C1 curve (q(t), p(t)) ∈ T ∗X solves Hamilton’s equations (13)
if and only if it is stationary under all fixed endpoint variations (qs, ps).

Proof. Let (qs, ps) be a C1 family of curves in TX and let (α(t), β(t)) = d
ds (qs, ps)|s=0

be the variation vectorfield. Then diffentiating under the integral sign and integrat-
ing by parts gives

δA =
d

ds
A(qs, ps)|s=0 =

∫ b

a

[β(t) · (q̇ −Hp(q, p)])− (ṗ+Hq(q, p)) · α(t)] dt

where, as usual, · denotes evaluation of a covector on a vector. Since α(t) and β(t)
can be arbitrary vectorfields along (q, p), Lemma 2.1 shows that both parentheses
must vanish. QED

As before, the payoff for this variational approach is invariance under changes of
coordinates. But now one can allow coordinate changes which mix up the con-
figuration and momentum variables. Suppose the new coordinates (Q,P ) are
related to the old coordinates by (q, p) = ψ(Q,P ) = (q(Q,P ), p(Q,P )) where
ψ : W → Z is a local diffeomorphism. The Hamiltonian transforms easily to
H̃(Q,P ) = H(q(Q,P ), p(Q,P )) and the action integral becomes

A(q, p) =

∫ b

a

p(Q,P )
˙

q(Q,P )− H̃(Q,P ) dt.

To relate this to Ã(Q,P ), the integrals of p(t)q̇(t) = P (t)Q̇(t) should be equal, at
least up to a constant depending on the endpoints. This can be expressed using
differential forms. Consider the canonical one-form

pdq = p · dq = p1dq1 + . . .+ pmdqm.

Then for any curve, the integral of p(t)q̇(t) can be viewed as the line integral of
pdq.

Definition 2.2. Let Z,W be open sets in Rm ×Rm∗ and let ψ : W → Z be a local
diffeomorphism (q, p) = ψ(Q,P ) = (q(Q,P ), p(Q,P )). Then ψ is exact symplectic
if pdq = PdQ+ dS(Q,P ) for some smooth function S(Q,P ). ψ is symplectic if it
is exact symplectic in some neighborhood of each (Q,P ) ∈W .
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Those familiar with differential forms will recognize that the condition for ψ to
be symplectic is equivalent to equality of the two-forms

dp∧ dq = dp1 ∧ dq1 + . . .+ dpm ∧ dqm = dP1 ∧ dQ1 + . . .+ dPm ∧ dQm = dP ∧ dQ.

Proposition 2.7. If (q, p) = ψ(Q,P ) is symplectic then (q(t), p(t)) solves Hamil-
ton’s equations for H(q, p) if and only if (Q(t), P (t)) solves Hamilton’s equations

for H̃(Q,P ) = H(q(Q,P ), p(Q,P )).

Proof. It suffices to consider a neighborhood of each t0 ∈ [a, b]. As in the proof of
Proposition 2.2, this reduces the problem to the case where ψ is a diffeomorphism
and one can also assume that it is exact symplectic. Suppose (q, p) solves Hamilton’s
equations and let (Qs, Ps) be any variation of (Q,P ). Then (qs, ps) = ψ(Qs, Ps) is
a variation of (q, p) and so the first variation δA(q, p) = 0. But

A(qs, ps) =

∫ b

a

ps · q̇s−H(qs, ps) dt =

∫ b

a

Ps · Q̇s− H̃(Qs, Ps) dt+

∫ b

a

dS(Qs, Ps) dt.

The first integral on the right is Ã(Qs, Ps) and the second is S(Qs(b), Ps(b)) −
S(Qs(a), Ps(a)) which is a constant, independent of s. Differentiating with respect
to s at s = 0 gives

δÃ(Q,P ) = δA(q, p) = 0.

So (Q,P ) is a stationary curve and therefore solves Hamilton’s equations for H̃(Q,P ).
QED

For Lagrangians on TX the most general coordinate changes were of the form
q = ψ(Q), v = Dψ(Q)V where the velocity variables transform by the derivative.
In other words, tangent vectors V at Q map forward to tangent vectors v at q
by v = Dψ(Q)V . On the other hand, if q = ψ(Q) is a local diffeomorphism, then
covectors at q are mapped to covectors at Q by the pullback operation P = pDψ(Q)
or p = PDψ(Q)−1. This turns out to be exact symplectic.

Proposition 2.8. Let ψ : Y → X be a local diffeomorphism, where X,Y are open
subsets of Rm. The the transformation

(q(Q,P ), p(Q,P )) = (ψ(Q), PDψ(Q)−1)

is exact symplectic.

Proof. Since q = ψ(Q) the chain rule gives dq = Dψ(Q)dQ. Then

pdq = PDψ(Q)−1 ·Dψ(Q)dQ = PdQ.

QED

Symplectic maps of this form are sometimes called point transformations. On
the other hand, here is an example of a useful symplectic map which mixes up the
position and momentum variables.

Example 2.3. (Action-angle variables for the harmonic oscillator.) Consider the
motion of a simple spring moving on the x-axis. Newton’s equation is mẍ = −kx
where m > 0 is the mass and k > 0 is the spring constant. It can be viewed as a
Lagrangian or Hamiltonian system with

L(x, v) =
1

2
mv2 − 1

2
kx2 H(x, p) =

1

2m
p2 +

1

2
kx2
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where v = ẋ, p = mv. First, the linear transformation x = X/(mk)
1
4 , p = P (mk)

1
4

has pdx = PdX and the new Hamiltonian is

H̃(X,P ) =
1

2
ω(X2 + P 2) ω =

√
k

m
.

Next introduce symplectic polar coordinates (θ, τ) where

(X,P ) =
√

2τ(cos θ,− sin θ).

So θ is the clockwise angle in the (X,P ) plane and, instead of the usual radius,
τ = 1

2 (X2 + P 2). Note that

PdX = −
√

2τ sin θ(cos θ/
√

2τ dτ −
√

2τ sin θ dθ) = − sin θ cos θ dτ + 2τ sin2 θ dθ

= τ dθ + dS(θ, τ)

where S = −τ sin θ cos θ. Thus (θ, τ) are indeed symplectic coordinates. The new
Hamiltonian is simply

K(θ, τ) = ωτ

and Hamilton’s equations are

θ̇ = Kτ = ω τ̇ = −Kθ = 0.

Figure 4 shows phase portraits for the harmonic oscillator in the original (x, p)
coordinates and in action-angle coordinates, (θ, τ). For any Hamiltonian system in
the plane, solution must move along level curves of the Hamiltonian and it is only
necessary to add arrows to get the phase portrait.

-2 -1 0 1 2
-1.0

-0.5

0.0

0.5

1.0

x

p

-3 -2 -1 0 1 2 3

0.0

0.5
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1.5

2.0

θ

τ

Figure 4. Phase portraits for the harmonic oscillator.

Hamiltonian’s like K(θ, τ) = ωτ from Example 2.3 give the simplest kind of
Hamiltonian differential equations. To generalize, consider a Hamiltonian H : Rm×
Rm∗ → R of the form H(θ, τ) = K(τ) where θ = (θ1, . . . , θm) ∈ Rm and τ =
(τ1, . . . , τm) ∈ Rm∗. The notation is meant to suggest that θi are angular variables.
Hamilton’s equations are

θ̇ = ω(τ) τ̇ = 0 ω(τ) = Kτ .

The momentum variables τi are constant along solutions. Fixing their values τ = c
defines an m-dimensional torusMc. On this torus the angles change with constant
speed and θ(t) = θ(0) + tω(c).

Another consequence of the coordinate invariance of Hamilton’s equations is
the possibility of defining Hamiltonian systems on manifolds. Any manifold X of
dimension m has a cotangent bundle T ∗X of dimension 2m equipped with local co-
ordinate systems (q, p) as above. The coordinate change maps are exact symplectic,
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so function H : T ∗X → R gives rise to a well-defined differential equation. More
generally, one can consider any manifold of dimension 2m which has such a family
of coordinate systems. The development of these general ideas is a long story and
is not really needed below. A good reference is [3].

Exercise 2.6. Show that Proposition 2.4 can be generalized to the case of a time-
dependent Lagrangian L(q, v, t) and Hamiltonian H(q, p, t).

Exercise 2.7. Show that Proposition 2.5 is not true for general time-dependent
Hamiltonians H(q, p, t).

Exercise 2.8. Show that Proposition 2.7 can be generalized to the time-dependent
case where H = H(q, p, t), q = q(Q,P, t), p = p(Q,P, t) and

H̃(Q,P, t) = H(q(Q,P, t), p(Q,P, t), t).

Exercise 2.9. Consider the planar pendulum of Example 2.2. For the Lagrangian
L(θ, θ̇), carry out the Legendre transformation to find the corresponding Hamil-
tonian H(θ, pθ), where pθ = Lθ̇. Similarly, for the spherical pendulum with the

Lagrangian L(θ, φ, θ̇, φ̇) in spherical coordinates, find the corresponding Hamilton-
ian H(θ, φ, pθ, pφ).

Exercise 2.10. Let (q, p) be coordinates in R× R∗ ' R2.

i. Show that a linear map q = aQ + bP, p = cQ + dP is exact symplectic

if and only if ad − bc = 1, that is, if and only if the matrix

[
a b
c d

]
has

determinant 1. Hint: Calculate pdq − PdQ and recall the criterion for a
differential fdQ+ gdP to be dS for some function S(Q,P ).

ii. Similarly, show that a smooth map of the plane ψ(Q,P ) = (q(Q,P ), p(q, P ))
is an exact symplectic local diffeormorphism if and only if detDψ(Q,P ) = 1
for all (Q,P ).

3. Symmetries and integrals

The n-body problem has several constants of motion which arise from the sym-
metries of the system. Since the Newtonian potential function U(q) is a function of
the Euclidean distances rij = |qi − qj |, it is invariant under simultaneous transla-
tions, rotations and reflections of the n position vectors in Rd. Let A ∈ O(d) be any
d×d orthogonal matrix A and b ∈ Rd any vector. If q ∈ Rdn \∆ is a configuration,
let Aq + b denote the configuration with position vectors Aqi + b ∈ Rd.

Proposition 3.1. Let q(t), t ∈ I, be a solution of the n-body problem (2). Then
Q(t) = Aq(t) + b is also a solution. In fact, the same is true when b = kt + l is a
linear function of time with k, l ∈ Rd.

Proof. The potential energy satisfies U(Q) = U(Aq1+b, Aq2+b, . . .) = U(q1, q2, . . .)
for all A ∈ O(d), b ∈ Rd and qi ∈ Rd \∆. Differentiation with respect to qi gives

DiU(Q)A = DiU(q)

by the chain rule. Here DiU is the partial derivative with respect to qi as a linear
map Rd → R1 which can be represented as a d-dimensional row vector. The partial
gradient vector ∇iU is the d-dimensional column vector DiU

T , where T denotes
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the transpose. Orthogonality of A implies AT = A−1 and so the partial gradients
satisify

∇iU(Q) = A∇iU(q).

Now let Qi(t) = Aqi(t) + b, with b = kt+ l. Then for all t ∈ I

miQ̈(t) = miAq̈i(t) = Amiq̈(t) = A∇iU(q(t)) = ∇iU(Q(t)).

This shows that Q(t) is a solution, as claimed. QED

3.1. Translation symmetry and total momentum. Symmetry gives rise to
several constants of motion or integrals. The simplest is the total momentum

ptot = m1q̇1 + . . .+mnq̇n = m1v1 + . . .+mnvn.

Proposition 3.2. Let q(t), t ∈ I, be a solution of the n-body problem (2). Then
ptot(t) is constant.

Proof. Translation symmetry of U means U(q1 + b, . . . , qn + b) = U(q1, . . . , qn).
Differentiation with respect to b gives

∇1U(q) + . . .+∇nU(q) = 0.

Since ∇iU(q) = miq̈i = miv̇i, this implies

ṗtot(t) = m1v̇1(t) + . . .mnv̇n(t) = 0

as required. QED

The center of mass of the configuration q is the vector

(15) c =
1

m
(m1q1 + . . .+mnqn) ∈ Rd m = m1 + . . .+mn.

Note that mċ = ptot hence

Corollary 3.1. The center of mass moves in a straight line in Rd with constant
velocity ċ = ptot/m.

Note that if ptot = 0, the center of mass is constant. Using simple translations
of coordinates, one can always reduce to the case c = ptot = 0.

Proposition 3.3. Let q(t), t ∈ I be any solution of the n-body problem with total
momentum ptot. Then there is a constant vector c0 ∈ Rd such that the solution
Q(t) = q(t)− ptott/m− c0 has total momentum 0 and center of mass at the origin.

Proof. q(t)−ptott/m has total momentum zero, so its center of mass c0 is constant.
Subtracting c0 gives the required solution. QED

It follows from this discussion that c = ptot = 0 defines an invariant subset of
the phase space. It is given by the linear equations

(16)
m1q1 + . . .+mnqn = 0

m1v1 + . . .+mnvn = 0.

Let X ⊂ Rdn be the subspace of dimension d(n − 1) given be either one of these
equations. Then the invariant set (X \∆)×X of dimension 2d(n−1) will be called
the translation reduced phase space. Proposition 3.3 shows that there is no loss of
generality in focussing on solutions in this reduced space.

It’s possible to explicitly carry out this reduction of dimension by introducing a
basis for the subspace X. From the Lagrangian point of view, Proposition 2.3 shows



18 RICHARD MOECKEL

that the new differential equations will be the EL equations for the restriction of
the Lagrangian to TX. In order to get nice reduced equations, this basis should be
chosen to make the reduced Lagrangian as simple as possible.

Example 3.1. (The two-body problem) Consider the two-body problem in Rd.
Instead of coordinates q1, q2 ∈ Rd, introduce new variables x, c ∈ Rd where

x = q2 − q1 c =
1

m
(m1q1 +m2q2).

c is the center of mass and x is the position of q2 relative to q1. The inverse formula
are

q1 = c− ν2x q2 = c+ ν1x

where ν1 = m1

m1+m2
, ν2 = m2

m1+m2
. The velocities vi = q̇i, ċ and u = ẋ are related by

the same formulas. Transforming the Lagrangian

L(q, v) =
1

2
(m1|v1|2 +m2|v2|2) +

m1m2

|q2 − q1|
gives, after some simplification,

L̃ =
1

2
(m|ċ|2 + µ1|u|2) +

m1m2

|x|
where µ1 = m1m2

m1+m2
. Note that the kinetic energy is still in diagonal form. Since

c = ċ = 0 is an invariant set, the differential equation on the reduced phase space
is the EL equation for the reduced Lagrangian

Lred(x, u) =
1

2
(µ1|u|2) +

m1m2

|x|
.

Since the collision set is the origin x = 0, reduced phase space is TX where X =
Rd \ 0.

Example 3.2. Now consider the three-body problem in Rd. Instead of coordinates
q1, q2, q3 ∈ Rd, Jacobi introduced new variables x1, x2, c ∈ Rd where

x1 = q2 − q1 x2 = q3 − ν1q1 − ν2q2 c =
1

m
(m1q1 +m2q2 +m3q3).

c is the center of mass, x1 is the position of q2 relative to q1 and x2 is the position
of q3 relative to the center of mass of q1, q2. The inverse formula are

q1 = c− ν2x1 −
m3

m
x2 q2 = c+ ν1x1 −

m3

m
x2 q3 = c+

m1 +m2

m
x2

The velocities vi = q̇i, ċ and ui = ẋi are related by the same formulas.
Transforming the Lagrangian L(q, v) gives, after some simplification,

L̃ =
1

2
(m|ċ|2 + µ1|u1|2 + µ2|u2|2) + U(x1, x2)

where µ1 = m1m2

m1+m2
, µ2 = (m1+m2)m3

m and

U(x1, x2) =
m1m2

|x1|
+

m1m3

|x2 + ν2x1|
+

m2m3

|x2 − ν1x1|
.

Once again, the kinetic energy is in diagonal form.
Now the reduced equations on the invariant manifold TX are the EL equations

of the restriction to {c = ċ = 0}:

Lred(x, u) =
1

2
(µ1|u1|2 + µ2|u2|2) + U(x).
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Exercise 3.4 shows how to generalize Jacobi coordinates to the n-body problem.

3.2. Rotation symmetry and angular momentum. The invariance of the po-
tential under rotations lead to the angular momentum integral. This will be dis-
cussed in the general context of Lagrangian mechanics. Consider a nondegenerate
Lagrangian L(q, v) defined on TX where X ⊂ Rm is an open set. Let G denote a
symmetry group acting on the configuration space X. That is, each element g of
the group determines a diffeomorphism of X. For each q ∈ X, let g(q) be the image
of q under g. The velocities will be transformed by the derivative map Dg. G acts
as a symmetry of the Lagrangian L if L(g(q), Dg(q)v) = L(q, v) for all (q, v) ∈ TX
and all g ∈ G.

Example 3.3. For the n-body problem in Rd, the rotation group G = SO(d)
acts as a symmetry group. If A ∈ SO(d) is a rotation matrix, the action of A on
q = (q1, . . . , qn) ∈ Rdn is A(q) = (Aq1, . . . , Aqn). Also, DA(q)v = (Av1, . . . , Avn).
So the position vectors and velocity vectors of all of the bodies are rotated simul-
taneously as in Proposition 3.1. That proposition shows that A maps solutions to
solutions and it clearly also preserves the Lagrangian

L(q, v) =
1

2

∑
mi|vi|2 + U(q).

Consider a one-parameter group of symmetries, that is, a curve gs ∈ G, s ∈ R,
with g0 = id and gs+t = gs · gt for all s, t ∈ R, where · denotes the group operation.
For example, in SO(d) there is a one-parameter group of rotations acting in the
usual way on any fixed plane in Rd while fixing the vectors orthogonal to the
plane. More generally, let a be any antisymmetric d × d matrix. Then the matrix
exponential A(s) = exp(sa) is a one-parameter group of rotations. In fact, every
one-parameter group in SO(d) is of this form. Every one-parameter group acting
on X determines a symmetry vectorfield or infinitesimal symmetry on X by

χ(q) =
d

ds
gs(q)|s=0.

The space of antisymmetric d × d matrices is denoted so(d). The notation comes
from Lie theory; SO(d) is a Lie group and so(d) is its Lie algebra.

Example 3.4. For a one-parameter group of rotations A(s) ∈ SO(d) acting
on Rdn via A(s)(q) = (A(s)q1, . . . , A(s)qn) the symmetry vectorfield is χ(q) =
(aq1, . . . , aqn) where a is the antisymmetric matrix d

dsA(s)|s=0.

The following proposition is the simplest version of Nöther’s theorem relating
symmetries of a Lagrangian to constants of motion for the EL equations.

Proposition 3.4. Suppose gs is one-parameter group of symmetries of the La-
grangian L(q, v) and χ(q) be the symmetry vectorfield. Let p(q, v) ∈ Rm∗ be the
conjugate momentum covector. Then the function C : TX → R

C(q, v) = p(q, v) · χ(q)

is constant along solutions of the EL equations.

Proof. Let (q(t), v(t)) be a solution of the EL equations. Then

d

dt
C(q, v) = ṗ · χ(q) + p ·Dχ(q)q̇ = Lq(q, v) · χ(q) + p(q, v) ·Dχ(q)v.

It must be shown that this vanishes.
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Since gs is a symmetry of the Lagrangian, L(gs(q), Dgs(q)v) = L(q, v) for all
q, v, s. Differentiating with respect to s at s = 0 and using the chain rule gives

0 = Lq(q, v) · χ(q) + p(q, v) ·
(
d

ds
Dgs(q)|s=0

)
v.

It remains to show that the derivative in parentheses is Dχ(q). But

d

ds
Dgs(q)|s=0 = D

d

ds
gs(q)|s=0 = Dχ(q)

by reversing the order of differentiation and by the definition of χ(q). QED

To describe this in Rd, let α, β ∈ {1, 2, . . . , d} be two of the d coordinate indices.

Proposition 3.5. Let q(t), t ∈ I, be a solution of the n-body problem (2). Then
for every pair of indices α, β, Cαβ(t) is constant where

Cαβ =
∑
i

(qiαpiβ − qiβpiα) =
∑
i

mi(qiαviβ − qiβviα).

Proof. For simplicity, consider the case (α, β) = (1, 2). Let A(s) denote the rotation
matrix which rotates by s radians in the (α, β) coordinate plane while fixing all
other coordinates. Then A(s) is the matrix obtained from the d×d identity matrix

by replacing the (1, 2) block by

[
cos s − sin s
sin s cos s

]
. The corresponding antisymmetric

matrix a = A′(0), is the matrix with (1, 2) block given

[
0 −1
1 0

]
and all other entries

equal to 0 and the symmetry vectorfield is χ(q) = (aq1, . . . , aqn).
Nöther’s theorem shows that

Cα,β = p · χ(q) =
∑

pi · aqi =
∑

pi · (−qi2, qi1, 0, . . . , 0) =
∑

(pi2qi1 − pi2qi1)

is constant. QED

Note that Cαα = 0 and Cβα = −Cαβ so there are at most
(
d
2

)
independent

angular momentum constants. The symbol C denotes the tensor with components
Cαβ . For the planar problem, with d = 2, there is only one component and C
reduces to the scalar C = C12 =

∑
mi(qi1vi2 − qi2vi1). If d = 3 there are three

independent components which can be viewed either the components of an angular
momentum vector

C = (C32, C13, C21) = (C1, C2, C3).

or of an antisymmetric 3× 3 matrix

C =

 0 −C3 C2

C3 0 −C1

−C2 C1 0

 .
The angular momentum vector can be written using the cross product in R3 as

C =
∑

miqi × vi

or, more generally, using wedge products in Rd (see Exercise 3.2).
Instead of describing the angular momentum componentwise, one can instead

define a function

C(q, v; a) = p(q, v) · aq a ∈ so(d).
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In other words, the angular momentum can be viewed as a map C : TX×so(d)→ R.
The linear maps so(d) → R form the dual space so(d)∗ of the vectorspace so(d).
Thus, yet another point of view is to say that the angular momentum is a map C :
TX → so(d)∗ assigning to each (q, v) ∈ TX the linear function C(q, v; ·) ∈ so(d)∗.

Exercise 3.1. (A more interesting collision). Consider the two-body problem in
Rd with equal masses m1 = m2 = 1. Let u, b, c be arbitrary vectors in Rd with
|u| = 1. Show that there is a solution of the form

q1(t) = u(kt)
2
3 + bt+ c q2(t) = −u(kt)

2
3 + bt+ c

where k is the constant from Exercise 1.5. For d = 2, u = (1, 0), b = (1, 1) and
c = (0, 0), plot the resulting parametrized curves in the plane.

Exercise 3.2. (Angular momentum as a bivector). Define the outer product or
tensor product of vectors u, v ∈ Rd by regarding both vectors as d × 1 column
vectors and setting u ⊗ v = uvT where the superscript T denotes the transpose.
Thus u⊗v is a d×d matrix. Next define the wedge product as u∧v = u⊗v−v⊗u,
an antisymmetric d × d matrix. Finally, define a bivector as a linear combination
of wedge products.

i. Show that the angular momentum can be written C(q, v) =
∑
mi qi ∧ vi.

ii. Show that C(q, v) =
∑
Cαβ eα∧ eβ where eJ are the standard basis vectors

in Rd and where the sum runs over all indices (α., β) with 1 ≤ α < β ≤ d.
iii. Consider a coordinate change Qi = Aqi, Vi = Avi where A : Rd → Rd is a

linear map. Show that C(Q,V ) = AC(q, v)AT .

Exercise 3.3. (Scaling symmetry). Suppose q(t) is a solution of (2) for masses mi

and consider the function Q(t) = aq(bt) where a > 0 and b 6= 0 are constants. This
represents a rescaling of the position variables by a and the time variable by b.

i. Show that Q(t) solves equation (2) for masses m̃i = cmi where c = a3b2.
In particular, if a3b2 = 1, Q(t) is a new solution with the same masses.

ii. Assuming that a3b2 = 1, determine how the energies H and angular mo-
menta C of the two solutions are related and show that the quantities HC2

αβ

are invariant.
iii. Show that “without loss of generality”, one may assume that the total mass

is m1 + . . .+mn = 1 and that the energy is H = 1,−1 or 0.

Exercise 3.4. This exercise shows how to define Jacobi-like coordinates for the n-
body problem. The goal is to replace q1, . . . , qn ∈ Rd by new variables x1, . . . , xn−1, c
where c is the center of mass is such a way that the kinetic energy term in the new
Lagrangian is diagonal. First consider the problem with d = 1, that is the n-body
problem on the line, so q = (q1, . . . , qn) ∈ Rn.

Let M = diag(m1,m2, . . . ,mn) be the n × n mass matrix and let P be an
n × n matrix whose columns are M -orthogonal, that is, PTMP = D where D =
diag(d1, . . . , dn) is a diagonal matrix with di > 0. Define new coordinates x =
(x1, . . . , xn) ∈ Rn by q = Px, x = P−1q. Note that the velocities v = q̇, u = ẋ are
related by v = Pu, u = P−1v. Also, if the last row of P−1 is (m1, . . . ,mn)/m then
the last new coordinate is xn = c.

i. For the case n = 3 from Example 3.4, what are the matrices P, P−1, D ?
ii. Show that for the n-body problem with d = 1 the kinetic energy is K =

1
2

∑
di|ui|2. Explain why the formula continues to hold for d > 1.
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iii. For n = 4 there are several different versions of Jacobi coordinates. Show
that there is a set of Jacobi coordinates with x1 = q2− q1, x2 = q4− q3 and
x3 the vector connecting the centers of mass of the pairs. What is the new
Lagrangian ?

iv. Find another set of Jacobi coordinates when n = 4 with x1, x2 as in Exam-
ple 3.4. What is the new Lagrangian ? Hint: x3 continues the pattern set
by x1, x2.

4. The two-body problem and the Kepler problem

The two-body problem is the simplest nontrivial case, and the only one which
can be explicitly solved. It is worth looking at several ways to attack the problem
and to spend some time getting a good understanding of the solutions. Without
loss of generality, one may assume that the center of mass is at the origin and the
total momentum is zero:

m1q1 +m2q2 = m1v1 +m2v2 = 0.

Let X ⊂ R2d be the d-dimensional subspace defined by either of these equations.
The translation-reduced phase space is (X \∆)×X which has dimension 2d.

Example 3.1 described how to parametrize the subspace X to obtain a reduced
Lagrangian system. With q = q2 − q1 and v = q̇, the reduced Lagrangian is

L2bp =
1

2
µ1|v|2 + U(q) U(q) =

m1m2

|q|
where µ1 = m1m2

m1+m2
which simplified slightly by canceling a factor of µ1 to get

L =
1

2
|v|2 + U(q) U(q) =

m

|q|
where m = m1 + m2 is the total mass. Note that multiplying a Lagrangian by
a constant has no effect on the Euler-Lagrange equation. The Euler-Lagrange
equations for L are equivalent to the first order system

(17)

q̇ = v

v̇ = −mq
|q|3

= ∇U(q)

where

U(q) =
m

r
r = |q|.

Using these coordinates, the singular set becomes ∆ = {q = 0} and the reduced
phase space is (Rd \0)×Rd. The system (17) is called the Kepler problem in Rd. It
can be viewed as the problem of the motion of a point of mass 1 attracted to a point
of mass m = m1 + m2 which is fixed at the origin. Then the angular momentum
tensor C and the energy H are given by

(18) Cα,β = qαvβ − qβvα H(q, v) =
|v|2

2
− m

|q|
= h.

The relation between the Kepler problem and the two-body problem is illustrated
in Figure 5. Given a solution q(t) of the Kepler problem, the corresponding positions
of the two bodies with center of mass at the origin are

q1 = −m2

m
q q2 =

m1

m
q.
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Figure 5. Elliptical orbit of the planar two-body problem and the
corresponding orbit for the Kepler problem.

Although the Kepler problem has been set up in Rd, it turns out that the motion
is always planar.

Proposition 4.1. Every solution q(t) of the Kepler problem moves in a fixed plane
in Rd, namely, the plane through the origin containing its initial position and ve-
locity vectors.

Proof. Using rotational symmetry one may assume without loss of generality that
the initial position q0 and initial velocity v0 lie in the plane P = R2 × {0} ⊂ Rd.
In the phase space Rd \ 0 × Rd the subspace P \ 0 × P is invariant. To see this,
note that for q ∈ P , the force vector −mqr3 is also in P . If v is in P as well, then

the EL vectorfield (q̇, v̇) = (v, −mqr3 ) is tangent to P × P . Then as in exercise 1.4,
the uniqueness theorem for ordinary differential equations implies that P \ 0×P is
invariant. In particular, q(t) ∈ P \ 0 for all t such that the solution exists. QED

Example 4.1. Circular solutions. Before looking into the general solution of the
Kepler problem, it’s interesting to explore some of the simplest ones. Consider the
Kepler problem in R2 and look for periodic solutions which move on a circle with
constant angular speed. In other words, try to find a solution of the form q(t) =
r0(cosωt, sinωt) where r0, ω are constant. The velocity is v = r0ω(− sinωt, cosωt)
and v′ = r0ω

2(− cosωt,− sinωt) = −ω2q. Comparison with (17) shows that this is
a solution if and only if r30ω

2 = m. So given any r0, there is such a circular periodic
solution. The energy, angular momentum and period are

h = − m

2r0
C = ±

√
mr0 T = 2π

√
r30
m
.

Exercise 4.1. According to Exercise 1.1 the mass of the Earth is m ≈ 11468
in units such that G = 1, distance is measured in Earth radii and time in days.
Assuming that the motion of a satellite is modeled by the Kepler problem with this
mass, what are the possible periods for circular earth satellites ? What radius will
give a geostationary satellite, that is, a satellite with a period of T = 1 day ?

4.1. The Laplace-Runge-Lenz vector and orbital elements. As Kepler ob-
served, q(t) generally sweeps out a conic section in its plane of motion, that is, an
ellipse, hyperbola or parabola. Perhaps the simplest way to show this is to use the
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Laplace-Runge-Lenz vector (or LRL vector). The d-dimensional LRL vector, A, is
defined as

(19) A = |v|2q − (q · v)v − mq

r
.

Proposition 4.2. The LRL vector A(q(t), v(t)) is constant along every solution of
the Kepler problem.

The proof is Exercise 4.2.
The angular momentum and energy (18) are also constant of motion. Using

Lagrange’s identity

|v|2|q|2 = (q · v)2 +
∑
α<β

(qαvβ − qβvα)2

it is easy to check that A,C, h are related by

(20) |A|2 = m2 + 2h|C|2

where |C|2 =
∑
α<β C

2
αβ .

Using the LRL vector, it is easy to derive an equation for the path swept out by
a solution q(t). This path lies in the two-dimensional plane P spanned by q, v and
the LRL vector (19) also lies in this plane. Using a rotation in Rd, one may reduce
to the case q, v, A ∈ R2, that is, the planar Kepler problem. Choose a Cartesian
coordinate system in P and write q = (x, y), v = (u,w). Then the LRL vector
becomes A = (α, β) where

(21)

α = Cw − mx

r
= Cẏ − mx

r

β = −Cu− my

r
= −Cẋ− my

r
C = C12 = xw − yu.

Proposition 4.3. Let q(t) = (x(t), y(t)) be a solution to the planar Kepler problem
(17) with velocity vector v(t) = (u(t), w(t)) and LRL vector A = (α, β). Then q(t)
moves on the curve

(22) mr = C2 − αx− βy

and if C 6= 0, the velocity moves on the circle (called the hodograph)

(23)

(
u+

β

C

)2

+
(
w − α

C

)2
=
m2

C2
.

Proof. It follows from (21) that

(24) αx+ βy = C(xw − yu)−mx2 + y2

r
= C2 −mr

where r =
√
x2 + y2 which implies (22).

On the other hand, it also follows that

(α− Cw)2 + (β + Cu)2 = m2

which gives (23) if C 6= 0 QED
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The curve (22) is a conic section. To see this, recall that a conic section in the
plane can be defined by an equation of the form r = ed where r is the distance
of an arbitrary point (x, y) on the curve to a fixed point in the plane (the focus)
and d is the distance to a fixed line (the directorix). The ratio e = r/d is called
the eccentricity of the conic. Now the distance from a point (x, y) to the line with

equation ax+by+c = 0 is d = |ax+by+c|/
√
a2 + b2. It follows that (22) describes

a conic with
Focus: (0, 0)

Directorix: αx+ βy − C2 = 0

Eccentricity: e =

√
α2 + β2

m
=
|A|
m
.

There are two exceptional cases. If α = β = 0 but C 6= 0 the equation (22)
describes a circle with center (0, 0) and radius C/m. If C = 0, then (α, β) 6= (0, 0),
the focus lies on the directorix, and equation (22) reduces to βx− αy = 0, the line
orthogonal to the directorix. Otherwise, the curve is an ellipse if 0 < e < 1, one
branch of a hyperbola if e > 1 or a parabola if e = 1. Equation (20) shows that the
elliptical case arises when the energy h < 0, the hyperbolic case when h > 0 and
the parabolic case when h = 0.

In the case of a circle or ellipse, the orbit is a closed curve in the plane which sug-
gests that the solution (q(t), v(t)) in phase space is a periodic function of time. To
see this, note that as C 6= 0, the velocity is never zero so q(t) keeps moving around
the orbit and must return to its initial position after some time T . Meanwhile
the velocity moves on the hodograph circle (which encloses the origin in this case).
From geometry, it’s clear that distinct points on the circle or ellipse have distinct
tangent directions which give distinct points on the hodograph. It follows that v(t)
also returns to its initial value after time T so (q(t), v(t)) is a periodic solution.
The problem of finding formulas determining q(t), v(t) and T will be deferred to
the next section.

Using polar coordinates, q = (x, y) = r(cos θ, sin θ), the equation (24) can be
written

(25) r =
C2

m+ α cos θ + β sin θ
=

C2

m+ |A| cos(θ −$)

where A = (α, β) = |A|(cos$, sin$). It follows that the minimum distance r to
the focus occurs when θ = $, that is, in the direction of the LRL vector, A (see
Figure 6. The minimal distance is given by

rmin =
C2

m+ |A|
=

C2

m(1 + e)
.

The closest point to the center is called the pericenter or if the center of attraction
represents the sun, the perihelion. The angle $ is the longitude of the pericenter
(the use of the strange symbol $, called “varpi”, is traditional).

In the case of an ellipse, the maximum value of r occurs at the apocenter or
apohelion which occurs in the direction of −A. Adding these gives the length of
the major axis of the ellipse and half that is the major semiaxis, a:

a =
1

2
(rmin + rmax) =

1

2

(
C2

m+ |A|
+

C2

m− |A|

)
=

m

|2h|
.
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Figure 6. Some orbits of the Kepler problem and their LRL vectors.

For the hyperbola the major semiaxis is defined as the distance from the pericenter
to the center and it turns out to be given by the same formula. It seems there is no
sensible definition of the major semiaxis for a parabola. Another useful parameter
is the semilatus rectum, p, which is the radius of the points on the conic where
(x, y) is perpendicular to A. It is given by

p =
|C|2

m
.

The parameters describing the shape and orientation of the conic are called the
orbital elements. It’s clear from (22) that an orbit of the planar Kepler problem is
uniquely determined by |C|2 and A = |A|(cos$, sin$). It is easy to see that these
could be found in terms of three of the orbital elements described above. Namely,
the longitude of the pericenter $, the eccentricity e and one or the other of the
size parameters: the major semiaxis, a, the minimal distance rmin or the semilatus
rectum p. rmin and p work in all cases while the major semiaxis works when h 6= 0.
The following summarizes a few of the formulas.
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Proposition 4.4. The orbital elements of the conic section describing a solution
of the planar Kepler problem with LRL vector A = |A|(cos$, sin$) are

(26)

Major semiaxis: a =
m

|2h|

Eccentricity: e =
|A|
m

=

√
1 +

2h|C|2
m2

Longitude of pericenter: $

Semilatus rectum: p =
|C|2

m

Radius of pericenter: rmin =
|C|2

m+ |A|

Specifying a, e,$ determines an orbit of the planar Kepler problem, but one
more parameter is needed to specify the position of the moving mass along the
orbit. If the orbit is not circular then the pericenter is uniquely determined. For a
circular one, an arbitary point could be chosen.

Definition 4.1. The true anomaly, ν(t), is the angle between the pericenter and
q(t), that is ν = θ − $. For a circular or elliptical orbit, let T be the period
and define the mean angular velocity n = 2π

T . Then the mean anomaly, M(t) is
M(t) = n(t− τ) where τ is the time at pericenter.

Clearly knowing either ν or M is enough to determine the position of q(t) along
its orbit. How to find them will be discussed in the next section. For now just note
the following version of the formula (25):

(27) r =
C2

m+ |A| cos ν
=

p

1 + e cos ν
.

Since the spatial case, d = 3, is the most important, it is useful to have a way to
describe a Kepler orbit there. Two more orbital elements are needed to specify the
plane of the orbit. It is traditional to use two angles even if there is no sensible way
to do this which works in all cases. Suppose some Cartesian coordinates (x, y, z)
have been chosen for R3. For example, to describe orbits in the solar system the
usual choice is to make the (x, y) plane be the ecliptic, that is, the plane of the
earth’s orbit. The z axis is chosen so that the motion of the earth looks counter-
clockwise when viewed from a position with z > 0. The choice for the positive
x-axis is the first point of Ares, which gives the location of the Sun on the Spring
equinox.

The angular momentum tensor Cαβ can be viewed as a vector

C = (C1, C2, C3) = (q2v2 − q3v2, q3v1 − q1v3, q1v2 − q2v1) = q × v

where q × v is the cross product. It’s orthogonal to the plane of motion, which is
spanned by q, v. The three-dimensional LRL vector can also be expressed using
cross products

A(q, v) = v × C − mq

r
= v × (q × v)− mq

r
and it lies in the plane of motion.

Assuming that C 6= (0, 0, 0), the vector C/|C| provides a unit normal vector to
the orbit . Define the inclination, ι of an orbit to the be the angle between C/|C|
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Figure 7. Orbital elements for the spatial Kepler problem.

and the positive z-axis, that is,

cos ι =
C3

|C|
sin ι =

√
C2

1 + C2
2

|C|
.

For example, an orbit in the (x, y)-plane has inclination ι = 0. If the inclination
is not zero, then the vector (−C2, C1, 0) points along the line of intersection of
the (x, y) plane with the plane of motion. The ray in this direction is called the
ascending node. For such orbits, one can define another angle, the longitude of the
ascending node, Ω, such that

(cos Ω, sin Ω) =
(−C2, C1)√
C2

1 + C2
2

=
(−C2, C1)

|C| sin ι
.

Ω is not defined, or could be viewed as arbitrary, for orbits in the (x, y)-plane. In
any case, knowing both ι and Ω will determine the plane of the orbit.

Finally, to describe the orbit within the plane of motion, one can still use the
planar elements a or p and e and it only remains to specify the location of the
perihelion within the plane of motion. The traditional way, which works when
ι 6= 0 is to first define another angle, ω, as the angle between the ascending node
and the perihelion. Since A points to the pericenter and using the fact that A·C = 0
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Planet a e ι T

Earth 149.6 0.017 0.0 365.2
Venus 108.2 0.007 3.4 224.7
Mars 227.9 0.094 1.9 687.0
Jupiter 778.6 0.049 1.3 4331
Saturn 1433.5 0.057 2.5 10747

Table 1. Orbital elements from the solar system. Major semiaxis,
a, is in millions of km., inclination in degrees and period in days.

one can show

cosω =
A2C1 −A1C2

|A||C| sin ι
sinω =

−A1C1 −A2C2

|A||C| sin ι
.

ω is called the argument of the pericenter. Alternatively, one can define the longitude
of the pericenter in the spatial case as

$ = Ω + ω.

Note that $ is the sum of angles in different planes. This has the advantage that,
in the limit as ι → 0, it can be shown that it reduces to the planar longitude of
the perihelion, that is, the angle between A and the x-axis. Either $ or, in the
nonplanar case, ω can be used to specify the pericenter. Then ν or M give the
position of the mass along the orbit. See Figure 7.

The following table gives some orbital elements of planets in the solar system
[23].

To summarize, reasonable choices of orbital elements in the spatial case are

a or p e $ or ω ι Ω ν or M.

Exercise 4.2. Prove Proposition 4.2.

Exercise 4.3. Show that for a hyperbolic solution of the Kepler problem, let σ
denote the angle between the asymptotes. σ can be described as a scattering angle
which measaures how much the path of a moving particle is affected by passing
near the attracting center. Show that the scattering angle is

σ = 2 arctan(
√

2h|C|/m) = 2 arctan
√
e2 − 1.

Thus among the Kepler orbits with given mass m and energy H > 0, all scattering
angle with 0 < σ < π are possible.

4.2. Solution using Souriau’s method. Here is another interesting and remark-
ably simple way to solve the Kepler problem which is due to Souriau [24]. In addi-
tion to giving formulas for the orbit, it leads to formulas for the position along the
orbit.

Let q(t) be a solution of the Kepler problem in Rd with energy constant h. The
independent variable t will be replaced by another parameter u(t). By definition,
u(t) and its inverse function t(u) satisfy

u̇(t) =
1

r(t)
t′(u) = r(u) r = |q|.
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This defines u(t) up to an additive constant. For any function f(t), write f(u) for
f(t(u)) and f ′(u) for the derivative with respect to u. The derivatives with respect

to the two timescales are related by f ′ = rḟ .
Using the new timescale, the differential equations of the Kepler problem are

(28)

q′ = rv

v′ = −mq
r2

t′ = r.

It is also straightforward and useful to calculate

r′ = q · v q′′ = (q · v)v − mq

r
.

The energy equation is still
1

2
|v|2 − m

r
= h.

Let Z be the “spacetime” vector Z(u) = (t(u), q(u)) ∈ Rd+1. Then a simple
calculation gives

(29)

Z = (t, q)

Z ′ = (r, rv)

Z ′′ = (q · v, (q · v)v − mq

r
)

Z ′′′ = (2hr +m, 2hrv) = 2hZ ′ + (m, 0)

Z ′′′′ = 2hZ ′′.

The energy equation was used to simplify Z ′′′. The result of this remarkable cal-
culation is that Z ′′ satisifies a simple linear differential equation.

Proposition 4.5. Let q(t) be a solution of the Kepler problem with energy h and
let

(30) X = Z ′′ = (q · v, (q · v)v − mq

r
) Y = Z ′′′ = (2hr +m, 2hrv).

Then with respect to the timescale u, X(u) satisfies the linear differential equations
X ′′ = 2hX and X(u), Y (u) satisfy the first order linear system

(31) X ′ = Y Y ′ = 2hX.

It is easy to solve this linear system. In the negative energy case, h < 0, let
ω =
√
−2h and the second order equation for X becomes X ′′ = −ω2X. This is just

the equation of a (d+ 1)-dimensional harmonic oscillator and the solution is

(32)
X = C1 cosωu+ C2 sinωu

Y = −ωC1 sinωu+ ωC2 cosωu

where C1, C2 ∈ Rd+1 are arbitrary constant vectors.
Similarly if h > 0 the solution is

(33)
X = C1 coshωu+ C2 sinhωu

Y = ωC1 sinhωu+ ωC2 coshωu

where ω =
√

2h.
Equations (30) can be viewed as an elaborate change of coordinates or conjugacy,

(X,Y ) = ψ(q, v), which maps the orbits of the Kepler problem with energy H onto
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a submanifold of Rd+1 × Rd+1. To find the image of ψ, it is convenient to split
the vectors X,Y ∈ Rd+1 as X = (X0, X̂), Y = (Y0, Ŷ ) with , X0, Y0 ∈ R1 and

X̂, Ŷ ∈ Rd. Then ψ is given by

(34) X0 = q · v X̂ = (q · v)v − mq

r
Y0 = 2hr +m Ŷ = 2hrv

With the help of the energy equation, one can check that the following constraints
equations hold

(35)

−2hX2
0 + |X̂|2 = m2

−2hY 2
0 + |Ŷ |2 = −2hm2

−2hX0Y0 + X̂ · Ŷ = 0.

Proposition 4.6. For h 6= 0, let M(h) = {(q, v) : q 6= 0, H(q, v) = h} and
N (h) = {(X,Y ) : Y 6= (m, 0), (35) hold } and let (X,Y ) = ψ(q, v) be the mapping
defined by (34). Then ψ :M(h)→ N (h) is a diffeomorphism.

Proof. Since r = |q| 6= 0 in M(h), the image of ψ is contained in {Y 6= (m, 0)}.
Solving equations (34) for q, v gives the inverse map

(36) r =
Y0 −m

2h
q =

1

2hm
(X0Ŷ − (Y0 −m)X̂) v =

Ŷ

Y0 −m
which is well-defined when H 6= 0 and Y 6= (m, 0). The image point (q, v) =
ψ−1(X,Y ) has r 6= 0 and one can check that it has energy h, as required. QED

Applying ψ−1 to the general solution formulas for X(u), Y (u) gives the solutions
to the Kepler problem as function of u. Note that the constant vectors in equations
(32) and (33) are given by C1 = X(0), ωC2 = Y (0). One can choose the origin
of the new timescale parameter u such that r′(0) = q(0) · v(0) = 0 which implies

C1 = X(0) = (0, X̂(0)). Then it follows that

C1 = (0,−mq0
r0

) ωC2 = (2hr0 +m, 2hr0v0)

where r0, q0, v0 are the initial values of r, q, v at u = 0. Substituting these into
(32) and (33) and applying ψ−1 gives nice formulas for the solutions of the Kepler
problem.

In the negative energy case, the result can be written (after quite a bit of sim-
plification)

r = a(1− e cosE)

q = −ae q0
r0

+ a cosE
q0
r0

+ b sinE
v0
|v0|

with

ω =
√
−2h E = ωu a =

m

−2h
e =

a− r0
a

b = a
√

1− e2.

The use of the variable E instead of u is traditional. It’s called the eccentric
anomaly.

From our assumption that q0 · v0 = 0, it follows that q0/r0 and v0/|v0| are
orthogonal unit vectors. Then it is easy to see that the formula for q(E) is a
parametric equation for an ellipse in the plane spanned by these vectors and the
lengths of the principle axes are a and b. The constant term in the formula just
shifts the center of the ellipse along the direction of the major axis which moves
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the focus to the origin. r takes its minimal value at E = u = 0 which therefore
represents the pericenter.

The corresponding formulas for the positive energy case are

r = a(e coshE − 1)

q = ae
q0
r0
− a coshE

q0
r0

+ b sinhE
v0
|v0|

where now h > 0 and

ω =
√

2h E = ωu a =
m

2h
e =

a+ r0
a

b = a
√
e2 − 1.

This is a parametric representation of a hyperbola, as expected. This time E is
called the hyperbolic anomaly.

There are also parametric formulas for the time t(u) as a function of the param-
eter u. Recall that, by definition, t′(u) = r(u). So t(u) can be found by integrating
the formula for r(u). Choosing the initial value t(0) = 0 gives the formulas

t(u) =
a

ω
(ωu− e sinωu) h < 0

t(u) =
a

ω
(e sinhωu− ωu) h > 0.

These can be written

(37)
n t(E) = E − e sinE h < 0

n t(E) = e sinhE − E h > 0

where n = ω/a. In the negative energy case, this is called Kepler’s equation.
There are no simple formulas for the inverse functions u(t) or E(t). Nevertheless,
these formulas together with the formulas for q(u), r(u) give an explicit parametric
solution to the Kepler problem. For example, they can be used to plot the graphs
of r(t) without finding a formula for it (see Figure 9).
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Figure 8. Some elliptic orbits of the Kepler problem, all with the
same energy. All have the same period and major semiaxis.
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From the formula for h < 0, it is easy to read off the periods of the elliptic
orbits. Both the period and the major semiaxis depend only on the value of h (see
Figure 8).

Proposition 4.7. For the Kepler problem with energy h < 0, every solution is
periodic with the same period T (h) and moves on an elliptical path with the same
major semiaxis a(h) where

a(h) =
m

2h
T (h) =

2πm

|2h| 32
=

2πa
3
2

√
m
.

Proof. The formula for a(h) is already established. The parametric formula q(E)
is clearly periodic with period 2π. As E varies over one period, t(E) increases by
T = 2π/n = 2πa

ω and this is the period with respect to t. Using the formula for a

and ω =
√
|2h| the other formulas for T follow. QED

The proof shows that n = 2π/T is the mean angular velocity as in Definition 4.1.
So nt is the mean anomaly and the Kepler equation 37 can be written

M = E − e sinE.
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ω t
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Figure 9. Radius versus nt for some elliptic orbits of the Ke-
pler problem with eccentricities 0, 12 , 1. For 0 < e < 1 graphs are
trochoids while for e = 1 it’s a cycloid (see exercise 4.8).

Exercise 4.4. Verify equations (29) and (35).

Exercise 4.5. According to the last equation in Proposition 4.7 the ratio a3/T 2

should be the same for all solutions of the Kepler problem with a given central
mass, m. For the solar system, this is known as Kepler’s third law. Using the data
from Table 4.1, check the validity of this prediction.

Exercise 4.6. If h = 0 the vector Z = (t, q) satisfies Z ′′′′ = 0 and it follows
that Z is a cubic polynomial, Z(u) = C0 + C1u + C2u

2 + C3u
3 for some constant

vectors Ci ∈ Rd+1. Evaluate the constants to show that under the assumptions
t0 = q0 · v0 = 0

t(u) = r0u+
1

6
mu3

r(u) = r0 +
1

2
mu2

q(u) = q0 + r0v0u−
mq0
2r0

u2.
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Exercise 4.7. For h = 0 there is no need to extend into Rd+1. Let Z = q instead
of (t, q). Then (29) shows that Z ′′′ = 0. Let

(38) X = Z ′′ = q′′ = (q · v)v − mq

r
Y = Z ′ = rv.

Show that (38) defines a diffeomorphism ψ :M(0)→ N (0) whereM(0) = {(q, v) :
q 6= 0, H(q, v) = 0} and N (0) = {(X,Y ) : Y 6= 0, |X| = m) hold } such that the
new differential equations are X ′ = 0, Y ′ = X. Hint: Find ψ−1.

Exercise 4.8. For the Kepler problem with energy h < 0, the graph of the distance
to the attracting center r(nt) = |q(nt)| as a function of nt is a trochoid, that is, the
curve swept out by a point inside a circular disk as the disk rolls along a line. The
graph is given parametrically by nt = E − e sinE, r = a(1 − e cosE). Show that
this is the curve swept out by a point p at radius ae inside a disk of radius a is it
rolls along the nt axis as in Figure 9. Hint: After the disk has rolled through an
angle θ, what is the position of the center ? What is the position of p ?

4.3. Regularization, Conjugacy to a Geodesic Flow, and Hidden Sym-
metry. This section describes several of the deeper consequences of the coordinate
and timescale transformations of the last section. According to Proposition 4.6, the
change of coordinates (X,Y ) = ψ(q, v) maps the Kepler problem with fixed energy
h onto the submanifold N (h) = {(X,Y ) : Y 6= (m, 0), (35) hold } ⊂ Rd+1 × Rd+1.

The deleted points Y = (m, 0), X0 = 0, |X̂| = m represent collision states. At-
tempting to apply the inverse map (36) gives q = 0. Also, for nearby points which
satisfy (35) velocity satisfies

|v| = |Ŷ |
|Y0 −m|

=
−2h(Y0 +m)

|Ŷ |
.

As Y → (m, 0), it follows that |v| → ∞.
But from the point of view of the differential equations for (X,Y ), the points with

Y = (m, 0) are nonsingular. Thus the singular Kepler problem has been embedded
into a smooth system with no singularities. Allowing solutions (X(u), Y (u)) to
pass through Y = (m, 0) provides a way to extend solutions of the Kepler problem
through collision in way which is compatible with the nearby noncollision solutions.
This extension is called a regularization of the Kepler problem. The one described
here is close to that of Moser [19].

For example, consider a solution of (30) with initial conditions X(0) = (0, X̂(0)),

Y (0) = (m, 0) = 0 where |X̂| = m. This satisfies the constraint equations (30) for
every value of the energy h. For simplicity, consider a solution with energy h = − 1

2 .

If X̂(0) = mξ where ξ is a unit vector, then the constants Ci in the solution (32)
are C1 = (0,mξ), ωC2 = (m, 0) and the solution is

X0(u) = m sinu X̂(u) = m cosuξ Y0(u) = m cosu Ŷ (u) = −m sinuξ

Applying ψ−1 gives a regularized solution of the Kepler problem

q(u) = mξ(1− cosu) v(u) =
ξ sinu

m(1− cosu)

r(u) = m(1− cosu) t(u) = m(u− sinu).

This solution moves periodically on the line segment from the origin to mξ bouncing
off the singularity at the origin at u = 0,±2π, . . .. At these times, the velocity is
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infinite. The graph of the radius as a function of the time t is like the cycloid in
Figure 9.

Figure 8 shows several elliptic orbits of the Kepler problem with the same energy
and different eccentricities 0 ≤ e ≤ 1. As e → 1 the ellipses converge to a line
segment associated to a regularized solution. In this way, one can see that the
bouncing behavior of the regularized solution is a continuous, natural extension of
these nearby, nonsingular solutions.

Next, it will be shown that the regularized Kepler problem is equivalent to the
familiar problem of geodesics on a sphere or hyperboloid. First consider the negative
energy case. Using the notation ω =

√
−2h, the constraint equations (30) can be

written as

ω2X2
0 + |X̂|2 = m2 ω2Y 2

0 + |Ŷ |2 = ω2m2 ω2X0Y0 + X̂ · Ŷ = 0.

Define new, rescaled variables Q,P ∈ Rd+1 by

Q0 =
1

m
Y0 Q̂ =

1

ωm
Ŷ P0 = −ω

2

m
X0 P̂ = − ω

m
X̂.

Then the differential equations (31) become

Q′ = P P ′ = −ω2Q

and the constraint equations become (35) become

|Q|2 = Q2
0 + |Q̂|2 = 1 |P |2 = P 2

0 + |P̂ |2 = ω2 Q · P = Q0P0 + Q̂ · P̂ = 0.

These are the differential equations for the geodesic flow on the unit sphere in Rd+1.
Q(u) describes the point on the sphere and P (u) = Q′(u) is its velocity vector
which is always perpendicular to Q(u) and has constant speed |P (u)| = ω. In what
follows, the term “geodesic flow” will always refer to geodesics with some fixed
constant speed. Note that the condition Y 6= (m, 0) of Proposition 4.6 becomes

Q = (Q0, Q̂) 6= (1, 0) here.

Proposition 4.8. The Kepler problem in Rd with fixed energy h < 0 is conjugate
to the open subset of the geodesic flow on the unit sphere in Rd+1 consisting of all
geodesics which never pass through the point Q = (Q0, Q̂) = (1, 0). The regularized
Kepler problem is conjugate to the full geodesic flow.

For example, the regularized, planar Kepler problem (d=2) is conjugate to the
geodesic flow on the unit sphere S2 ⊂ R3. The geodesics are the great circles. Thus
these coordinate changes have the remarkable effect of mapping all of the elliptical
orbits with a given energy, as in Figure 8 onto the great circles on the sphere. The
regularized collision orbits which sweep out line segments in the plane are mapped
to the geodesics passing through the special point Q = (1, 0) which, by a convenient
change of perspective, will be called the “North Pole”. Viewed in the sphere, these
are in no way special.

An immediate corollary of this discussion is the realization that the Kepler prob-
lem has an unexpectedly large group of symmetries. While it is clear that the Kepler
problem in Rd is invariant under orthogonal transformation in Rd it now appears
that

Corollary 4.1. The regularized Kepler problem in Rd with a fixed negative energy
admits the symmetry group O(d+ 1), the orthogonal group in Rd+1.
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For example, the planar Kepler problem is clearly invariant under rotations and
reflections of the plane. But this is only a one-dimensional group. In fact, there is
an action of the three-dimensional group of rotations and reflections in space. This
is sometimes called a hidden symmetry of the Kepler problem.

To explore this phenomenon further, consider how the rotations of R3 transform
the Kepler ellipses of the planar problem. First note that the rotation group of the
plane, SO(2) preserves the distance to the origin, r and simply rotates all of the
elliptical orbits around the origin. Since r = (Y0 −m)/(2h) = m(1 − Q0)/ω2, the
corresponding rotations of the sphere are those which preserve the Q0 coordinate,
that is, the rotations around the North Pole. On the other hand, rotations in SO(3)
which move the North Pole will have a nontrivial effect on the elliptical orbits. This
is best seen in an animation, but Figure 10 shows the effect of the rotations around
the point (0, 0, 1) on the great circle geodesics and the corresponding Keplerian
orbits. All of the ellipses on the right side of the figure are the images of the
circular geodesic under the action of the hidden symmetry group.
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Figure 10. Action of a family of rotations in SO(3) on the great
circles in S2 and on the corresponding planar Kepler orbits.

Next suppose h > 0 and set ω =
√

2h. This time, the constraint equations (30)
can be written as

−ω2X2
0 + |X̂|2 = m2 − ω2Y 2

0 + |Ŷ |2 = −ω2m2 − ω2X0Y0 + X̂ · Ŷ = 0.

The rescaled variables Q,P ∈ Rd+1 by

Q0 =
1

m
Y0 Q̂ =

1

ωm
Ŷ P0 = −ω

2

m
X0 P̂ = − ω

m
X̂

satisfy

Q′ = P P ′ = ω2Q

with

−Q2
0 + |Q̂|2 = −1 − P 2

0 + |P̂ |2 = ω2 −Q0P0 + Q̂ · P̂ = 0.

These are the differential equations for the geodesic flow on a hyperboloid of two
sheets in Rd+1. Equation 34 shows that, in this case, Y0 > 0 and hence Q0 > 0 so
only the “top” sheet of the hyperboloid is relevant.
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Proposition 4.9. The Kepler problem in Rd with fixed energy h > 0 is conjugate
to the open subset of the geodesic flow on the top sheet of a unit hyperboloid in Rd+1

consisting of all geodesics which never pass through the point Q = (Q0, Q̂) = (1, 0).
The regularized Kepler problem is conjugate to the full geodesic flow.

The geodesics on the hyperboloid are just the “great hyperboloids” obtained by
intersecting the hyperboloid with two-dimensional planes through the origin.

The analogy between the negative and positive energy cases can be made stronger
by using the Minkowski metric and norm in Rd+1

〈V,W 〉 = −V0W0 + V̂ · Ŵ ‖V ‖2 = −V 2
0 + |V̂ |2.

Then the constraints can be written

‖Q‖2 = −1 ‖P‖2 = ω2 〈Q,P 〉 = 0.

So the hyperboloid is just a unit “sphere” with respect to the Minkowski metric.
The symmetry group of the positive energy Kepler problem is O(1, d), that is, the
linear transformations of Rd+1 which preserve the Minkowski metric. This group
contains orthogonal group O(d) as the subgroup mapping 0×Rd to itself, but the
full group is much larger. So once again, there are hidden symmetries.

Corollary 4.2. The regularized Kepler problem in Rd with a fixed positive energy
admits the symmetry group O(1, d).

The analogy extends to the case h = 0 as well where one gets the geodesics in
Rd, that is, straight line motions at constant speed.

Proposition 4.10. The Kepler problem in Rd with fixed energy h = 0 is conjugate
to the open subset of the geodesic flow on Euclidean space Rd consisting of all
geodesics which never pass through the point Q = 0. The regularized Kepler problem
is conjugate to the full geodesic flow. The symmetry group is the Euclidean group
Euc(d).

The proof is a bit different (see exercise 4.9). Once again, the symmetry group is
unexpectedly large. For example, while the Kepler problem in the plane is obviously
symmetry under rotations of the plane, this is not so for translations. Figure 11
shows a family of geodesics in the plane obtained by translation and the corre-
sponding family of parabolic orbits.
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Figure 11. Action of a family of translations in Euc(2) on the
lines in R2 and on the corresponding planar Kepler orbits.
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Exercise 4.9. Use Exercise 4.7 to prove Proposition 4.10.

4.4. Central force problems, reduction, invariant tori. It is illuminating to
consider the Kepler problem as a special case of a central force problem, an approach
going back to Newton. Imagine changing the potential of the Kepler problem to
some other function U(q) = F (r) depending only on the radius r = |q|. In this
case, the force function

∇U(q) =
F ′(r)

r
q

always points toward or away from the origin. This is called a central force problem.
For example, one could take a power-law potential

U(q) = F (r) =
m

rα
r = |q|

where α > 0. It will be seen that the Kepler case α = 1 has extra structure.
The differential equation are

(39)

q̇ = v

v̇ = ∇U(q) =
F ′(r)

r
q.

The symmetry arguments showing that angular momentum tensor is constant apply
here too. Also, there is an energy constant

(40)
1

2
|v|2 − U(q) =

1

2
|v|2 − F (r) = h.

The same proof as for the Kepler problem shows that all of the motions of a
central force problem are actually planar.

Proposition 4.11. Every solution q(t) of a central force problem moves in a fixed
plane in Rd, namely, the plane through the origin containing its initial position and
velocity vectors.

Assuming that the motion plane is really R2, the flow takes place in the four-
dimensional phase space {(q, v) : q 6= 0} ⊂ R4. One can introduce polar coordinates
as in Example 2.1 to get a Lagrangian

L̃ =
1

2
(ṙ2 + r2θ̇2) + F (r).

The EL equations are
ṗr = F ′(r) + 2r2θ̇ ṗθ = 0

where pr = L̃ṙ = ṙ, pθ = r2θ̇. The fact that pθ is constant can be seen as a
special case of Nöther’s theorem where the symmetry is the translation of the angle
θ 7→ θ + s, s ∈ R. Since translation of θ corresponds to rotation in the plane, it
is no surprise that pθ is just the planar angular momentum. Indeed, viewing the
problem as a unit mass attracted to the origin, the angular momentum scalar is

C = q1v2 − q2v1 = r2θ̇.

Using the symmetry of the problem under rotations, it’s possible to reduce to
only two dimensions. This reduction process will first be discussed for a gen-
eral Lagrangian L(q, v) on TX where X is an open set in Rm and suppose that
L does not depend on the last configuration variable qm. In other words, L =
L(q1, . . . , qm−1, v1, . . . , vm). In this case qm is sometimes called a cyclic variable.
The m-th Euler-Lagrange equation is ṗm = 0 so pm is a constant of motion. The
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following result shows how to construct a reduced Lagrangian system after fixing a
value for pm.

Proposition 4.12. Let L(q, v) be a Lagrangian such that qm is a cyclic vari-
able. Let (q̂, v̂) = (q1, . . . , qm−1, v1, . . . , vm−1) and and suppose the equation pm =
Lvm(q, v) can be inverted to get vm as a function vm(q̂, v̂, pm). If q(t) is a solution
of the Euler-Lagrange equations for L with pm = µ ∈ R then q̂(t) is a solution of
the Euler-Lagrange equations for the reduced Lagrangian

(41) Lµ(q̂, v̂) = L(q̂, v̂, vm(q̂, v̂, µ))− µ · vm(q̂, v̂, µ).

Moreover, qm, vm can be reconstructed by integrating the equation q̇m = vm =
vm(q̂(t), v̂(t), µ).

Proof. Exercise 4.10. QED

The reduced Lagrangian Lµ is sometimes called the Routhian.

Example 4.2. For the central force problem, fix a value pθ = C for the angular
momentum. The equation pθ = r2θ̇ = C can be solved for θ̇ = C/r2 and the
Routhian is

(42) LC(r, ṙ) =
1

2
(ṙ2 + r2(C/r2)2) + F (r)− C(C/r2) =

1

2
ṙ2 − C2

2r2
+ F (r).

For each fixed C, one can study this equation in the (r, ṙ) phase space. If a solution
r(t) is found then recover θ(t) can be recovered by integration

θ(t) = θ(0) +

∫ t

0

C

r(s)2
ds.

Setting w = ṙ, the reduced Lagrangian (42) can be written

LC(r, w) =
1

2
w2 − VC(r) VC(r) =

C2

2r2
− F (r).

VC(r) is called the reduced or amended potential energy (this is really the potential
energy – note the minus sign in the Lagrangian). The energy constant is

HC(r, w) =
1

2
w2 + VC(r) = h.

Plotting the level curves of HC in the (r, w) plane produces the phase portrait of
the reduced system.

Figure 12 shows typical amended potentials for the power-law potentials F (r) =
mr−α for the Kepler problem α = 1 and for α = 3 where the amended potentials
are

(43) VC(r) =
C2

2r2
− m

rα
.

The shape of the corresponding graph for 0 < α < 2 resembles the Kepler case
while the shape for α > 2 is like the case α = 3. It is clear from (43) that V (r)
changes sign at r = r0 and has exactly one critical point r = rcrit where

r0 =

(
C2

2m

) 1
2−α

rcrit =

(
C2

αm

) 1
2−α

.

The critical point is a minimum or a maximum of the potential energy according
to whether α < 2 or α > 2.
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Figure 12. Amended potential energies for some r−α power-law
central force problems with m = 1, C =

√
2. Also shown are some

lines V = h for several values of the energy.

From the graph of VC(r) one obtains the phase portraits in the (r, w) halfplane
by plotting the curve w2 = 2(h − VC(r)) for various values of h. These curves are
clearly symmetric under reflection through the w-axis and their projections lie over
the interval or intervals where VC(r) ≤ h. In Figure 12, these intervals are those
such that the graph is below the corresponding horizontal line at height h. The
results for α = 1, 3 are shown in Figure 13.

For the Kepler problem (left) there is an equilibrium point at (rcrit, 0) = (C2/m, 0)
with energy h = −m2/(2C2) (red). Energies h < −m2/(2C2) are not possible for
fixed C. The equilibrium of the reduced system means that for the corresponding
solution the radius r is constant. Though not shown in the figure, one can imagine
the angle θ(t) increasing or decreasing. In fact, the angular momentum equation

shows that θ̇ = C/r2crit which is also constant. The corresponding solutions are
just the circular solutions of the Kepler problem. For energies −m2/(2C2) < h < 0
there is a family of periodic solutions (blue) such that r(t) oscillates over some
interval [r1, r2]. This the radial behavior of the elliptic Kepler orbits. For energies
h ≥ 0, the radius decreases from infinity, reaches a minimum and then increases
to infinity again (black and green). This is the radial behavior of the parabolic
and hyperbolic solutions. The phase portrait is similar for all α with 0 < α < 2
but there are significant differences in the angular behavior which will be explored
later.

For α = 3 (right) the (r, w) phase portrait is completely different. There is
an equilibrium point at (rcrit, 0) (red) which will correspond to a circular periodic
solution. But now it’s a saddle point and the corresponding energy level curve has
branches tending to infinity and branches which fall into the singularity (r(t)→ 0).
In fact there are lots of solutions which have this fate in forward or backward time,
or both. Apparently there are no bounded solutions other than the circular one.
The picture is similar for all α > 2.

The passage from dynamics in the four-dimensional (r, θ, w, θ̇) space to the two-
dimensional (r, w) halfplane is a process of reduction by symmetry. After fixing the

angular momentum C, θ̇ = C/r2 is uniquely determined and θ can be ignored. A
more sophisticated point of view is to say that the (r, w) halfplane is a quotient
space of the fixed angular momentum manifold under the action of the rotational
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Figure 13. Phase plots in the (r, w) halfplane corresponding to
the potentials in Figure 12.

symmetry group SO(2). More precisely, define submnanifolds of the phase space

M(C) = {(r, θ, w, θ̇) : r > 0, r2θ̇ = C}

M(h,C) = {(r, θ, w, θ̇) : r > 0, r2θ̇ = C,
1

2
w2 +

C2

2r2
− F (r) = h}

.

Clearly M(C) is three-dimensional while M(h,C) ⊂ M(C) is a two-dimensional
surface. In the most interesting cases, M(h,C) will be diffeomorphic to a torus
T2 = S1 × S1. Now by simply ignoring the θ variable and keeping the same
equations, one obtains quotient manifolds M̃(C) =M(C)/SO(2) and M̃(h,C) =

M(h,C)/SO(2) whose dimensions are, respectively, two and one. M̃(C) is just the

(r, w) halfplane and M̃(h,C) are the level curves of reduced energy as in Figure 13.
The opposite process to reduction is reconstruction. Given the motion r(t) of

the radius, how can one find q(t)? The answer is to use the angular momentum

constant to recover θ, θ̇. Since C = r2θ̇ has been fixed in advance, one can determine
θ(t) by integration

θ(t) = θ(0) +

∫ t

0

C ds

r(s)2
.

Once θ(t) is found, then the orbit in R2 is q(t) = r(t)(cos θ(t), sin θ(t)). For example,
Figure 14 shows two orbits for the power law potential with α = 1.5 and two
choices of the energy. Instead of the simple, periodic ellipses of the Kepler problem,
the curves wind around the origin many times without returning to their initial
positions. It can be shown that orbits like this may never close up and instead fill
in an annular region r1 ≤ r ≤ r2 densely.

The most interesting cases are the periodic orbits for 0 < α < 2 and energies
Vmin < h < 0, where Vmin = V (rcrit) (blue curves in Figure 13 (left)). For
C > 0, θ(t) is increasing and so q(t) moves counterclockwise around the origin as
r(t) oscillates over an interval [r1(h), r2(h)]. In the phase space, the corresponding
solution move on an invariant torus. Fix a value of C 6= 0 and an energy h in
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Figure 14. Two orbits for the power law potential with α = 1.5
and energies h = −0.1,−0.05. The red curves show half of a radial
period.

this range. Then the quotient manifold M̃(h,C) is a simple closed curve, so is

diffeomorphic to S1. In the corresponding unreduced manifold M(h,C), θ̇ = C/r2

is uniquely determined while the angle θ is arbitrary. Thinking of θ as parametrizing
another circle, it follows thatM(h,C) is diffeomorphic to S1×S1, that is, to a two-
dimensional torus T2. Invariant tori in phase space are a common feature of many
mechanics problems

To understand the flow on such a torus, the crucial point is to determine how
much θ(t) changes as r(t) goes once around the curve M̃(h,C). Let Φ(h,C, α)
denote this change in θ(t) over one period of the oscillation of r. For the Kepler
problem with α = 1 this is just the change in the polar angle in going once around
the ellipse which is clearly exactly 2π for all solutions. In other words Φ(h,C, 1) =
2π for −C2/m < h < 0. Thus the invariant tori for the Kepler problem are filled
with periodic solutions which close up after going once around in the radial direction
and once around in the θ direction (see Figure 15 (left)).

On the other hand, for α 6= 1, it turns out that the value of Φ(h,C, α) varies
with h,C. On some of the tori, Φ(h,C, α) = 2π pq will be a rational multiple of

2π. Then all of the solutions on the torus will be periodic, closing up after going
q times around M̃(h,C) and p times around in the θ direction. On other tori,
suppose Φ(h,C, α) = 2πω for some irrational number α. In this case, the solutions
on the torus never close up and, in fact, each solution is dense in the torus as in
Figure 15 (right). From this point of view, one can say that Figure 14 shows the
projections of solutions on two different invariant tori onto the configuration space.
The tori project to annuli and a solution which is dense in the torus will project to
a curve which is dense in the annulus.

It’s possible to parametrize a torus using two angles and then the flow can be
depicted in two dimensions. For the tori considered here, one angle will by θ. The
other could be a time parameter on the curve M̃(h,C). Each such curve is a
periodic solution of the reduced system in the (r, w) plane. If T (h,C) is the period
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Figure 15. Projections of invariant tori. Six orbits on a Kepler
torus (left) and one orbit from the power law with α = 1.5 (right).
The Kepler torus is filled with simple periodic orbit; orbits on the
other torus could be dense.

then the variable τ = 2πt/T runs from 0 to 2π during one period. The angular
variables (τ, θ) parametrize the torus M(h,C). Figure 16 shows the flow using
these variables for the solution in Figure 14 (left). If C > 0, all solutions have τ
and θ monotonically increasing. There will be a Poincaré map from τ = 0 to τ = 2π
which is a rigid rotation of the circle given by θ 7→ θ + Φ(h,C). The well-known
Kronecker theorem shows that if Φ = 2πω with ω irrational, then every orbit of
this circle rotation is dense in the circle. It follows that the corresponding solution
curve is dense in the torus (exercise 4.11).
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τ

θ

Figure 16. Flow on a torus in angular variables (τ, θ). The torus
corresponds to the solution in Figures 14 and 15 (left). One period
or τ is shown in red and the corresponding change in θ is Φ = 2πω
with ω ' 1.46573 . . ..
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Exercise 4.10. Prove Proposition 4.12.

Exercise 4.11. Consider the torus flow on M(h,C) using angular parameters
(τ, θ) and the corresponding Poincaré map of the circle τ = 0 mod 2π. Show that
if a solution has a dense orbit for the Poincaré map then the orbit in the torus is
also dense.

5. Perturbation Theory

Several real-life problems in celestial mechanics which can be viewed as a two-
body problem plus a small perturbing force. This section describes two examples,
the motion of a satellite around the Earth and the precession and nutation of the
Earth itself. Both are based on the fact that the Earth is not spherically symmetric
but has an equatorial bulge. It will be modeled as an “oblate spheroid”, that is, a
rigid body whose mass distribution is not spherically symmetric but is symmetric
under rotation around an axis. The potential will be approximated by using a
Legendre expansion.

5.1. Rigid bodies, inertia tensor and MacCullagh’s formula. To describe a
solid body in R3, let Q = (X,Y, Z) be a set of body coordinates in a copy of R3.
The solid is specified by a compact set B ⊂ R3 together with a continuous mass
density function ρ. The total mass and center of mass of the body are given by

m =

∫
B
ρ(Q) dV Q̄ =

1

m

∫
B
Qρ(Q) dV

where the integrals are triple integrals with respect to Q. Assume that the origin
of the body coordinates is chosen so that Q̄ = 0. The inertia tensor of B is the
3× 3 matrix

(44) I =

∫
B

(|Q|2I −Q ·QT )ρ(Q) dV.

Here I is the 3× 3 identity matrix and Q is viewed as a column vector so Q ·QT is
also 3×3. Now I is a symmetric, positive definite matrix so it is possible to choose
the axes of the body coordinate system so that

I = diag(A,B,C) 0 ≤ A ≤ B ≤ C.
Then the X,Y, Z axes are called the principle axes and A,B,C are the principle
moments of inertia.

Example 5.1. Suppose B is the spheroid X2

a2 + Y 2

a2 + C2

c2 ≤ 1 with constant density
ρ0. So a is the radius at the equator and c is the radius at the poles. The moments
of inertia are

A = B =
4π

15
ρ0a

2c(a2 + c2) =
1

5
m(a2 + c2) C =

8π

15
ρ0a

4c =
2

5
ma2

where m = 4π
3 ρ0a

2c is the total mass.
An equatorial bulge would mean a > c and A < C. The effect of the bulge can

be measured using one of the dimensionless ratios

ε =
C −A
C

=
a2 − c2

2a2
J2 =

C −A
ma2

=
a2 − c2

5a2
.

Both of these quantities make sense even if the density is not constant. For the
Earth

ε ' 0.00323 J2 ' 0.0010826.
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If u ∈ R3 is a unit vector and Q ∈ R3 then

uT (|Q|2I −Q ·QT )u = |Q|2|u|2 − (Q · u)2 = |Q|2 sin2 γ = d2

where γ is the angle between Q and u and d is the distance from Q to the axis
determined by u. This is called the moment of inertia of Q with respect to u.
Hence the total moment of inertia of B with respect to the axis u is

(45) I(u) = uTIu =

∫
B
|Q|2 sin2 γ ρ(Q) dV = Au21 +Bu22 + Cu23.

The total moment of inertia of B with respect to the origin is defined as

(46) I0 =

∫
B
|Q|2 ρ(Q) dV =

1

2
(A+B + C).

The Legendre polynomials Pn(c) are defined as the coefficients in the expansion

1√
1 + x2 − 2xc

=

∞∑
n=0

Pn(c)xn = 1 + cx+
1

2
(3c2 − 1)x2 + . . . .

For q,Q ∈ R3, |q−Q|2 = r2 +R2−2rR cos γ where r = |q|, R = |Q| and rR cos γ =

q ·Q. Then |q −Q| = r
√

1 + x2 − 2xc where x = R/r and c = cos γ and

(47)
1

|q −Q|
=

1

r

∞∑
n=0

(
R

r

)n
Pn(cos γ) =

1

r
+
R

r2
cos γ +

R2

2r3
(3 cos2 γ − 1) + . . .

Consider the gravitational interaction of a rigid body B and a point particle of
mass 1 at position q. The gravitational potential of B at q is given by

U(q) =

∫
B

ρ(Q)dV

|q −Q|
' m

r
+

1

r2

∫
B
R cos γρ(Q)dV +

1

r3

∫
B
R2P2(γ)ρ(Q)dV + . . .

where the integrals are over Q ∈ B and where the expansion (47) was used. Drop-
ping the higher order terms leads to a convenient approximation to the potential.
Note that rR cos γ = q · Q and integration shows that the second term in the
approximation is r−3q · Q̄ = 0 by choice of the body coordinate system.

To evaluate the third term, write P2(cos γ) = 1
2 (3 cos γ2 − 1) = 1− 3

2 sin γ2 and
recall (46) to get∫

B
R2P2(γ)ρ(Q)dV = I0 −

3

2
I(q/r)

=
1

2

(
A+B + C − 3(A(x/r)2 +B(y/r)2 + C(z/r)2)

)
Thus the interaction potential between the rigid body and the point mass m located
at position q = (x, y, z) in body coordinates satisfies

(48) U(q) ' m

r
+

1

2r3
(
A+B + C − 3(A(x/r)2 +B(y/r)2 + C(z/r)2)

)
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which is known as MacCullagh’s formula. If A = B this can be written in several
useful ways

(49)

U(q) ' m

r
+

1

2r3
(C −A)(1− 3(z/r)2)

=
m

r
+

1

2r3
(C −A)(1− 3 cos2 γ)

=
m

r

(
1 + J2

a2

2r2
(1− 3 cos2 γ)

)
.

Exercise 5.1. Verify the formulas in Example 5.1.

5.2. Motion of an Earth satellite. In this section, MacCullagh’s formula will be
used to approximate the motion of a small satellite around the Earth. Assume that
the Earth is an oblate spheroid, symmetric about the z axis in R3 and that, apart
from its rotation about this axis, it remains fixed. Choose the units of distance so
that the equatorial radius of the Earth is a = 1 and let the unit of time be one day.
As in Exercise 1.1, the mass of the Earth will be m ' 11468.

If q = (x, y, z) is the position of the satellite, its motion will be governed by a
perturbed Kepler problem with Lagrangian

L =
1

2
|v|2 + U(q) U(q) ' m

r
+
δm

2r3
(1− 3 cos2 γ).

where δ = J2 ' 0.001 and cos γ = z/r. Note that, as for the Kepler problem, the
mass m has been canceled out of the equation. To avoid hitting the Earth, only
solutions with r(t) > 1 should be allowed.

First consider the effect of the perturbation on an equatorial satellite, that is, a
solution with z(t) = 0. This is a central force problem in R2 with

U(q) = F (r) =
m

r
+
δm

2r3
.

After section 4.4, one expects that the bounded solutions will move on invariant
tori. Fixing an angular momentum C leads to a reduced system

Lc(r, w) =
1

2
w2 − VC(r) VC(r) =

C2

2r2
− m

r
− δm

2r3
.

For m = 11468, C = 200 and δ = 0.1, Figure 17 shows the behavior of q(t) for two
of the resulting solutions over a time period of 30 days. It can be described as an
approximately elliptical path which slowly precesses. The motion of the satellite is
counter-clockwise and so is the precession, so the precession is called prograde as
opposed to retrograde.

Moving on to the nonplanar motions provides an opportunity to introduce some
typical tools of perturbation theory – Delaunay variables and the averaging method.
Recall that the elliptical orbits of the Kepler problem can be described by orbital
elements

a, e, ω, ι,Ω,M

as in Section 4.1. One can view the orbital elements as a new set of coordinates.
The mean anomaly M = n(t − τ) increases with constant speed while all of the
other elements remain constant. For the perturbed Kepler problem, one expects
that these other elements will change slowly.

It’s possible to find the differential equations for the orbital elements but they
are rather complicated. It’s easier to make use of a slightly different set of variables.
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Figure 17. Two satellite orbits around an oblate planet with J2 =
0.1. They resemble elliptical orbits of the Kepler problem with a
slow prograge precession. For the Earth, with J2 ' 0.001 the
precession is much slower.

Definition 5.1. The Delaunay variables for the nonplanar, elliptical orbits of the
Kepler problem are M,ω,Ω, L,G,H where

(50) L =
√
ma G =

√
ma(1− e2) H = G cos ι.

Note that L,H are not the Lagrangian and Hamiltonian. The physical meaning
of the variables L,G,H can be found using (26). Namely

(51) L =
m√
−2h

G = |C| H = C3

where h is the energy and C = (C1, C2, C3) is the angular momentum.
The reason for preferring Delaunay variables to the usual orbital elements is

explained by the following result.

Proposition 5.1. The Delaunay variables are symplectic coordinates, that is, the
map (q, p) 7→ (M,ω,Ω, L,G,H) is symplectic.

The proof is rather involved. A readable reference is [12].
The differential equations for the Delaunay variables are Hamilton’s equations

for the Hamiltonian H(M,ω,Ω, L,G,H) which is obtained by expressing the energy
function in terms of these variables. For the unperturbed Kepler problem, (51)

shows that H(M,ω,Ω, L,G,H) = − m2

2L2 . Hamilton’s equations are simply

Ṁ = HL = −m
2

L3
ω̇ = Ω̇ = L̇ = Ġ = Ḣ = 0.

As a check, recall that M(t) = n(t − τ) so Ṁ = n where n = 2π/T = (|2h|) 3
2 /m.

This agrees with

−m
2

L3
= −m2(m/

√
−2h)−3 =

|2h| 32
m

.

For the perturbed Kepler problem describing the satellite motion, the Hamilton-
ian will be

H(M,ω,Ω, L,G,H) = − m
2

2L2
+ F (M,ω,Ω, L,G,H)
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where F is the non-Keplerian part of the potential energy. The catch is that this
must be expressed in terms of the Delaunay variables. For example, for the satellite
problem in Cartesian coordinates,

F =
δm

2r3
(1− 3 cos2 γ)

where γ is the angle between q = (x, y, z) and (0, 0, 1). To express this in terms
of the Delaunay variables, consider a right spherical triangle determined by the
projections to the unit sphere of q = (x, y, z), its projection to the equator (x, y, 0)
and the ascending node. Referring to Figure 7 shows that the “hypotenuse” of the
triangle is an arc of angular size ω + ν where ω is the angle between the ascending
node and the pericenter and ν is the angle from the pericenter to q. The vertical
side of the triangle is an arc of size π

2 − γ and the angle opposite this side is the
inclination, ι. Now the spherical generalization of the planar rule b = c sin θ for
a right triangle with hypotenuse c and side b opposite to θ is sin b = sin c sin θ. It
follows that

cos γ = sin(
π

2
− γ) = sin(ω + ν) sin ι

and

F =
δm

2r3
(1− 3 sin2(ω + ν) sin2 ι).

While ω, ι can easily be expressed in Delaunay variables, ν is problematical. How-
ever, the next step will be to average the perturbation.

When δ = 0, the perturbation vanishes and the orbit does not evolve and the
satellite motion is periodic. For small δ one expects the orbit to change significantly
only on time intervals much longer than one period. Intuitively, it makes sense to
consider a new perturbing function obtained by averaging the real perturbation
over one satellite period. This type of procedure can be justified to some extent
[3], but this will not be discussed here. For an elliptical Kepler orbit of period T ,
the average will be

F =
1

T

∫ T

0

δm

2r3
(1− 3 sin2(ω + ν(t)) sin2 ι) dt.

Using C = r2θ̇ = r2ν̇, this can be written as an average with respect to ν

F =
2π

T |C|
1

2π

∫ 2π

0

δm

2r
(1− 3 sin2(ω + ν) sin2 ι) dν

=
δmn

p|C|
1

4π

∫ 2π

0

(1 + e cos ν)(1− 3 sin2(ω + ν) sin2 ι) dν

where r(ν) = p/(1 + e cos(ω + ν)) as in (27) and n = 2π/T is the mean angular
speed. The terms involving cos ν integrate to zero and the integral of sin(ω + ν)2

is π. After eliminating sin ι in favor of cos ι the averaged perturbing potential is

F =
δmn

4p|C|
(1− 3 cos2 ι).

Finally, to express this in terms of Delaunay variables, note that cos ι = H/G and
p = |C|2/m = G2/m. Hence

F (M,ω,Ω, L,G,H) =
δm2n

4G3
(1− 3

H2

G2
).
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Proposition 5.2. According to the approximate, averaged equations, the motion of
an earth satellite can be described as follows. The orbit is approximately elliptical
with the elements a, e, ι remaining constant while the ascending node Ω and the ω
precess slowly at rates given approximately by

ω̇ =
3δn(5 cos2 ι− 1)

4p2
Ω̇ = −3δn cos ι

2p2
.

where p = a(1− e2) and n = 2π/T =
√
m/a

3
2 .

Proof. Using Delaunay variables, the Hamiltonian is

H((M,ω,Ω, L,G,H) = − m
2

2L2
+
δm2

4G3
(1− 3

H2

G2
).

Since H does not depend on the angular variables M,ω,Ω, Hamilton’s differential
equations show that the momentum variables L,G,H are all constant. Recalling
their definition in terms of orbital elements (50), it follows that a, e, ι are also
constant. On the other hand Hamilton’s equations for ω,Ω are

ω̇ = HG =
3δm2n(5H2 −G2)

4G6
Ω̇ = HH = −3δm2nH

2G5
.

Setting G =
√
mp =

√
ma(1− e2) and G cos ι gives the formulas in the proposition.

QED

Note that Ω̇ < 0 which means that the precession of the plane of the orbit is
retrograde with respect to the orbit itself. Meanwhile, within the plane of motion,
the perihelion position is precessing in a direction which is prograde if cos2 ι < 1

5

and retrograde if cos2 ι > 1
5 . ι = arccos(

√
1/5) ' 63.435◦ is called the critical

inclination. The speed of these precessions will depend on the size of the orbit as
measured by the semilatus rectum p.

Example 5.2. For the Earth, m ≈ 11468 and δ = J2 = 0.00108. Recall that the
units have been chosen so that the Earth’s radius is 1 and time is in days. Consider
a nearly circular satellite orbit with a ' p. The period will be T ' 0.0587a

3
2

days. The mean angular speed is n ≈ 107/a
3
2 radians per day. Then the speeds of

precession in degrees per day are

Ω̇ ' −9.9638 cos ι

a
7
2

ω̇ ' 4.9819(5 cos2 ι− 1)

a
7
2

.

For a low, equatorial orbit with a ' 1 this means the plane of motion precesses at
about −10 degrees per day while perihelion angle precesses at about 5 degree per
day. On the other hand, here is some real satellite data.

On a certain day, the international space station had orbital elements a '
1.0653, e ' 0.004516, ι ' 51.64◦,Ω ' 354.15◦, ω ' 156.907◦. After about 10.32 days
the elements were a ' 1.0658, e ' 0.00055, ι ' 51.64◦,Ω ' 303.08◦, ω ' 216.22◦.
The predicted and (observed) changes in Ω, ω in degrees per day are

∆Ω ' −4.96 (−4.45) ∆ω ' 3.71 (5.16).

The space station is in a low orbit and is, perhaps, subjected to a significant amount
of drag. It makes about 15 revolutions per day.

On the other hand, the satellite GPS 32 has a much higher orbit. The elements
on a certain day were a ' 4.1613, e ' 0.00353, ι ' 54.8210◦,Ω ' 183.117◦, ω '
216.985◦ and after 10 days they were a ' 4.1613, e ' 0.00356, ι ' 54.8218◦,Ω '
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182.721◦, ω ' 217.127◦. The predicted and (observed) changes in Ω, ω in degrees
per day are

∆Ω ' −0.0391 (−0.0396) ∆ω ' 0.0223 (0.0176).

This satellite makes about 2 revolutions per day.

6. Restricted Three-Body Problem

This section discusses a special case of the three-body problem where one of the
masses is much smaller than the other. In some popular applications the three
bodies are the Sun, Jupiter and an asteroid or the Sun, the Earth and the Moon
or the Earth, the Moon and a spacecraft.

Consider the three-body problem where two of the masses m1,m2 are much
larger than the third mass m3. In the limit as m3 → 0, he motion of the two
primaries, m1,m2 are not affected by the small mass, so they will move on an orbit
of the two-body problem. The simplest case is to assume they are in a circular orbit,
say counterclockwise. By a choice of units, one may assume that m1 +m2 = 1 and
that the major semiaxis of the orbit is a = |q2 − q1| = 1. Note that requiring three
normalizations G = m1 +m2 +m3 = a = 1 uses up all of the freedom in the choice
of units. From Example 4.1 or Proposition 4.7, the period of the resulting orbit is
T = 2π and choosing a convenient origin for time, t, the two primary masses move
on circles according to

q1(t) = −µ(cos t, sin t, 0) q2(t) = (1− µ)(cos t, sin t, 0)

where m1 = 1− µ,m2 = µ, 0 ≤ µ ≤ 1.
Now the third mass will move under the gravitational influence of the primaries.

Cancelling a factor of m3 from both sides of Newton’s equation gives

q̈3 = − (1− µ)(q3 − q1)

r313
− µ(q3 − q2)

r323
.

where ri3 = |q3 − qi(t)|. Note that this is the EL equation for the time-dependent
Lagrangian

L(q3, v3, t) =
1

2
|v3|2 +

1− µ
r13

+
µ

r23
.

The next step is to introduce rotating coordinates to make the position vectors
of the primaries fixed. Let R(t) be the rotation matrix

(52) R(t) =

cos t − sin t 0
sin t cos t 0

0 0 1


which represents a counterclockwise rotation by t so that q1(t) = R(t)(−µ, 0, 0) and
q2(t) = R(t)(1−µ, 0, 0). Define a new position vector q(t) ∈ R3 by q3(t) = R(t)q(t).
The derivative q̇(t) satisfies

v3(t) = R(t)q̇(t) + Ṙ(t)q(t) = R(t)(q̇(t) +Kq(t)) K = R−1 Ṙ =

0 −1 0
1 0 0
0 0 0

 .
This change of variables converts the time-dependent Lagrangian L(q3, v3, t) to

L(q, q̇) =
1

2
|q̇ +Kq|2 +

1− µ
r13

+
µ

r23
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where, since the Euclidean distance is invariant under rotations,

r13 = |q − (µ, 0, 0)| r23 = |q − (1− µ, 0, 0)|.
Let q = (x, y, z) and q̇ = (u, v, w). Then

(53) L(q, v) =
1

2
(u2 + v2 + w2) + (xv − yu) + V (x, y, z)

where

(54) V (x, y, z) =
1

2
(x2 + y2) +

1− µ√
(x+ µ)2 + y2 + z2

+
µ√

(x+ µ− 1)2 + y2 + z2.

This Lagrangian system is called the circular, restricted three-body problem or
CR3BP. The EL equations are

(55)

ẋ = u u̇ = Vx + 2v

ẏ = v v̇ = Vy − 2u

ż = w ẇ = Vz.

For example, the conjugate momentum px = Lu = u−y so ṗx = u̇−v = Lx = Vx+v.
As in Exercise 2.4, there is an “energy” constant

H(x, y, z, u, v, w) = (px, py, pz) · (u, v, w)− L(x, y, z, u, v, w) = h

where the conjugate momenta of x, y, z are

px = Lu = u− y py = Lv = v − x pz = Lz = w.

This gives

(56) H(x, y, z, u, v, w) =
1

2
(u2 + v2 + w2)− V (x, y, z) = h.

There is Hamiltonian version of the CR3BP where the Hamiltonian is obtained
from this energy function by replacing the velocities by the momenta, but this will
not be used here.

Since V (x, y, z) is a function of z2, it follows that Vz(x, y, 0) = 0. Then it follows
from (55) that {z = w = 0} is an invariant set for the CR3BP, consisting of all states
where the position and velocity of m3 lie in the plane R2 × 0. Setting z = w = 0
gives a Lagrangian system called the planar, circular, restricted three-body problem
or PCR3BP.

Although h will be called the energy, it is not the same as the energy of the
original three-body problem or even the scaled energy of the third body. Thinking
of the third body as a unit mass and taking kinetic energy plus potential energy in
the nonrotating frame would give

h3 =
1

2
|v3|2−

1− µ
r13

− µ

r23
=

1

2
(u2 +v2 +w2)+(xv−yu)+

1

2
(x2 +y2)− 1− µ

r13
− µ

r23
.

On the other hand, the third component of the angular momentum of the third
body in the nonrotating frame works out to be

c3 = (xv − yu) + x2 + y2.

So the constant h in (56) is

h = h3 − c3.
The constant −2h, called the Jacobi constant, is often used but h will be retained
here.
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6.1. Hill’s Regions and Lagrange Points. The Lagrangian system (55) has
configuration space X = R3 \ {P1, P2} where P1 = (−µ, 0, 0), P2 = (1− µ, 0, 0) are
the positions of the primaries. The phase space TX = X × R3 has dimension six
and the energy levels

M(h) = {(q, q̇) : H(q, q̇) = h}
have dimension 5. For the PCR3BP, the phase space has dimension 4, the energy
level dimension 3. It turns out that fixing the energy puts some restrictions on the
position q. Namely, rewriting (56) shows that V (x, y, z) + h = 1

2 (u2 + v2 + z2) ≥ 0.
For h ≥ 0, this is no restriction but for h < 0 may be.

Definition 6.1. The Hill’s region corresponding to energy h is the projection of
M(h) to the configuration space

H(h) = {q : V (q) + h ≥ 0}.

The boundary Z(h) = ∂H(h) = {V (q) = −h} is the zero-velocity surface or, for
the planar problem, the zero-velocity curve.

If q ∈ H(h) then the set of admissible velocities (u, v, w) forms a sphere of radius√
2V (x, y, z) + h which shrinks to the point (0, 0, 0) for q ∈ Z(h). For the planar

problem the velocities (u, v) form circles. Thus the energy manifoldM(h) lies over
its projection H(h) as a kind of degenerate sphere or circle bundle.

Figure 18. Graph of the planar potential V (x, y) and the corre-
sponding zero velocity curves. The primaries have masses 1− µ =
2
3 , µ = 1

3 . Zero velocity curves for h= -2.4 (blue), -1.95 (green),
-1.77 (red), -1.66 (black), -1.5 (black), -1.4 (black) are shown.

Hill’s regions are named for George W. Hill who used them in his study of
the motion of the Moon [11]. The Hill’s regions of the planar problem are easier
to visualize. Figures 18 shows the graph of V (x, y) and some of its level curves
{V (x, y) = −h}. Note that V (x, y) → ∞ as |(x, y)| → ∞ and also as (x, y) →
P1, P2. It follows that every Hill’s regionH(h) contains all points sufficiently close to
P1, P2,∞. For example, the three blue curves in the figure form Z(h) for h = −2.4
and the corresponding Hill’s region H(−2.4) consists of 2 disk-like regions near
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P1, P2 and the region outside the largest blue curve. For h = −1.4, Z(h) consists
of the smallest, symmetrical pair of black circles and the Hill’s region H(−1.4) is
everything outside of these curves. Figure 19 shows one of the Hill’s regions with
the circle of admissible velocities shown at several points.
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0.4
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Figure 19. Circles of admissible velocities for points in a Hill’s
region. The circles shrink to points on the zero-velocity curve.

The following result shows how the spatial Hill’s regions can be understood from
the planar ones.

Proposition 6.1. Let h < 0 and let H2(h),H3(h) denote the planar and spatial
Hill regions, respectively. Also, let Z2(h), Z3(h) be the corresponding zero velocity
curve and surface. Then

• Z3(h) ∩ {z = 0} = Z2(h)
• Z3(h) ∩ {z ≥ 0} is a continuous graph over H2(h) of the from z = g(x, y)

with g(x, y) = 0 on Z2(h)
• Z3(h) ∩ {z ≤ 0} is given by z = −g(x, y)
• H3(h) = {(x, y, z) : (x, y) ∈ H2,−g(x, y) ≤ z ≤ g(x, y)}

Proof. Fix any (x0, y0) ∈ R2 and consider the function f(z) = V (x0, y0, z)+h. The
intersection of H3(h) with the vertical line l through (x0, y0) is given by f(z) ≥ 0.
Since V is a function of z2, f(−z) = f(z) and it suffices to consider z ≥ 0. Note
also that f(z)→ h < 0 as |z| → ∞.

Now f(0) = V (x0, y0, 0) + h and the derivative is

f ′(z) = −z
(

1

r313
+

1

r323

)
.

Thus f ′(z) < 0 and f(z) is strictly decreasing for z > 0. If (x0, y0) /∈ H2(h) then
f(0) < 0 and the line l does not intersect H3(h). If (x0, y0) ∈ Z2(h) then f(0) = 0
and the rest of the line l is not in H3(h). If (x0, y0) ∈ H2(h)\Z2(h), then f(0) > 0.
It follows that there is a unique z > 0 with f(z) = 0. Call this point z = g(x0, y0).
The implicit function theorem shows that g(x0, y0) is smooth on H2(h)\Z2(h) and
it clearly extends continuously to 0 on Z2(h). QED

For example, consider the the energy h = −2.4 where the planar Hill region
consists of two disks around the primaries and the region outside the large blue
curve, the corresponding spatial Hill region will consist of two solid balls around
the primaries and an unbounded solid (see Figure 20).
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Figure 20. Zero-velocity surfaces corresponding to the curves
with energy h = −2.4 in Figure 18.

The geometry of the Hill’s regions allowed Hill to give a purely qualitative proof
of a type of stability for the motion of the moon. Suppose the primary masses
are the Sun and the Earth and the small mass is the Moon. Fitting the observed
motion of the Moon to the CR3BP, Hill found that the energy level was such that
the Hill’s regions were similar to the case H(−2.4) in Figures 18 and 20. The Hill’s
region has three components, one of which is a bounded region around the Earth.
Since the position of the Moon must remain in the Hill region, it must remain for
all time in the component where it started. Thus, the moon can never “escape”
from the Earth. A typical planar orbit is shown in Figure 21.

-0.5 0.0 0.5 1.0

-0.4

-0.2

0.0

0.2

0.4

Figure 21. An orbit of the PCR3BP with h = −2.4 which is
trapped near one of the primaries as in Hill’s stability proof.

In studying the restricted three-body problem, a special role is played by the
critical points of V (x, y, z). In Figure 18 it is clear that for this value of µ, there are
exactly five critical points for the planar potential V (x, y, 0), three saddle points
along the x axis and two minima with y 6= 0. It turns out that critical points are
always planar and there are always exactly five.



TOPICS IN CELESTIAL MECHANICS 55

Proposition 6.2. For every 0 < µ < 1, V (x, y, z) has exactly five critical points.

There are two minima at ( 1
2 − µ,±

√
3
2 , 0) (the planar, equilateral triangle config-

urations) and three saddle points (ξi, 0, 0) along the x-axis with ξ3 < −µ < ξ1 <
1− µ < ξ2.

Definition 6.2. The five critical points of V are called the Lagrange points. As-
suming that the larger primary is the one with mass 1− µ and position (−µ, 0, 0),
they are usually denoted L1, . . . , L5 where Li = (ξi, 0, 0), i = 1, 2, 3, L4 = ( 1

2 −
µ,
√
3
2 , 0) and L5 = ( 1

2 − µ,−
√
3
2 , 0).

The Lagrange points are easily located in the planar contour plot of Figure 18. At
the equilateral points, V attains its minimum and the corresponding zero velocity
curves reduce to points. At the collinear critical points where V has saddle points,
the zero velocity curves have double points where they look locally like the letter
X. It follows from the implicit function theorem that all of the noncritical level
curves of V are smooth.

Proof of Proposition 6.2. The critical points are given by Vx = Vy = Vz = 0. Now
Vz = −zγ2 where

γ2 =
1− µ
r313

+
µ

r323
> 0.

It follows that all critical points have z = 0. Next,

Vx = x
(
1− γ2

)
+ (1− µ)µ

(
1

r323
− 1

r313

)
Vy = y

(
1− γ2

)
.

The second equation gives two cases

y = 0 or F = 1− γ2 = 0.

Consider the case F = 0. The Vx equation then gives r13 = r23. Then substitu-
tion into F gives 1− 1−µ

r313
− µ

r313
= 1− 1

r313
= 0 so, in fact, r13 = r23 = 1. This gives

the two equilateral triangle solutions.
On the other hand, if y = z = 0 the x equation simplifies to

(57) Vx(x, 0, 0) = x− (1− µ)(x+ µ)

|x+ µ|3
− µ(x+ µ− 1)

|x+ µ− 1|3
= 0.

There are several ways to see that this has exactly one solution in each of the
intervals (∞,−µ), (−µ, 1−µ), (1−µ,∞). Consider the middle interval where −µ <
x < 1 − µ. It can be reparametrized by setting x = −µ + s

1+s where the new

parameter, s ∈ (0,∞). Then equation (57) becomes

µs5 + 3µs4 + 3µs3 − 3(1− µ)s2 − 3(1− µ)s− (1− µ)

s2(1 + s)
.

Note that there is exactly one sign change in the coefficients of the numerator, so
it follows from Descartes’ rule of signs [1, 6] that there is exactly one positive root.
A similar, purely algebraic approach works in each of the other two intervals (see
Exercise 6.1). Although this proves existence of the collinear critical points, finding
them involves solving the fifth-degree equation.
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V(x,0)

Figure 22. The collinear potential V (x, 0) is convex in each of
the intervals determined by the primaries.

A second approach uses some calculus. Consider the second derivatives of V

Vxx = F +
3(1− µ)(x+ µ)2

r513
+

3µ(x+ µ− 1)2

r523

Vxy =
3(1− µ)(x+ µ)y

r513
+

3µ(x+ µ− 1)y

r523

Vyy = F +
3(1− µ)y2

r513
+

3µy2

r523

For the collinear points, y = z = 0, these reduce to

Vxx = 1 + 2γ2 Vxy = 0 Vyy = F = 1− γ2.

Since Vxx(x, 0, 0) > 0 the function V (x, 0, 0) is strictly convex (see Figure 22). In
addition, V (x, 0, 0)→∞ as |x| → ∞ and as x→ −µ, 1−µ. It follows that V (x, 0, 0)
has exactly one critical point, a minimum, in each of the intervals (∞,−µ), (−µ, 1−
µ), (1− µ,∞).

The second derivatives can be used to classify the five critical points. At the

equilateral points (1
2 − µ,±

√
3
2 , 0), F = 0 and ri3 = 1, so

Vxx =
3

4
Vxy = ±3

√
3(1− 2µ)

4
Vyy =

9

4
.

The diagonal entries of the matrix of second derivatives are positive and the de-
terminant 27

4 (1 − µ)µ is also positive. So the equilateral points are minima of
the planar potential V (x, y, 0). When z = 0 the second derivatives involving z are
Vxz = Vyz = 0 and Vzz = −γ2 < 0. So as critical points of V (x, y, z), the equilateral
points have signature (+,+,−).

At the collinear critical points (ξi, 0, 0) it was shown above that Vxx > 0. Also
Vxy = 0 and Vyy = F = 1 − γ2. It turns out that F (ξi, 0, 0) < 0 and then
it follows that the collinear points are saddles for the planar potential V (x, y, 0).
Since Vxz = Vyz = 0 and Vzz < 0, they have signature (+,−,−) for V (x, y, z).
To see that F < 0, write the equation Vx equation as Vx = xF + G = 0 where
G = (1 − µ)µ(1/r323 − 1/r313). In the interval (∞,−µ), x < 0 and G < 0. So it
follows that at the critical point, F < 0. Similarly, in (1− µ,∞) the claim follows
from x > 0 and G > 0. Finally, Exercise 6.2 shows that F < 0 everywhere in the
middle interval (−µ, 1− µ). QED
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Exercise 6.1. Use Descartes’ rule of signs to show that (57) has exactly one root
in each of the intervals (1 − µ,∞), (−∞,−µ). For example, in the first of these
intervals, set x = 1− µ+ s to reduce the problem to solving a polyomial equation
for s > 0.

Exercise 6.2. This exercise shows one way to prove that the function F = 1 −
(1 − µ)/r313 − µ/r323 satisfies F (x, 0, 0) < 0 for −µ < x < 1 − µ. Note that on
the interval in question, 0 < ri3 < 1 and r13 + r23 = 1. The change of variables
r13 = s/(1 + s), r23 = 1/(1 + s) reduces the problem to showing that F (s) < 0 for
0 < s <∞. Show that

F (s) = −s−3
(
µs6 + 3µs5 + 3µs4 + 3(1− µ)s2 + 3(1− µ)s+ (1− µ)

)
to complete the proof.

Exercise 6.3. Let L(q, v) = 1
2 |v|

2− 1
|q| , q ∈ R2 \0, be the Lagrangian of the Kepler

problem in R2 with mass m = 1. Introduce rotating coordinates Q where q = R(t)Q

and R(t) =

[
cos t − sin t
sin t cos t

]
. Find the Lagrangian L(Q, Q̇) of the rotating Kepler

problem. Find the potential V (Q), the zero velocity curves and the critical points.

6.2. Relative Equilibria. In addition to their geometrical significance as singular
points of the zero velocity curves and surfaces, the Lagrange points also have a nice
dynamical significance as relative equilbrium points (RE), that is, they are equilib-
rium points in rotating coordinates. In nonrotating coordinates they give simple
periodic orbits. Since it is not possible find the general solution of the n-body
problem for n ≥ 3, most of the results are either statements about the qualitative
behavior of solutions (such as the confinement to Hill’s regions) or existence theo-
rems for special kinds of orbits. The existence of the five relative equilibria for the
three-body problem is the simplest example of the latter.

Proposition 6.3. The five points (q, q̇) = (Li, 0) are equilibrium points of the
CR3BP in rotating coordinates. In nonrotating coordinates they represent circular,
periodic solutions with q(t) = R(t)Li where R(t) is the matrix (52).

Proof. The equilibria of (55) are given by u = v = w = Vx = Vy = Vz = 0. QED

To investigate the stability of these RE, consider the linearized differential equa-
tions. At any point (x, y, z) with z = 0, these decouple as follows

˙δx

δ̇y
˙δu

δ̇v

 =


0 0 1 0
0 0 0 1
Vxx Vxy 0 2
Vxy Vyy −2 0



δx
δy
δu
δv

 [
δ̇z
˙δw

]
=

[
0 1
Vzz 0

] [
δz
δw

]
.

At all five Lagrange points, Vzz = −γ2 and the 2× 2 vertical block has imaginary
eigenvalues

(58) ±i γ γ =

√
1− µ
r313

+
µ

r323
.

The nature of the eigenvalues at the planar 4× 4 block is different at the collinear
points than at the equilateral ones.



58 RICHARD MOECKEL

At the collinear points, the characteristic polynomial can be written

z2 + (4− Vxx − Vyy)z + VxxVyy = 0

where z = λ2 represents the square of the eigenvalues. Since

Vxx = 1 + 2γ2 > 0 Vyy = F = 1− γ2 < 0

the two roots satisfy z− < 0 < z+ so two of the four eigenvaiues are real and two
are imaginary

(59) λ = ±√z+ λ = ±i ω1 ω1 =
√
|z−|.

Thus

Proposition 6.4. The equilibrium points corresponding to the collinear Lagrange
points L1, L2, L3 are unstable. There are two imaginary pairs of eigenvalues and
one pair of real eigenvalues of opposite sign.

In spite of the instability, there is a four-dimensional invariant subspace for the
linearized equations on which the linearized dynamics consists of stable oscillations.
Some of the implications of this for the nonlinear flow will be considered later.

At the equilateral points, the characteristic polynomial of the 4× 4 block is

z2 + z +
27

4
µ(1− µ) = 0

so

z = λ2 = −1

2

(
1±

√
1− 27µ(1− µ)

)
.

Proposition 6.5. The equilibrium points corresponding to the equilateral Lagrange
points L4, L5 are unstable if µ(1− µ) > 1

27 with one pair of imaginary eigenvalues

and four eigenvalues of the form ±a± i b with a 6= 0, b 6= 0. If µ(1− µ) < 1
27 they

are linearly stable with three pairs of imaginary eigenvalues.

Proof. If µ(1 − µ) > 1
27 , the eigenvalues satisfy λ2 = − 1

2 ± i k, k 6= 0. Since their
squares are nonreal, the planar eigenvalues are neither real nor imaginary and must
take the required form. If µ(1− µ) < 1

27 , the values of λ2 are real and negative so
the λ are imaginary. QED

Assuming µ is the smaller of the two primary masses, the linear stability criterion
is µ < 1

18 (9 −
√

69) ' 0.03852. So unless one of the masses is much larger than
the others, the triangular points will be unstable. But all of the primary pairs
Sun-Jupiter, Sun-Earth and Earth-Moon satisfy the criterion. The neighborhoods
of the Sun-Jupiter L4 and L5 points are, in fact, populated by groups of asteroids
called the Trojans. They orbit around the Sun at the same rate as Jupiter, always
maintaining an approximately equilateral configuration.

The presence of purely imaginary eigenvalues here is unusual from the point
of view of general dynamical systems theory but is typical of equilibrium points
in classical mechanics. Although the Lagrangian approach has been used here,
it is easiest to understand this phenomenon from the Hamiltonian point of view.
Since this can be arranged by a coordinate change (which would not change the
eigenvalues), the results of this discussion also apply here.

Proposition 6.6. Let (q0, p0) ∈ R2m be an equilibrium point of a Hamiltonian
system and let P (λ) be the characteristic polynomial of the linearized differential
equation. Then P (−λ) = P (λ). If λ is an eigenvalue, so are −λ, λ,−λ.
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Proof. Hamilton’s equations are q̇ = Hp, ṗ = −Hp where q = (q1, . . . , qm), p =
(p1, . . . , pm). Here we regard both of these as coordinate vectors in Rm. The
matrix of the linearized equations at (q0, p0) are[

Hpq Hpp

−Hqq −Hqp

]
= −JS J =

[
0 −Im
Im 0

]
S =

[
Hqq Hqp

Hpq Hpp

]
.

where Im is the m × m identity matrix. Let P (λ) = det(−JS − λI2m). Since
ST = S, J2 = −I2m, JT = −J and det J = 1,

P (−λ) = det(−JS + λI2m) = det(−JS + λI2m)T = det(SJ + λI2m)

= det(−S + λJ) = det(−JS − λI2m) = P (λ)

where the equations on the second line come from multiplication on the right and
then the left by det J . QED

Definition 6.3. A matrix of the form A = JS where ST = S is called Hamiltonian.

The proof of the proposition applies to any Hamiltonian matrix, Write the char-
acteristic polynomial as P (λ) = f(z) where z = λ2 and f(z) is a polynomial of
degree m. If f(z) has a negative, real root then A has a pair of imaginary eigen-
values. If the root is simple then every Hamiltonian matrix sufficiently close to A
will also have this property.

The next result, called the Lyapunov center theorem shows that a pair of imagi-
nary eigenvalues for a system with an energy integral generally implies the existence
of a family of periodic orbits near the equilibrium point.

Proposition 6.7. Let ξ0 be an equilibrium point for a differential equation ξ̇ =
f(ξ), ξ ∈ Rm and suppose

i. H(ξ) is an integral with H(ξ0) = H0, DH(ξ0) = 0, det(D2H(ξ0)) 6= 0
ii. Df(ξ0) has an imaginary pair of eigenvalues ±i ω
iii. the other eigenvalues are not integer multiples of ±i ω: λ 6= ±ikω for k ∈ Z
iv. D2H(ξ0) is either positive or negative definite on the eigenspace of ±iω

Then there is a family of periodic solutions γε with H(γε) = ±ε2, 0 < ε < ε0 where
the sign depends of the definiteness in hypotheses (iv). Moreover, γε → 0 as ε→ 0
and the family forms a C1 surface through 0 and tangent to the eigenspace of ±i ω.
The periods T (ε) converge to 2π/ω as ε→ 0.

Example 6.1. Consider ξ0 = (L1, 0) for the collinear RE L1 of the CR3BP and
let H be the energy function (56). Then

DH(ξ0) = (−Vx,−Vy,−Vz, u, v, w) = 0 D2H(ξ0) =

[
−D2V (L1) 0

0 2Im

]
It was shown above that D2V (ξ0) = diag(Vxx, Vyy, Vzz) with Vxx > 0, Vyy < 0 and
Vzz < 0 so first hypothesis of the theorem is satisfied. Now there are two pairs
of imaginary eigenvalues at ξ0, the vertical pair ±i γ from (58) and a planar pair
±i ω1 from (59).

For the planar pair ±i ω1, the question of an integer resonance with ωz can be
avoided by restricting attention to the PCR3BP. The other planar eigenvalues are
real. It will be shown later on that D2H(ξ0) > 0 on this eigenspace as well, so the
theorem can be applied to give a Lyapunov family of planar periodic orbits.

Next consider the pair ±i ωz. The eigenspace is the (z, w) plane. The restriction
of D2H(ξ0) has matrix diag(−Vzz, 2) which is positive definite. Finally, it is possible
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to check, with some effort, that γ < |ω1| <
√

2γ (see Exercise 6.7) so it is impossible
for ω1 to be an integer multiple of γ. So the Lyapunov center theorem applies to
prove existence of a family of periodic orbits with energies slightly bigger than
h1 = H(L1, 0), emanating from ξ0 and tangent to the (z, w) plane.

Example 6.2. Now consider ξ0 = (L4, 0) for the equilateral RE L4 for µ(1− µ) <
1
27 . This time there are three imaginary pairs ±i ωz, ±i ω1, ±i ω2 where

ωz = 1 ω2
1 =

1

2

(
1 +

√
1− 27µ(1− µ)

)
ω2
2 =

1

2

(
1−

√
1− 27µ(1− µ)

)
.

Note that ωz > ω1 > ω2. The existence of a vertical Lyapunov family follows as
before. Restricting to the planar problem, it turns out that D2H(ξ0) is definite
on the eigenspaces of the planar pairs, positive for ±i ω1 and negative for ±i ω2 .
Existence of a Lyaponov family tangent to the ±i ω1 eigenspace follows. To get the
third family, it is necessary to avoid integer resonances ω1 = kω2. In fact there is a
sequence of bad masses µ1 > µ2 > µ3 > . . ., µ1 = 1

18 (9−
√

69), such that ω1 = kω2

at µ = µk (see Exercise 6.5). Assuming µ 6= µk, the existence of the third family is
assured. See Figure 23.
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Figure 23. Two families of periodic orbits near L4 for µ = 1
82 .

The blue family has energies above that of L4 while the green one
has energies below. Each energy level sufficiently near that of L4

contains one of these orbits.

It should be emphasized that these periodic solutions are very special. Even for
the linearized system, most solutions are not periodic. For example, in the case
of L4 with µ small, most most solutions of the linearized system will be linear
combinations of the two periodic motions and are therefore quasiperiodic, rather
than periodic. Figure 24 shows one solution of the full nonlinear equations starting
near L4. For the linearized equations, such a solution would move on an invariant
two-torus in phase space. Using KAM theory, one can show that, in fact, there
are many invariant tori near L4 in the PCR3BP. Since the energy manifolds are
three-dimensional, these tori separate the energy manifold and prevent orbits like
the one in the figure from drifting away from the equilbrium point. In other works,
L4 really is stable even for the full nonlinear PCR3BP. However, KAM theory will
not be discussed here. For more information, see [22, 15].

Proof of Proposition 6.7. The proof introduces a useful trick for studying the local
dynamics near an equilibrium, namely, blowing up the coordinates. Assume ξ0 = 0
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Figure 24. A typical nonperiodic solution near L4 with µ = 1
82 .

and consider the lowest order terms in the Taylor series expansions of the differential
equation and of the integral. Of course, f(0) = 0 and one may assume that the
matrix Df(0) is in block diagonal form

Df(0) =

[
A 0
0 B

]
A =

[
0 −ω
ω 0

]
,detB 6= 0.

Writing ξ = (x, y) with x ∈ R2, y ∈ Rm−2, the differential equation will be

ẋ =

[
0 −ω
ω 0

]
x+ g1(x, y)

ẏ = By + g2(x, y)

with gi = O(|(x, y)|2). Furthermore, the integral H(x, y) will be of the form

H(x, y) = (x, y) · S · (x, y) + h(x, y)

for some nondegenerate symmetric matrix S, where h = O(|(x, y)|3). Now de-
fine blown-up variables X,Y with x = εX, y = εY , ε > 0. Then the differential
equations for X,Y are of the form

(60)
Ẋ =

[
0 −ω
ω 0

]
X + εG1(X,Y, ε))

Ẏ = BY + εG2(X,Y, ε)

where gi(εX, εY ) = ε2Gi(X,Y, ε) (one factor of ε has been cancelled out). These
equations have an integral

K(X,Y, ε) = ε−2H(εX, εY ) = (X,Y ) · S · (X,Y ) + εk(X,Y, ε).

This trick produces a family of equations such that the behavior of (X,Y ) in a
ball of radius r is a blown-up image of the behavior of (x, y) in a ball of radius εr.
The advantage of this approach is that the new equations have a nontrivial limit as
ε→ 0. By studying this limit problem, one can get information about the original
problem for ε > 0 sufficiently small.

It will be shown that there is a family of periodic orbits Γε with K(X,Y, ε) = 1
which translates to a family in the integral levels H(x, y) = ε2. For ε = 0, (60) is
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linear with matrix

[
A 0
0 B

]
and the integral K(X,Y, 0) is quadratic with matrix S.

The fact that K(X,Y, 0) is an integral implies that S must be of the form

(61) S =

[
S1 0
0 S2

]
S1 =

[
a 0
0 a

]
,detS2 6= 0

with a > 0 (see Exercise 6.6). There is a periodic solution of this linear equa-

tion X(t) = a−
1
2 (cosωt, sinωt), Y (0) = 0 with K(X,Y, 0) = 1. Using Poincaré

continuation, this will be extended to the required family Γε.
The integral can be used to eliminate one of the m variables. Let R, θ be polar

coordinates in the (X,Y ) plane. Then the equation

K(R, θ, Y, ε) = aR2 + Y · S2 · Y + εk(R, θ, Y, ε) = 1

can be solved as R = a−
1
2 +εR1(θ, Y, ε). This gives a family of differential equations

θ̇ = ω + εG3(θ, Y, ε))

Ẏ = BY + εG4(θ, Y, ε).

The periodic orbit for ε = 0 is now given by Y = 0 with θ arbitrary. Consider the
Poincaré map Φ(Y, ε) of the section θ = 0 mod 2π. The fixed point Y = 0 continues
to a family of fixed points Y (ε) provided µ = 1 is not eigenvalues of DΦ(0, 0).
Because the equations are linear when ε = 0, DΦ(0, 0) is the matrix exponential
exp( 2π

ω B) and the eigenvalues are µ = exp( 2πλ
ω ) where λ is an eigenvalue of B. By

hypothesis, λ 6= iωk for k ∈ Z and it follows that µ 6= 1.
Let Y (ε) denote the smooth family of fixed points of Φ(Y, ε) with Y (0) = 0..

Then there is a family of fixed points y(ε) = εY (ε) for the original equations with
θ = 0 mod 2φ and r = εR(0, Y (ε), ε). Note that y(ε)/r(ε) = Y (ε)/R(ε) → 0 as
ε → 0. It follows that the family of fixed points forms a C1 curve through the
origin in the (r, y) space, tangent to r axis. Then the family γε = εΓε of periodic
orbits will form a smooth surface tangent to the (x, y) plane. QED

Exercise 6.4. What are the relative equilibria of the rotating Kepler problem from
Exercise 6.3 ? Find the eigenvalues. Does the Lyapunov center theorem apply here?

Exercise 6.5. Verify the claim about the sequence of bad mass ratios µ1 > µ2 >
µ3 > . . . in Example 6.2.

Exercise 6.6. Show that if the nondegenerate quadratic form (x, y) · S · (x, y) is

an integral for a linear differential equation with matrix

[
A 0
0 B

]
, A =

[
0 −ω
ω 0

]
,

ω 6= 0, then S is of the form (61).

Exercise 6.7. At the collinear Lagrange points, the squares of the eigenvalues,
z = λ2 satisfy

z2 + (4− Vxx − Vyy)z + VxxVyy = z2 + (2− γ2)z + (1 + 2γ2)(1− γ2) = 0

and recall that 1−γ2 < 0. Show that the negative root z− of this equation satisfies
−2γ2 < z− < −γ2. Conclude that for the imaginary eigenvalues ±i ω1 satisfy
γ < |ω1| <

√
2γ. In particular, there can be no integer resonance with ±i γ.
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6.3. Levi-Civita regularization, complex notation. Regularization of the Ke-
pler problem in Rd was discussed in Section 4.3. There are other, simpler ways to
regularize binary collisions which work in R2 or R3 and which extend more readily
to the three-body problem.

Consider the Kepler problem in R2

q̇ = rv v̇ = −mq
rq

r = |q|.

Viewing q = (q1, q2) as the complex number q = q1 + i q2, define a new variable
z = x+ i y by the complex squaring map q = z2, that is

q1 + i q2 = (x+ i y)2 or q1 = x2 − y2 q2 = 2xy.

Also define a new timescale such that ′ = r .̇ Continuing with complex notation,

q′ = 2z z′ = rv = |z|2v = z zv

where z = x − i y denotes the complex conjugate. Next define a new, complex
velocity variable w = 1

2zv so that z′ = w. Now calculate

2w′ = z′v + zv′ = wv + z

(
−mz

2

|z|4

)
=

1

2
z|v|2 − mz

r
= hz

where

h =
1

2
|v|2 − m

r
.

is the energy. Note that this can be written

1

2
|w|2 − 1

4
(m+ h|z|2) = 0.

Since the new differential equations z′ = w,w′ = 1
2hz are nonsingular, this provides

a regularization of the collision. The idea of using the squaring map is attributed
to Tulio Levi-Civita.

A variation on the squaring map near P1 or P2 can be used to regularize one
of the two binary collisions in the PCR3BP. For example, if the Hill’s region is
as in Figure 21, solutions are trapped near one or the other of the primaries, say
P2. To regularize the singularity there replace q = x + i y and p = u + i v in the
PCR3BP with z = ξ + i η and w = α + i β where q = z2 + 1 − µ and w = 1

2zp.

Also introduce a new timescale so that ′ = |z|2 .̇ Then q′ = 2zz′ = |z|2p so z′ = w
as for the Kepler problem above. The differential equation for the PCR3BP gives
ṗ = (Vx + i Vy) + 2i p and p′ = |z|2(Vx + i Vy) + 4izw.

(62)
w′ =

1

2
z′p+

1

2
zp′ =

1

4
z|p|2 + 2i|z|2w +

1

2
z|z|2(Vx + i Vy)

= 2i|z|2w +
z

2
(h+ V ) +

1

2
z|z|2(Vx + i Vy)

where h = 1
2 |p|

2 − V .
To facilitate the rest of the computation it’s useful to express the partial de-

riatives of V in terms of the complex variables q, q, z, z.

Lemma 6.1. Let V (x, y) be a real analytic function and let q = x+i y and q = x−i y
so that x = 1

2 (q + q) and y = 1
2i (q − q). View x, y, q, q as four complex variables

and consider the function F (q, q) = V ( 1
2 (q + q), 1

2i (q − q)). Then

Vx − i Vy = 2Fq Vx + i Vy = 2Fq.
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If q = z2 where z = ξ + i η and G(z, z) = F (z2, z2) then

Gξ + iGη = 2z(Vx + i Vy).

Proof. These follows immediately from the chain rule. For example

Fq = Vxxq + Vyyq =
1

2
Vx −

1

2i
Vy =

1

2
(Vx + i Vy).

Also

Gξ + iGη = 2Gz = 2(F (z2, z2))z = 2Fq 2z = 2z(Vx + i Vy).

QED

The strange part about these equations lies in thinking of q, q as independent com-
plex variables and the equations q = x+ i y, q = x− i y as a change of variables.

Abusing the notation a bit by writing G(z, z) as V (z, z), one can write z(Vx +
i Vy) = Vz and the regularized equations (62) become

z′ = w w′ = 2i|z|2w +
z

2
(h+ V ) +

|z|2

2
Vz.

Define a regularized potential

(63)

W =
|z|2

4
(V + h) =

|z|2

4

(
1

2
|z2 + 1− µ|2 +

1− µ
|z2 + 1|

+
µ

|z|2
+ h

)
=

1

8
|z|2|z2 + 1− µ|2 +

(1− µ)|z|2

4|z2 + 1|
+

1

4
(µ+ h|z|2).

This can be viewed as W (ξ, η) or as W (z, z). Note that W is nonsingular near the
collision at z = 0. Also, the energy equation can be written

1

2
|w|2 −W = 0.

Using Lemma 6.1 and the fact that |z|2 = zz gives

Wξ + iWη = 2Wz =
∂

∂z

|z|2

2
(V (z, z) + h) =

z

2
(V (z, z) + h) +

|z|2

2
Vz.

Then the regularized differential equations are

z′ = w w′ = 2i|z|2w +Wξ + iWη

or

(64)
ξ′ = α α′ = Wξ + 2(ξ2 + η2)β

η′ = β β′ = Wη − 2(ξ2 + η2)α.

The Hill’s regions for the regularized problem are given byW (ξ, η) ≥ 0. Figure 25
shows the H(−2.4) for the mass ratio µ = 1

3 as in Figure 21 together with a typical

orbit. The squaring map q = z2 + 1 − µ takes the central disk to the disk around
P2 in Figure 21 and takes the two disks containing z = ±i to the disk around P1.
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Figure 25. Hill’s region for the regularized PCR3BP with µ =
1/3 and h = −2.4. The Hill’s region consist of the inside of the
three small curves and the outside of the large one. The origin
z = 0 represents the primary mass P2 while P1 is represented
twice, at z = ±i. The regularized orbit shown here is a collision
orbit with initial position z = 0.

6.4. Conley’s isolating block and the retrograde periodic orbit around P2.
A nice application of the regularized equations is Conley’s proof of the existence of a
simple, symmetric retrograde periodic solution around P2 [7]. The presentation here
differs slightly from Conley’s paper. Fix an energy so that the Hill’s region of the
regularized problem is as in Figure 25. Recall that in the nonrotating coordinates,
the primary masses are moving in a counter-clockwise circular orbit. The periodic
orbit to be constructed will move once around the origin z = 0 in the clockwise
sense (hence retrograde) before closing up (see Figure 26).

The proof is based on a so-called shooting argument. Consider initial conditions
of the form (ξ, η, α, β) = (0, η0, α0, 0) with η0 > 0 and α0 > 0. In other words, the
solution will start on the positive η axis with initial velocity vector orthogonal to
the axis and pointing to the right. The value of α0 is uniquely determined by η0
due to the energy equation. The initial η0 ∈ [0, k] where k represents the point
in the zero-velocity curve. It will be shown that for some η0 in this interval the
corresponding solution (ξ(t), η(t)) moves through the first quadrant and meets the
positive ξ axis orthogonally, say at time t = t1 (red curve in Figure 26). The rest
of the orbit can be found by reflecting through the coordinate axes to produce an
orbit consisting for 4 congruent orbit segments with period T = 4t1. Details of this
symmetry argument are in Exercise 6.8. The term “shooting” refers to varying an
initial condition in an attempt to find a solution with a desired final state

The proof involves constructing an isolating block in M0, the component of the
energy manifold M(h) which projects to the disk containing z = 0. First consider
the topological structure of M0.

Proposition 6.8. M0 is homeomorphic to the three-sphere S3.

Proof. Let H0 be the component of the Hill’s region containing z = 0 (shaded in
Figure 26). For energy levels below that of the L1 Lagrange point, it can be shown
that H0 is diffeomorphic to the two-dimensional unit disk, D = {(x1, x2) : x21+x22 =
1}. Let S3 = {(x1, x2, x3, x4) : x21 + x22 + x23 + x24 = 1} and let π(x1, x2, x3, x4) =
(x1, x2) be the projection D. For each point (x1, x2) in the interior of D, the
preimage π−1(x1, x2) is a circle with radii of these circles shrinking to zero at the
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Figure 26. Conley’s retrograde periodic orbit. The first quar-
ter of the orbit (red) connects the axes orthogonally. The rest is
obtained by symmetry.

boundary. A similar description applies to the projection π(ξ, η, α, β) mappingM0

to C0, namely, the preimage of (ξ, η) ∈ C0 is given by α2 + β2 = 2W (ξ, η). From
this it is possible to construct the required homeomorphism by mapping the circle
above each (ξ, η) to the circle above the corresponding (x1, x2). QED

The isolating block will be the following subset of M0

(65) B = {(ξ, η, α, β) ∈M0 : ξ ≥ 0, η ≥ 0, α ≥ 0, β ≤ 0}.

Thus B consists of points (ξ, η) in the first quadrant of the Hill’s region C0 whose
velocity vectors lie in the fourth quadrant (that is, they point southeast).

Definition 6.4. Let φt(p) be a flow on a metric space M and let B ⊂ M be a
compact subset. B is an isolating block if every boundary point p ∈ ∂B falls into
one of the following three categories. For some δ > 0, either

• φ(0,δ) ⊂ intB and φ(−δ,0) ⊂ extB
• φ(0,δ) ⊂ extB and φ(−δ,0) ⊂ intB
• φ(0,δ) ⊂ extB and φ(−δ,0) ⊂ extB

Here intB, extB denote the interior and exterior of B (both of which are open sets)
and for any interval I ⊂ R, φI(p) denotes the orbit segment {φt(p) : t ∈ I}.

Thus all of the boundary points are either passing from inside to outside or from
outside to inside or are “bouncing off”. There are no orbits which are “internally
tangent” to the boundary.

The force of this definition is reflected in

Proposition 6.9. Let B be an isolating block. For p ∈ B define the exit time as

τ(p) = sup{t : φ[0,t](p) ⊂ B}.

Then τ is a continuous function on {p : τ(p) <∞}. The exit point φτ(p)(p) is also
continuous.
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Proof. Upper semicontinuity holds for any compact set B, isolating block or not.
To see this, let p ∈ B have τ(p) <∞ and let ε > 0 be given. By definition of τ(p),
there is a time t0 ∈ (τ(p), τ(p) + ε) such that φt0(p) ∈ extB. By continuity of the
flow, there is some neighborhood U of p such that φt0(q) ∈ extB for all q ∈ U . So
for all q ∈ U , τ(q) ≤ t0 < τ(p) + ε.

To prove lower semicontinuity, let p ∈ B have τ(p) <∞ and let ε > 0 be given.
If τ(p) = 0 then τ(q) > τ(p) − ε = −ε holds automatically. So suppose τ(p) > 0.
Since B is an isolating block, none of the points on the orbit segment φ[0,τ(p))(p)
can be boundary points. In particular, φ[0,τ(p)−ε](p) ⊂ intB. By continuity of the
flow, the same will be true for all q in some neighborhood U of p. For all these
points τ(q) > τ(p)− ε as required. QED

Proposition 6.10. The subset B is an isolating block for the regularized flow on
M0.

Proof. The boundary of B consists of points where one or more of the inequalities
is an equalities is an equality. It must be shown that all of these points fall into one
of the three categories of Definition 6.4. Points in these categories will be called
entrance points, exit points and bounce points.
B is a three-dimensional subset of the three-dimensional energy manifold. The

four inequalities cut out a region of the three-sphere M0 homeomorphic to a solid
tetrahedron (see Figure 27). In this figure, the α coordinate has been projected

out. It is given uniquely by α =
√

2W (ξ, η)− β2. The boundary ∂B consists of
four faces defined by ξ = 0, η = 0, α = 0, β = 0. The face with α = 0 appears as
the bottom, curved surface in the projection. If the faces are viewed as open disks,
rather than closed ones, then the boundary also contains six open arcs defined by
setting two of the variables to zero and four corner points defined by the vanishing
of three of the variables. Each of these will be considered in turn. It may be helpful
to refer to Figure 27 throughout the proof.

First consider the open face F1 = {ξ = 0, η > 0, α > 0, β < 0}. Since ξ′ = α > 0,
it follows that for some δ > 0, ξ(t) < 0 for t ∈ (−δ, 0) and ξ(t) > 0 for t ∈ (0, δ).
If δ is sufficiently small, the inequalities about η, α, β will continue to hold. Hence
F1 consists of entrance points. A similar argument shows that F2 = {ξ > 0, η =
0, α > 0, β < 0} consists of exit points.

To handle the open faces F3 = {ξ > 0, η > 0, α = 0, β < 0} and F4 = {ξ > 0, η >
0, α > 0, β = 0}, a lemma is needed.

Lemma 6.2. For ξ ≥ 0, η ≥ 0 the regularized potential satisfies Wξ ≤ 0 with
equality only when ξ = 0 and Wη ≤ 0 with equality only when η = 0.

In other words, for (ξ, η) in the first quadrant, the gradient of W is in the third
quadrant (see Figure 28). Assuming this, then β′ = Wη−2(ξ2 +η2)α < 0 in F4. So
β becomes negative in forward time and positive in backward time. Therefore F4

consists of entrance points. A similar analysis shows that F3 consists of exit points
(see Exercise 6.9).

Turning to the six open arcs, consider A1 = {ξ > 0, η > 0, α = β = 0}, that
is, the part of the zero-velocity curve in B, Along the curve α′ = Wξ ≤ 0 with
equality only at the endpoint with ξ = 0 and β′ = Wη ≤ 0 with equality only at
the endpoint with η = 0. Since these endpoints are not being considered, it follows
that A1 consists of bounce points. Namely, in forward time, α becomes negative
while in backward time β becomes positive.
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Figure 27. Projection of the isolating block B to (ξ, η, β) space.
Points which exit immediately in forward time are shaded.
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Figure 28. Projection Q of the isolating block B to (ξ, η) space.
The projection is just the part of the second quadrant which lies
in C0. Some level curves of the regularized potential W (ξ, η) are
shown along with some of the gradient vectors (Wξ,Wη).

Next, consider A2 = {ξ = 0, η = 0, α > 0, β < 0}, the vertical, open segment
above the origin in Figure 27. Since ξ′ = α > 0, these orbits leave B in forward
time and since η′ = β < 0, they also leave in backward time. Thus, A2 consists of
bounce points.

Next consider the open arc A3 = {ξ > 0, η = 0, α = 0, β < 0}, the red curved
arc in the figure. On this arc, η′ = β < 0 so the orbits leave in forward time. Also
α′ = Wξ+2(ξ2+η2)β < 0. So in backward time, α becomes positive and η becomes
positive which means the orbit enters the interior of B. Hence A3 consists of exit
points. In A4 = {ξ = 0, η > 0, α > 0, β = 0}, the red segment at the top of the
figure, the situation is reversed. These are entrance points (see Exercise 6.9).
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This leaves A5 = {ξ = 0, η > 0, α = 0, β < 0} and A6 = {ξ > 0, η = 0, α =
0, β < 0}. In A5, ξ′ = α = 0 and ξ′′ = α′ = Wξ + 2(ξ2 + η2)β = 2η2β < 0 so ξ
becomes negative in both forward and backward time. These are bounce points.
Similarly, in A6, η′ = β = 0 and η′′ = β′ = −2ξ2α < 0 so β becomes negative in
both time directions. Once again, these are bounce points.

It remains to analyze the four corner points of B. First consider the endpoints
of the zero velocity curve. At the endpoint of the form (ξ, η, α, β) = (ξ, 0, 0, 0) the
derivatives are (ξ′, η′, α′, β′) = (0, 0,Wξ, 0) with Wξ < 0. The orbit leaves B in
forward time since α becomes negative. In backward time, it will be shown that
η becomes negative. The first two derivatives are η′ = β = 0 and η′′ = β′ =
Wη − 2(ξ2 + η2)α = 0. The third derivative, however, is

η′′′ = Wηξα+Wηηβ − 4(ξα+ ηβ)α− 2(ξ2 + η2)α′ = −2ξ2Wξ > 0

and it follows that η becomes negative in backward time. So this endpoint is
a bounce point. A similar analysis applies at the other endpoint, of the form
(ξ, η, α, β) = (0, η, 0, 0) (see Exercise 6.9).

The remaining corners are the endpoints of the vertical segment over the origin
in Figure 27, which are of the form (0, 0, α, 0) and (0, 0, 0, β) with α > 0, β > 0.
The regularized potential satisfies Wξ = Wη = 0. At the first point, α > 0 so ξ
becomes positive in forward time and the orbit leaves B. It will be shown that the
orbit also leaves B in backward time with η becoming negative. The derivatives of
η are η′ = η′′ = 0 and

η′′′ = Wηξα+Wηηβ − 4(ξα+ ηβ)α− 2(ξ2 + η2)α′ = Wηξα.

At the origin, it turns out that Wηξ = 0 so also η′′′ = 0. However

η′′′′ = −4α3 < 0

so η becomes negative in backward time as required. The case β < 0, α = 0 is
similar (see Exercise 6.9).

This completes the proof. QED

The last ingredient in Conley’s proof is

Proposition 6.11. Every orbit starting in B eventually leaves B in forward time.
Hence the exit time and exit point are continuous functions on all of B.

Proof. Since α ≥ 0 and β ≤ 0 in B, the coordinates ξ(t), η(t) are monotone along
orbits in B. Suppose, for the sake of contradiction, that some orbit remains in
B for all t ≥ 0. Then the limits ξ̄ = limt→∞ ξ(t) and η̄ = limt→∞ η(t) exist. It
follows that the orbit has a nonempty ω limit set contained in the compact set
S = {(ξ, η, α, β) : ξ = ξ̄, η = η̄} (a vertical line segment in Figure 27). At any
point in this limit set, the vectorfield would have to be tangent to S. In particular,
x′ = α = 0, y′ = β = 0. So the only possible limit point is (ξ̄, η̄, 0, 0) on the zero
velocity curve, which would have to be an equilibrium point. However, at this point,
α′ = Wξ ≤ 0 and β′ = Wη ≤ 0 and they are never both 0, a contradiction. QED

Now for the shooting argument. Consider the set of initial conditions in M0

starting on the positive η axis and moving into the first quadrant with velocities
orthogonal to the axis. This is just the closed arc A4 = {ξ = 0, η ≥ 0, α ≥ 0, β = 0},
that is, the arc A4 together with its endpoints. Recall that the open arc A4 consists
of entrance points. Let E denote the exit set of B consisting of all the points on
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the boundary which move into extB in forward time. This is the union of the
exit points and the bounce points above. In Figure 27, the exit set consists of the
closures of the shaded faces.

Because B is an isolating block, there is a continuous Poincaré map Φ : A4 → E
assigning to each initial point its exit point. Note that the endpoints p, q of A4 are
already in the exit set, that is, Φ maps these points to themselves. On the other
hand, the open arc A4 consists of entrance points and these will enter the interior
and flow to the exit set. The image Φ(A4) will be a continuous arc in E connecting
p to q.

Define a target set T = A3 = {(ξ, 0, 0, β)}, the closure of the red curve along the
bottom in the figure. These are points which are leaving B along the positive ξ axis
with velocities (0, β) orthogonal to the axis. Since T separates p, q in the exit set,
continuity of Φ shows that there must be at least one initial point (0, η, α, 0) ∈ A4

such that Φ(0, η, α, 0) = (ξ, 0, 0, β) ∈ A3, as required.

Exercise 6.8. Let R1(ξ, η, α, β) = (−ξ, η,−α, β) be reflection though the η axis
and R2(ξ, η, α, β) = (ξ,−η, α−, β) be reflection through the ξ axis. This exercise
shows that these are symmetries of the regularized PCR3BP and shows how to use
these to construct the a symmetric periodic orbit.

i. Note that W (ξ, η) can be written as a function of F (ξ2, η2). Use this to
show that

Wξ(R1(ξ, η)) = −Wξ(ξ, η) Wη(R1(ξ, η)) = Wη(ξ, η)

Wξ(R2(ξ, η)) = Wξ(ξ, η) Wη(R2(ξ, η)) = −Wη(ξ, η).

ii. Show that if (ξ(t), η(t)) is a solution, so are Ri(ξ(−t), η(−t)), i = 1, 2.
In other words, reflection together with time reversal takes solutions to
solutions.

iii. Let (ξ(t), η(t)), 0 ≤ t ≤ t1, be the solution produced by Conley’s isolating
block argument. Show that the following is a periodic solution with period
T = 4t1:

(ξ(t), η(t)) 0 ≤ t ≤ t1
(ξ(2t1 − t),−η(2t1 − t)) t1 ≤ t ≤ 2t1

(−ξ(t− 2t1),−η(t− 2t1)) 2t1 ≤ t ≤ 3t1

(−ξ(4t1 − t), η(4t1 − t)) 3t1 ≤ t ≤ 4t1.

Hint: Time translation is no problem. One needs to show that these are all
solutions and that they match up at the endpoints in (ξ, η, α, β) space.

Exercise 6.9. Verify the isolating block conditions on the open face F3, the open
arc A4 and the corner points where ξ = α = β = 0 and where ξ = η = α = 0. More
precisely, show that F3 consists of exit points, A4 consists of entrance points and
the corner points are bounce points.

6.5. Dynamics near L1. Recall that L1 is the collinear Lagrange point in the
interval (−µ, 1−µ) between the primaries. Let h1 be the energy of L1. For h < h1,
the Hill’s region H(h) contains two bounded components, one around each primary,
as well as an unbounded component. As h increases, the bounded components
meet at the saddle point L1 and then a small tunnel or neck opens up, and the
primaries now lie in the same bounded component of the H(h) (see Figure ). Thus
h1 represents an “energy barrier” below which it is impossible to move between the
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primaries. Consequently, L1 and the other collinear Lagrange points have played a
role in designing space missions [?].

In the PCR3BP, the equilibrium point at L1 has a pair of imaginary eigenvalues
±iω1 and the Lyapunov center theorem shows that there is a family of periodic
orbits nearby, one in each of the energy manifolds with h > h1 and h−h1 sufficiently
small. In the 3D CR3BP there is another pair of imaginary eigenvalues ±iγand
another family of approximately vertical periodic orbits.

Even though L1 is unstable, the center manifold theorem can be used to prove
existence of orbits which stay near L1 for all time. Namely, it can be shown by
straightforward computations involving the eigenvectors that the Hessian of the
energy function D2H is positive definite on the center subspace (the 4D space
spanned by the combined eigenspaces of ±iω1,±iγ). Assuming this, one can show
that each energy manifold h > h1, h − h1 sufficiently small, contains a compact,
invariant manifold diffeomorphic to the three-sphere S3. To see this, note that D2H
determines a positive definite quadratic form on the 4D center subspace. The level
sets will be 3D ellipsoids. Using a blowup argument as in the proof of the Lyapunov
center theorem with h = h1 + ε2 it follows that for ε sufficiently small, the equation
H = h1 + ε2 determines a submanifold of the center manifold diffeomorphic to the
3D ellipsoid. This invariant three-sphere near L1 will contain the two Lyapunov
periodic orbits and many others as well.

For the PCR3BP the center manifolds is 2D and the intersection with the energy
manifold is diffeomorphic to S1, that is, to a circle. This circle must be a periodic
orbit (see Exercise 6.10). This provides an alternative proof of the Lyapunov center
theorem in this case.

Both the Lyapunov center theorem and the center manifold theorem apply only
in a “sufficiently small” neighborhood of the equilibrium point, where the smallness
is difficult to quantify. There is an interesting approach to the problem due to
Conley using an isolating block which proves existence of orbits remaining for all
time near L1 and which can be applied with some effort to specific energies with
h > h1. In addition to its attractive geometric and topological content, it is a
prototype for development of the theory of isolating blocks and the Conley index.

Fix an energy level h > h1 such that there is a tunnel between the primaries in
the Hill’s region H(h). Cut off the tunnel on each side be vertical walls of the form
x = a, x = b where a < ξ1 < b and ξ1 is the x coordinate of the L1 (see Figure 29).
The isolating block will be

B(h) = {(x, y, z, u, v, w);H = h, a ≤ x ≤ b}.
In other words, B is the preimage of the cut-off tunnel under the projection π :
M(h)→ C(h) from the energy manifold to the HIll’s region. The walls of the block
will be denoted by Wa,b = {(x, y, z, u, v, w);H = h, x = a, b}. For the planar case
just ignore z, w (see Figure 30).

Proposition 6.12. Suppose a, b, h are such that the walls Wa,b are convex to the
flow. That is, if (x, y, z, u, v, w) = (a, y, z, 0, v, w) ∈ B is tangent to Wa then ẍ < 0
and if (x, y, z, u, v, w) = (b, y, z, 0, v, w) ∈ B is tangent to Wb then ẍ > 0. Then B
is an isolating block. Moreover, there is a nonempty invariant set S in the interior
of B.

Proof. B is a subset of the manifold M(h) in phase space. The boundary ∂B is
just Wa ∪Wb. According to Definition 6.4, it must be shown that each boundary
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Figure 29. Projection of the 3D isolating block B to (x, y, z) space
for µ = 1

3 , h = −1.9, a = 0, b = 0.4.
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Figure 30. Projection of the planar isolating block B to (x, y)
space. Orbits tangent to the walls bounce off. Here µ = 1

3 , h =
−1.9, a = 0, b = 0.4.

point is either entering, exiting or bouncing off. Clearly, points with x = a and
u = ẋ > 0 are entering while those with u < 0 are exiting. It remains to check the
points with u = 0 and the hypothesis that ẍ < 0 implies that the solution exits in
both time directions, so these orbits bounce off, as required. A similar discussion
applies when x = b.

To see that there must be solutions which remain in B for all time, a bit of
topology is needed. First note that B is a connected set. On the other hand, note
that there are points in each of the two walls which are exiting in forward time,
either by moving from inside to out or by bouncing off. Let E be the exit set of B,
that is, the closed set of points leaving B in forward time. E is a union E = Ea ∪ Eb
of two nonempty, compact sets. Let S+ be the set of all initial conditions in B
whose orbits remain in B for all t ≥ 0. If it were the case that S+ = ∅ then there
would be a continuous surjective map B → Ea ∪ Eb, which is impossible since B is
connected. Therefore S+ 6= ∅ and, in fact, it must be large enough to separate Ea
from Eb in B.
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By definition S+ is a positively invariant set. To find a set which is invariant in
both forward and backward time, just take the omega limit set

S = ω(S+) = ∩t≥0φt(S+)

where the bar denotes the closure of a set. This will be nonempty, compact and
invariant. Moreover, since B is an isolating block, S does not intersect the boundary,
so must lie in the interior of B. QED

How can one check the hypotheses of Proposition 6.12 for particular a, b, h ?

Proposition 6.13. Let a < ξ1 < b and let F (x, y, z) = Vx(x, y, z)2 − 8(V + h). If
F > 0 on the walls Wa,Wb, then B is an isolating block.

Proof. The differential equation gives ẍ = u̇ = Vx(x, y, z) + 2v and if u = 0, the
energy equation gives v2 = 2(V (x, y, z) +h). The hypothesis on F gives |Vx| > |2v|
for all points tangent to one of the walls of B. In particular, Vx cannot change
sign on the walls. Now the convexity of V (x, 0, 0) implies that Vx(a, 0, 0) < 0 and
Vx(b, 0, 0) > 0. Hence Vx < 0 on Wa and Vx > 0 on Wb. Then |Vx| > |2v| gives
ẍ < 0 on Wa and ẍ > 0 on Wb, as claimed. QED

The hypothesis F > 0 of Proposition 6.13 can be checked when h > h1 and
|h− h1| is sufficiently small. To see this, blow up a neighborhood of L1 by setting
h = h1 + ε2, x = ξ1 + ε ξ, y = ε η and z = ε ζwhere ε > 0 is small. Then using the
Taylor series of V from Section 6.2

V = V0 +
ε2

2
(αξ2 − βη2 − γ2ζ2) +O(ε3) Vx = εαξ +O(ε2)

where V0 = V (L1) = −h1, α = Vxx(L1) > 0, β = −Vyy(L1) < 0, γ2 = −Vzz(L1).
After canceling a factor of ε2, the inequality F > 0 at the worst-case point where
η = ζ = 0 becomes α(α − 4)ξ2 > 8. It turns out that the second derivative
α = Vxx(L1) satisfies α > 4 for all values of µ (see Exercise 6.12). Choose any
ξ > 0 with α(α − 4)ξ2 > 8 and let a = ξ1 − εξ and b = ξ1 + εξ to get an isolating
block for ε sufficiently small.

One can also check F > 0 numerically or otherwise for larger energies. For
example, the nonshaded part of Figure 30 shows the region around L1 such that
F > 0 for µ = 1

3 and h = −1.9. By choosing the walls as in the figure, one can
satisfy the isolating block condition in the planar case.

Finally, consider the problem of computing the Lyapunov family of periodic
orbits near L1 in the PCR3BP by shooting. It suffices to look for periodic orbits
which are symmetric under reflection through the x axis (see Exercise 6.11). In
particular, such an orbit must meet the x axis orthogonally and top and bottom
halves are symmetric. Suppose an isolating block like that in Figure 30 has been
found and consider initial conditions of the form (x, y, u, v) = (a, 0, 0, v) with a ≤
x ≤ ξ1 and v > 0. Shooting can be used to find such an orbit which returns
orthogonally to the x axis. Figure 31 shows the result.

Exercise 6.10. Let S be an invariant set for a flow which is diffeomorphic to
S1. Show that if S contains no equilibrium points, then it must consist of a single
periodic orbit.

Exercise 6.11. Show that if (x(t), y(t)) is a solution of the PCR3BP, then so is
(x(−t),−y(−t)). That is, reflection through the x axis combined with time reversal
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Figure 31. A symmetric periodic orbit near L1 inside the projec-
tion of the isolating block of Figure 30.

is a symmetry of the problem. Show that if (x(t), y(t)), 0 ≤ t ≤ t1 is an orbit
segment with y(t) ≥ 0 which meet the x axis orthogonally when t = 0, t1, then
extending the orbit via (x(t1 − t),−y(t1 − t)) gives a symmetric periodic orbit of
period 2t1.

Exercise 6.12. Recall from Section 6.2 that Vxx(L1) = 1 + 2γ2 where γ2 = (1 −
µ)/r313 + µ/r323. It was shown in Exercise 6.2 that γ2 > 1 on the whole interval
(−µ, 1− µ) but in order to get α = 1 + 2γ2 > 4, the stronger inequality γ2 > 3

2 is
needed. Here is an algebraic approach to proving this at the point L1 itself. As in
Exercise 6.2 one can set r13 = s

1+s and r23 = 1
1+s . Also x = µ + r13. Making all

these substitutions makes the potential V (x, 0) into a rational function V (s). The
location of L1 is given by setting V ′(s) = 0 which amounts to solving a fifth degree
polynomial equation P (s) = 0. Similarly, the difference γ2− 3

2 can be expressed as
a rational function with a positive denominator and a numerator Q(s), of degree
6. The value of Q(s) at the root of P (s) should be positive. To prove this, first
calculate the resultant of the two polynomials to obtain a polynomial in µ which is
never 0. So P (s), Q(s) have no common roots. Finally check that for the special
case µ = 1

2 , the root of P (s) is s = 1 and Q(1) > 0.

7. Blowing Up the Total Collision – McGehee coordinates

Consider the n-body problem in Rd. Let q = (q1, q2, . . . , qn) ∈ Rdn be the config-
uration vector and v = (v1, v2, . . . , vn) ∈ Rdn the velocity vector. The Lagrangian
is

L(q, v) =
1

2
vTMv − U(q)

where U(q) is the Newtonian potential and M = diag(m1, . . . ,m1,m2, . . . ,m2, . . .)
is the dn × dn mass matrix. As in Section 3.1, one may assume that the total
momentum is zero and the center of mass is at the origin:

m1q1 + . . .+mnqn = 0

m1v1 + . . .+mnvn = 0.
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The translation reduced phase space is (X \∆)×X where X ⊂ Rdn is the subspace
of dimension d(n− 1) given be either one of these equations and ∆ is the collision
set.

One type of collision is when all n bodies arrive at the the same position at
the same time. The center of mass condition implies that this can only happen at
the origin. By introducing a version of polar coordinates in the subspace X, the
singularity can be blown up. The first step is to introduce a natural radial variable
based on the mass norm. First introduce a mass inner product or mass metric in
Rdn via

〈〈v, w〉〉 = V TMW =
∑

mivi · wi
where v = (v1, v2, . . . , vn), w = (w1, w2, . . . , wn) are arbitrary vectors in Rdn. The
corresponding norm is given by

‖v‖2 = 〈〈v, v〉〉 =
∑

mi|vi|2.

Thus ‖v‖ is a mass-weighted measure of the distance to the origin. Using the mass
norm, the energy equation can be written

(66)
1

2
‖v‖2 − U(q) = h.

For configuration vectors q ∈ X, r = ‖q‖ can be viewed as a measure of the size of
the configuration. In particular r = 0 represents total collision of all of the bodies.
The square of the norm I = ‖q‖2 is the moment of inertia of the configuration with
respect to the origin. Given any configuration with r > 0, defined a normalized
configuration s = q/r. Then s = (s1, s2, . . . , sn) ∈ X represents a configuration of
n-bodies with the same shape as q but with size

(67) ‖s‖2 = sTMs = 1.

Let E ⊂ X denote the ellipsoid where (67) holds. Replacing q ∈ X by (r, s) ∈ R+×E
is a variation on polar or spherical coordinates.

There is a useful alternative formula for the mass norm for configurations in X.

Proposition 7.1. If q = (q1, . . . , qn) ∈ Rdn satisfies m1q1 + . . .+mnqn = 0 then

(68) ‖q‖2 =
1

m

∑
mimjr

2
ij rij = |qi − qj |

where the sum is over all pairs 1 ≤ i < j ≤ n.

Before discussing the rest of McGehee’s coordinate system, some classical results
involving the size of the configuration will be given. The following result is called
the Lagrange-Jacobi identity.

Proposition 7.2. The moment of inertia I = ‖q‖2 satisfies

Ï = 2U(q) + 4h

where h is the total energy.

Proof. Since I = qTMq, İ = 2qTMv and

Ï = 2v2Mv + 2qT∇U(q).

Since U(q) is a homogenous function of degree −1, qT∇U(q) = −U(q). Using this
and (66) gives

Ï = 4(h+ U(q))− 2U(q) = 4h+ 2U(q).
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QED

Using this, it is easy to get an important qualitative result about the n-body
problem. Recall that for the two-body problem and the Kepler problem, all of the
bounded solutions (the ellipses) have negative energy. The same is true for the
n-body problem.

Proposition 7.3. Let q(t) be a solution of the n-body problem which exists for all
t ∈ R. If q(t) has energy h ≥ 0 then r(t) = ‖q(t)‖ → ∞ as t→ ±∞.

Proof. Consider I(t) = r(t)2. The Lagrange-Jacobi identity shows that Ï = 4h +
2U(q) ≥ 2U(q) > 0. In other words, I(t) is a convex function. Consider the

derivative İ(t) which will be a strictly increasing function. If İ(t0) > 0 for some t0
then since İ(t) ≥ İ(t0) for all t ≥ t0. Then I(t) ≥ I(t0) + İ(t0)(t − t0) → ∞ as

t→∞. Similarly if İ(t0) < 0 for some t0 then I(t)→∞ as t→ −∞. If İ(t0) = 0

for some t0 then İ(t) will take both positive and negative values for t near t0 and
so I(t)→∞ as t→ ±∞.

It only remains to show that it is impossible for İ(t) to always have the same

sign. Suppose, for example, that İ(t) < 0 for all t. Then I(t) is monotonically

decreasing and so for any t0, I(t) ≤ I(t0) for t ≥ t0. Recall that r =
√
I and

let s = q/r be the normalized configuration. Note that since the potential U(q)
is homogeneous of degree −1, U(q) = U(rs) = r−1U(s). Now U(s) is a positive
function on the ellipsoid E where sTMs = 1 and it follows that it has a positive
lower bound U(s) ≥ K1 > 0. Then U(q(t)) ≥ K1r(t)

−1 ≥ K1I(t0)−
1
2 = K2 for

all t ≥ t0. This gives Ï ≥ 2U(q) ≥ 2K2. This estimate implies that İ(t) becomes
positive after a finite time, a contradiction. QED

McGehee’s idea was to combine the coordinate change q = rs with an appropriate
change of velocity variables and timescale [13, 14]. Define a new velocity variable

z by z =
√
rv and a new timescale such that ′ = r

3
2 .̇ In other words the new time

variable τ is related to the old time variable t by

dt

dτ
= r(τ)

3
2 .

dτ

dt
= r(τ)−

3
2 .

Then a short computation (Exercise 7.2) gives the differential equations

(69)

r′ = νr

s′ = z − νs

z′ = M−1∇U(s) +
1

2
νz

where ν = 〈〈s, z〉〉. For example, since r2 = 〈〈q, q〉〉 and q′ = r
3
2 v = zr, one computes

2rr′ = 2〈〈q, q′〉〉 = 2r2〈〈s, z〉〉 = 2vr2.

Using the homogeneity of the potential, the energy equation becomes

1

2
‖z‖2 − U(s) = rh.

Note that {r = 0} is now an invariant total collision manifold for the rescaled
equations.

The variable ν = 〈〈s, z〉〉 is a scaled radial velocity, as the first equation in (69)
shows. Because of the second equation, the vector w = z − νs is tangent to the
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ellipsoid E and can be viewed as a tangential velocity. It is easy to check that
〈〈s, w〉〉 = 0. Then z = ν s + w decomposes z as a radial and tangential part.
Another calculation gives

(70)

r′ = νr

s′ = w

ν′ =
1

2
ν2 + ‖w‖2 − U(s)

w′ = M−1∇U(s) + U(s)s− 1

2
νw − ‖w‖2s = ∇̃U(s)− 1

2
νw − ‖w‖2s

where

(71) ∇̃U(s) = M−1∇U(s) + U(s)s.

Finally, since z = ν s+w is a decomposition into vectors which are orthogonal with
respect to the mass metric, the energy equation becomes

(72)
1

2
(ν2 + ‖w‖2)− U(s) = rh.

The vector ∇̃U(s) is the tangential gradient of the potential. More precisely, it
is the gradient vector of the restriction of U(s) to the ellipsoid E with respect to

the mass metric. The meaning of this statement is as follows. First of all ∇̃U(s) is
tangent to the ellipsoid since

〈〈s, ∇̃U(s)〉〉 = sTM(M−1∇U(s) + U(s)s)

= sT∇U(s) + U(s)sTMs = −U(s) + U(s) = 0.

Second, if w is an vector tangent to the ellipsoid, that is 〈〈s, w〉〉 = 0, then

〈〈∇̃U(s), w〉〉 = (M−1∇U(s) + U(s)s)TMw = ∇U(s)Tw = dU(s)w.

Before turning to the discussion of total collision, an important property of the
radial velocity ν will be given. Using the energy equation, the differential equation
for ν′ can be written

(73) ν′ =
1

2
ν2 + ‖w‖2 − U(s) =

1

2
‖w‖2 + rh.

If h ≥ 0 or else if r = 0 (the collision manifold), ν′ = 1
2‖w‖

2 ≥ 0. So ν(t) is
a nondecreasing Lyapunov function. This fact is closely related to the Lagrange-
Jacobi identity and the connections are explored in Exercise 7.3.

Exercise 7.1. Prove Proposition 7.1.

Exercise 7.2. Derive equations (69) and (70) . The homogeneity of U(q) will be
needed to express ∇U(q) in terms of ∇U(s).

Exercise 7.3. Note that İ(t) and ν(τ) are both connected with the rate of change

of the size of the configuration. Their derivatives Ï(t) from the Lagrange-Jacobi
equation from Proposition 7.2 and ν′(τ) from (73) are also closely connected. To
explore this, use the fact that I = r2 and the change of timescale to derive (73)
from the Lagrange-Jacobi equation.
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7.1. Total Collision. In this section, solutions of the n-body problem which ex-
perience a total collision will be discussed using McGehee coordinates. But first
some simple examples of such orbits will be given.

Example 7.1. The collinear Kepler problem. Consider the Kepler problem in R1.
If the center of attraction at the origin has mass λ and if r(t) > 0 is the position of
the moving body, then the differential equation is

(74) r̈(t) = − λ

r(t)2

and the energy equation is 1
2 ṙ

2 − λ
r = h. Since the motion is confined to a line,

collisions are inevitable. For example, if the initial velocity is ṙ = 0, it’s clear that
there will be collisions with the origin in both forward and backward time. Such
a solution has negative energy h < 0. For solutions with h ≥ 0. There will be a
collision in one time direction while r(t)→∞ in the other.

Since the Kepler problem models the translation reduced two-body problem,
there will be corresponding solutions of the two-body problem which begin and/or
end in total collision. See Exercise 1.5 for an example with h = 0.

For the two-body problem in Rd, one can find such solutions moving along any
given line through the origin. Clearly these will have angular momentum zero.

Based on this simple example, one can construct analogous solutions of the
n-body problem, the so-called homothetic solutions. Starting from some initial
configuration, these solutions simply collapse to the origin with each body moving
along a straight line. However, this is only possible if the initial configuration is
carefully chosen.

Proposition 7.4. Let q0 ∈ Rdn be a configuration of n bodies in Rd. Then q(t) =
r(t)q0, r(t) > 0 is a solution of the n-body problem if and only if q0 satisfies the
equation

(75) ∇U(q0) + λMq0 = 0

where M is the mass matrix and λ is a constant, and r(t) is a solution of the
collinear Kepler problem (74).

Proof. Let q(t) = r(t)q0. Then q(t) solves Newton’s equation if and only if

Mr̈(t)q0 = ∇U(r(t)q0) = r(t)−2∇U(q0).

Writing this as r(t)2r̈(t)Mq0 = ∇U(q0), the right-hand side is a constant vector so
the left-hand side must also be constant. Writing r(t)2r̈(t) = −λ for some λ gives
both equations (74) and (75). QED

Definition 7.1. A configuration q0 = (q1, . . . , qn) ∈ Rdn is a central configuration
or CC if (75) holds for some λ.

For example, it will be shown later that for every choice of masses, the equilateral
triangle configurations are central configurations of the planar three-body problem.
This gives rise to homothetic solutions as in Figure 32. The bodies move along
straight lines, always maintaining an equilateral shape until they collide at the
center of mass.

It can be shown that if q is a CC then the center of mass is automatically at
the origin and λ = U(q)/‖q‖2 > 0. Moreover if q is a CC then so are all of the
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Figure 32. A homothetic solution of the planar three-body prob-
lem based on Lagrange’s equilateral central configuration.

configurations obtained from q by scaling and rotation, that is, q̃ = kRq where
k > 0 and R ∈ SO(d) (acting on each qi as usual). See Exercise 7.4.

One might ask what the homothetic solutions look like in McGehee’s blown-up
coordinates. For such a solution, the normalized configuration s(τ) = q(τ)/‖q(τ))‖ =
s0 is constant. Only the size r(τ) varies. From the ODE (70), one finds s(τ) = s0,
w(τ) = s′(τ) = 0. The size variables satisfy

r′ = νr ν′ =
1

2
ν2 − U(s0)

while the fact that w′ = 0 gives

∇̃U(s0) = M−1∇U(s0) + U(s0)s0 = 0.

In addition, the energy equation gives

1

2
ν2 − U(s0) = rh.

The equation ∇̃U(s0) = 0 is equivalent to the CC equation (75) with λ = U(s0),
which is the right value for normalized configurations ‖s0‖ = 1. Figure 33 shows the
behavior of the size variables (r, ν) for various energies. Note that the homothetic

orbits converge to restpoints p± with (r, s, ν, w) = (0, s0,±
√
U(s0), 0) as τ → ±∞.
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Figure 33. Phase portrait of size variables for homothetic orbits,
showing convergence to restpoints on the collision manifold r = 0.
For h < 0 (blue), the homothetic orbits connect two restpoints.
The other curves are for h > 0 (blue) and h = 0 (black).
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The homothetic orbits are the simplest examples of total collision solutions, but
it turns out that there are many others. The rest of this section is devoted to
understanding all of them. It will turn out the the behavior in Figure 33 is typical:
collision solutions converge to restpoints on the collision manifold.

For equations (70) in McGehee coordinates (r, s, ν, w), the total collision {r = 0}
is blown-up into an invariant manifold

M0 = {r = 0, s ∈ X,w ∈ X, ‖s‖ = 1, 〈〈s, w〉〉 = 0,
1

2
(ν2 + ‖w‖2)− U(s) = 0}.

Since the subspace X has dimension d(n−1), the dimension ofM0 is 2d(n−1)−2.
The energy manifold, M(h), given by the same equations but with r ≥ 0 has
dimension 2d(n− 1)− 1.

Solutions q(t) of the n-body problem which experience a total collision in finite
time, now appear as solutions converging asymptotically to the collision manifold.
The following result makes this more precise for collisions which occur in forward
time. Reversing time, one can find the analogous result for collisions in the past.

Proposition 7.5. Suppose q(t) is a solution of the n-body problem for t ∈ [0, t0)
which experiences a total collision at t = t0 and let γ(τ) = (r(τ), s(τ), ν(τ), w(τ))
be the corresponding solution in McGehee coordinates. Then

i. γ(τ) exists for τ ∈ [0,∞)
ii. ν(τ) converges to a limit −ν0 < 0 and r(τ)→ 0 exponentially
iii. the omega limit set ω(γ) is a nonempty compact subset of the set of rest-

points in M0

iv. the angular momentum is zero

Proof. The key point of the proof is to use the fact that ν(τ) is a Lyapunov function.
From (73) and the energy equation one can derive yet another formula

ν′ = U(s)− 1

2
ν2 + 2rh.

Recall that there is a positive lower bound U(s) ≥ K > 0. It follows that there
exist positive constants ν1, r0, k such that

ν′ ≥ k > 0 when r ≤ r0,−ν1 ≤ ν ≤ ν1.

Suppose γ(τ) exists on some interval [0, b) (later it will be shown that b = ∞).
Since r(τ)→ 0 as τ → b, there will be some time τ0 such that r(τ) ≤ r0 for τ ≥ τ0.
It follows that ν(τ) ≤ −ν1 for τ ≥ τ0. Otherwise, ν(τ) would enter the region
r ≤ r0,−ν1 ≤ ν ≤ ν1 where the lower bound ν′ ≥ k holds. ν(τ) would have to
increase beyond +ν1 and could then never decrease below this bound again. But
ρ′ ≥ ν1r > 0 is incompatible with r(τ)→ 0.

By shifting the origin of time, it may now be assumed that r(τ) ≤ r0, ν(τ) ≤
−ν1 for all τ ≥ 0. It follows that the exponential estimate r(τ) ≤ r0 exp(−ν1τ)
holds. This can be used to show that ν(τ) converges to a limit. If h ≥ 0, ν(τ)
is increasing and the limit exists by monotonicity. So suppose h = −|h| < 0. Let
−ν0 = lim sup ν(τ) ≤ −ν1. To see that −ν0 is actually the limit, it must be shown
that the negative variations of ν(τ) tend to zero. Since

ν′ =
1

2
‖w‖2 + rh ≥ rh ≥ −r0 exp(−ν1τ)|h|
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the change of ν over any interval [τ1, τ2] satisfies

ν(τ2)− ν(τ1) =

∫ τ2

τ1

ν′(τ) dτ ≥ −r0|h|
ν1

exp(−ν1τ1).

This converges to zero as τ1 →∞ as required.
Since ν(τ) → −ν0 it follows that −2ν0 ≤ ν(τ) ≤ −ν0 for τ sufficiently large.

Since r = νr, this gives exponential upper and lower bounds for r(τ) and, in
particular, it follows that the interval of existence for γ(τ) must be [0,∞).

So far, it has been shown that γ(τ) converges to a level set of ν in the collision
manifold. To get the result about the omega limit set, it will be shown that U(s(τ))
has an upper bound, that is, s(τ) avoids the singular normalized configurations
(which would correspond to collisions of a proper subset of the bodies). First note
that if U(s) ≥ C, r ≤ r0 and −2ν0 ≤ ν(τ) ≤ −ν0, then

ν′ = U(s)− 1

2
ν2 + 2rh ≥ C − 2ν20 − 2|h|r0.

Then it will certainly be true that ν′ ≥ C/2 for all C sufficiently large. Since ν(τ)
has a limit, it cannot be that U(s(τ)) ≥ C continues to hold for all τ ≥ τ1. From
this, it will be shown that U(s(τ)) ≤ 2C holds for all sufficiently large τ . If not, the
configuration s(τ) would have to travel between the level sets U = C and U = 2C
infinitely often. Let δ > 0 be the distance between these two compact sets, using
the mass metric. The energy equation gives

‖s′‖ = ‖w‖ =
√

2U(s) + 2rh− ν2 ≤
√
C + 2r0|h|

The time required for U to increase from U = C to U = 2C is at least ∆τ =
δ/
√
C + 2r0|h|. During this time, ν increases by at least

∆ν ≥ Cδ/2
√
C + 2r0|h| > 0.

Thus if this happened infinitely often, ν could not converge.
So it has finally been shown that γ(τ) converges to the set {r = 0, ν = −ν0, U(s) ≤

2C}. The energy equation gives a bound 1
2‖w‖

2 ≤ 2C − 1
2ν

2
1 so γ(τ) converges to

a compact subset of M0. Therefore the limit set ω(γ) is a nonempty compact,
invariant subset. On the collision manifolds ν′ = 1

2‖w‖
2. Since ω(γ) is invariant

and contained in a level set of ν, it must be contained in the set ν′ = w = w′ = 0.
Since r′ = 0 and s′ = w = 0, this is the set of equilibrium points.

Finally, consider the angular momentum C(q, v). Recall that this is generally a
rank-two tensor with components Cαβ(q, v) =

∑
mi(qiαviβ − qiβviα). Setting qi =

rsi and vi = r−
1
2 zi = r−

1
2 (νsi + wi) shows that Cαβ(q, v) =

√
rCαβ(s, w). For any

collision orbit, s(τ), w(τ) remain bounded as τ → ∞ and hence |Cαβ(s(τ), w(τ))|
is bounded. Since

√
r(τ) → 0, Cαβ(q, v) → 0. But Cαβ(q, v) is constant along

solutions, so it must be 0, as required. QED

The restpoints of (70) are exactly the ones found already in connection with the

homothetic orbits, namely (r, s, ν, w) = (0, s0,±2
√
U(s0), 0) where the normalized

configuration satisfies ∇̃U(s0) = 0. In other words, s0 is a normalized central
configuration. Therefore Proposition 7.5 gives

Proposition 7.6. Suppose q(t) is a solution of the n-body problem for t ∈ [0, t0)
which experiences a total collision at t = t0 and let γ(τ) = (r(τ), s(τ), ν(τ), w(τ))
be the corresponding solution in McGehee coordinates. Then s = q/‖q‖ converges
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to the set of normalized central configurations with U(s0) = 1
2ν

2
0 , where −ν0 =

lim ν(τ).

Finding the central configurations of the n-body problem for given masses mi

involves solving a set of complicated algebraic equations. Some of the known results
about this will be given in the next section, but there are still many open problems.

Because of the change of timescale, the total collision solutions slow down as they
approach r = 0 and converge asymptotically as τ → ∞. In the usual timescale,
the collision occurs in finite time. Exercise 7.5 gives some details about the rate
of approach to collision, which turns out to be the same as for the two-body and
Kepler problems.

Exercise 7.4. Show that if q is a CC then the center of mass is at the origin and
λ = U(q)/‖q‖2 > 0. Moreover if q is a CC then so are all of the configurations
obtained from q by scaling and rotation, that is, q̃ = kRq where k > 0 and R ∈
SO(d) (acting on each qi as usual).

Exercise 7.5. Suppose γ(τ) = (r(τ), s(τ), ν(τ), w(τ)) is a solution of (70) which
exists for τ ∈ [0,∞) and as r(τ) → 0 as τ → ∞. Then, as shown in this section,

ν(τ)→ −ν0 < 0. Also, recall that the timescales are related by dt/dτ = r
3
2 .

i. Use this to show that t(τ) converges to a finite limit t(τ) → t0 < ∞ as
τ →∞. Thus the collision happens in finite time in the usual timescale.

ii. Also show that the collision happens with asymptotic rate |t− t0|
2
3 , that is,

the ratio
r(τ)

|t(τ)− t0|
2
3

converges to a finite, nonzero limit. Hint: Apply L’Hospital’s rule to the
ratio r

3
2 /|t− t0|.

Compare Exercise 1.5.

7.2. Central Configurations. Clearly, central configurations play an important
role in the study of total collision. In this section, some specific examples of CCs
will be analyzed.

Equation 75 has a simple, geometrical interpretation. Let Ai = 1
mi
∇iU(q) be

the acceleration vector of the i-th body produced by the gravitational attraction of
the other bodies. The (75) gives

Ai = −λqi i = 1, . . . , n.

Since λ > 0, this means that the all of the acceleration vectors are pointing at the
origin (the center of mass) and that their sizes are proportional to the distance from
the origin. Figure 34 illustrates this for the case of 8 equal masses. While it is clear
from symmetry that the accelerations for the left-hand configuration will satisfy
the required conditions, this is far from obvious for the right-hand configuration
which was found numerically.

In addition to this intuitive interpretation, Equation 75 also has a variational
interpretation which will be useful later.

Proposition 7.7. A configuration q ∈ Rdn \ ∆ is a central configuration if and
only if it is a constrained critical point of U(q) with the constraint that I(q) = ‖q‖2
be constant. This is true with or without fixing the center of mass at the origin.
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Figure 34. Two central configurations of 8 equal masses.

Proof. Suppose q0 is a CC, that is, ∇U(q0) + λMq0 = 0 holds for some λ. Let k =
I(q0). The constraint I(q) = k0 defines an ellipsoid in Rdn. Since I(q) = qTMq,
the gradient is ∇I(q) = 2Mq and (75) means that

∇U(q) + (λ/2)∇I(q) = 0.

Interpreting λ/2 as a Lagrange multiplier, this is exactly the condition for a con-
strained critical point. As noted already, all of these critical points lie in the zero
center of mass subspace X. Moreover, for q0 ∈ X, it is easy to see that both of
the gradient vectors are automatically tangent to X. This implies that adding the
additional constraint q ∈ X would make no difference. QED

In particular, the equation ∇̃U(s) = 0 means that the normalized configuration s
is a critical point of U restricted to the ellipsoid E . Since the set of CCs is invariant
under scaling, the choice of normalization is somewhat arbitrary. Another useful
choice is to normalize so the the constant in (75) us λ = 1. The following result,
whose proof is an exercise, gives a variational interpretation of these as well as
another for unnormalized CCs.

Proposition 7.8. A configuration q ∈ Rdn \ ∆ is a central configuration with
λ = U(q)/‖q‖2 = 1 if and only if it is an unconstrained critical point of F (q) =
U(q) + I(q). Alternatively, q is a CC (with no particular normalization) if it is an
unconstrained critical point of G(q) = U(q)2‖q‖2 = U(q)2I(q).

Note that G(q) is homogeneous of degree 0, that is, G(kq) = G(q). So if q is a
critical point, so is kq for every k > 0.

Using these alternative characterizations of CCs, one can give some existence
proofs for CCs and begin to work out some examples.

Proposition 7.9. For every choice of masses in the n-body problem, at least one
central configuration exists.

Proof. Consider the restriction of the potential U(s) to the ellipsoid E . E is a
compact subset of Rdn. The potential defines a smooth function U : E \ ∆ → R
where ∆ is the singular set. Since U → ∞ on ∆, U(s) must achieve its minimum
at some point s0inE \∆ and this will be a (normalized) CC. In a bit more detail,
choose any point s ∈ E \∆ and let K = U(s). The set SK = {s ∈ E : U(s) ≤ 2K}
is compact and so U achieves its minimum at some point s0. Since the minimum
is at most K, s0 is not a boundary point of SK so it must be a critical point and
hence a CC. QED
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Turning to examples, consider the two-body problem in Rd. Using the coordinate
q = q2−q1 ∈ Rd to parametrize the center of mass zero subspace X, the mass norm
becomes ‖q‖2 = µ|q|2 where µ = m1m2

m1+m2
and |q| is the Euclidean norm. In this

case, the ellipsoid of normalized configurations is the Euclidean sphere E = {s ∈
Rd : |s|2 = µ−1}. Furthermore the potential

U(s) =
m1m2

|s|
is constant on this sphere. Therefore every normalized configuration s ∈ E is a
critical point of the restriction of U to E , that is, ∇̃U(s) = 0 for all s. It follows
that every configuration q 6= 0 is a central configuration. In this case, all of the
nonzero configurations are equivalent up to scaling and rotation – they are all just
line segments of various sizes and orientations. If follows that, starting from any
initial condition in X, one can find homothetic solutions as in Example 7.1.

Next consider the three-body problem in Rd. A simple argument shows that it
suffices to consider the planar case, d = 2. To see this note that the three bodies
either form a triangle or else are all contained in a line. If the center of mass is at
the origin, the configuration can always be rotated into the plane R2× 0 ⊂ Rd. For
such a configuration, the gradient ∇U(q) is also in R2. It follows that the last d−2
component of (75) are automatically zero and it suffices to check the first two. A
similar argument show that for the n-body problem, it suffices to consider the case
d = n − 1. Indeed, this is the largest possible dimension for the subspace, call it
C(q), spanned by the n bodies.

Figure 35. Central configurations of the planar three-body prob-
lem with masses m1 = 1 (blue), m2 = 2 (green), m3 = 5 (purple).
The small black dots show the center of mass.

It turns out that the study of CCs of the planar three-body problem is analo-
gous to that of the Lagrange points of the PCR3BP. Namely, up to rotation and
scaling three are exactly five CCs, three collinear and two equilateral triangles (see
Figure 35). A nice way to handle the noncollinear case is to prove a more general
result.

Proposition 7.10. Consider the n-body problem with arbitrary masses mi > 0.
Then the only central configurations such that the subspace C(q) spanned the con-
figuration has the maximum possible dimension n−1 are the regular simplices (that
is, all of the mutual distances rij are equal).

So, for example, equilateral triangles are the unique noncollinear CCs of three
bodies and regular tetrahedra are the unique nonplanar CCs of four bodies. It’s
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remarkable that these configurations are CCs for all choices of the masses, since the
center of mass is not the geometric center of the configuration (see Figure 36).

Figure 36. Regular simplex CCs with unequal masses – 3 bodies
in R2 and 4 bodies in R3.

Proof. The proof will use the characterization of the CCs with λ = 1 as critical
points of F (q) = U(q) + I(q) from Proposition 7.8. Assume without loss of gener-
ality that the configuration lies in Rd with d = n− 1. The key to this proof is the
introduction of mutual distance coordinates, rij = |qi − qj |, 1 ≤ i < j ≤ n. Note
that the function F can be expressed as a function of the rij :

F =
∑
i<j

mimj

rij
+

1

m

∑
mimjr

2
ij .

The claim is that q is a CC of maximal dimension (that is, C(q) = Rn−1) if and
only if all of the partial derivatives

∂F

∂rij
= mimj

(
− 1

r2ij
+ 2rij

)
= 0.

This would mean that all of the mutual distances are equal to 2−
1
3 as required.

First of all, if all of these partial derivatives are zero, then q must be a critical
point of F because for each k = 1, . . . , n the chain rule shows that

∂F

∂qk
=
∑
i<j

∂F

∂rij

∂rij
∂qk

= 0.

This part does not use the assumption that q0 has maximal dimension. For the
converse, assume that q is a critical point and also has maximal dimension. It will
be shown that given any pair of indices (i, j) with 1 ≤ i < j ≤ n, it is possible to
vary rij while keeping all of the other rkl constant to produce a smooth curve of
configurations q(rij). Then the chain rule will give

∂F

∂rij
= ∇F (q) · dq(rij)

drij
= 0.

Before going into the proof, note that for n = 3, the claim amount to the
elementary assertion that if q describes a noncollinear triangle, it is possible to
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smoothly vary one of the three sides while holding the others fixed. Similarly, the
fact that one can vary one edge of a (nonplanar) tetrahedron without changing
the other edges is intuitively obvious. Exercise 7.7 shows that this is not possible
without the assumption that the configuration has maximal dimension.

To prove the analogous statement for n bodies in Rn−1, suppose q = (q1, . . . , qn) ∈
Rn(n−1) \∆ is a configuration with maximal dimension n− 1. Using rotational and
translational symmetry, one may assume that qi ∈ Rn−1×0 for i = 1, . . . , n−1. The
last point qn lies in the intersection of n−1 spheres Si = {x ∈ Rn−1 : |x−qi| = rin},
i = 1, . . . , n − 1. The unit normal vectors of these spheres at qn are the vectors
(qn − qi)/rin and by the assumption that q has maximal dimension, these n − 1
vectors are linearly independent. Now consider the intersection of the last n− 2 of
these spheres Si, i = 2, . . . , n − 1. The linear independence of the normal vectors
and the implicit function theorem shows that the intersection is a smooth curve
through qn. Moving qn along this curve, all of the mutual distances are constant,
except r1n. Since the sphere Sn meets the curve transversely, r1n can be used as
a smooth parameter along the curve. Permuting the indices shows that any one of
the rij could be varied holding the others constant. QED

Turning now to the collinear CCs of the three-body problem, first discovered by
Euler in 1767 [10],

Proposition 7.11. Up to rotation and scaling, there is a unique collinear central
configuration of the three-body problem for each ordering of the bodies along the
line.

Proof. Assume without loss of generality that the configuration is in R1. The
normalized configuration space

E = {q ∈ R3 : m1q1 +m2q2 +m3q3 = 0,m1q
2
1 +m2q

2
2 +m3q

2
3 = 1}

is the curve of intersection of a plane and an ellipsoid. The collision set consist of
three planes:

∆ = {q1 = q2} ∪ {q1 = q3} ∪ {q2 = q3}
which divide the curve into 6 arcs corresponding to the different orderings of the
three masses along the line (see figure 37). Since U → ∞ at these points, there
must be at least one critical point in each of the arcs. To see that there is only one
requires more work.

The three mutual distances provide convenient coordinates, but as Exercise 7.7
shows, they are not indepedent. Instead they are subject them to a collinearity
constraint. If we fix the ordering of the bodies to be q1 < q2 < q3 then the
constraint is r12 + r23 − r13 = 0. Looking for critical points of the homogeneous
function G = U(rij)

2I(rij) with this constraint and then normalizing by setting
r12 = 1, r13 = 1 + r, r23 = r gives a fifth-degree polynomial equation for r:

(76)
(m1 +m2)r5 + (3m1 + 2m2)r4 + (3m1 +m2)r3

− (m2 + 3m3)r2 − (2m2 + 3m3)r − (m2 +m3) = 0.

Fortunately there is a single sign change so Descartes’ rule of signs implies there
is a unique positive real root. All of this is very similar to what happened for
the PCR3BP. Of course there is no simple formula for how this root changes as a
function of the masses. QED



TOPICS IN CELESTIAL MECHANICS 87

123

213

132

231

312

321

Figure 37. Normalized configuration space for the collinear
three-body problem consists of 6 arcs of an ellipse. Here the shaded
plane represents configurations with fixed center of mass, the three
lines represent the collisions and the boundary circle represents fix-
ing ‖q‖.

Euler’s example illustrates the complexity of the CC equation. Even in the sim-
plest nontrivial case, finding CC’s for given masses involves solving complicated
polynomial equations. Figure 38 shows the beautiful surface defined by Euler’s
quintic when one of the masses is normalized to 1. The surface lies over the mass
parameter space in a complicated way making the uniqueness result for fixed posi-
tive masses all the more remarkable.

Using rotations in the plane, one can flip over the collinear configurations. So,
for example, the orderings 123 and 321 are the same up to rotations in the plane.
Counting this way there will be three distinct collinear CCs for each choice of the
masses. There are two distinct equilateral triangles distinguished the cyclic order
of the three bodies around the triangle. While these could be flipped over using
rotations in R3, they should be viewed as distinct for the planar three-body problem
as in Figure 35.

It turns out that Proposition 7.11 can be generalized to the collinear n-body
problem, a result of F.R. Moulton [20].

Proposition 7.12. Given masses mi > 0, there is a unique normalized collinear
central configuration for each ordering of the masses along the line.

Before moving on to the proof of Moulton’s theorem consider the geometry of
the next case, n = 4. This time the set of normalized configurations

E = {q ∈ R4 : m1q1 + . . .+m4q4 = 0,m1q
2
1 + . . .+m4q

2
4 = 1}

is the intersection of a hyperplane and an ellipsoid in R4. So it is a two-dimensional
surface diffeomorphic to S2. There are six collision planes which divide the sphere
into 4! = 24 triangles. Figure 39 shows the how the collision planes divide the
sphere.

Proof of Moulton’s theorem. The collision set ∆ divides the ellipsoid E of normal-
ized centered configurations into n! components, one for each ordering of the bodies
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Figure 38. Surface defined by Euler’s quintic equations in the
product space of masses and configurations. After normalizing
m3 = 1, there are two mass parameters (horizontal) and one con-
figuration variable r (vertical). Fixing the masses means looking
for intersections of the surface with a vertical fiber, here a line seg-
ment. For positive masses, the segment cuts the surface just once
but nonpositive masses can give several roots.

along the line. Let V denote any one of these components. V is an open set whose
boundary is contained in ∆. The Newtonian potential gives a smooth function
U |V : V → R and U(q)→∞ as x→ ∂V. Hence U |V attains its minimum at some
q0 ∈ V and q0 is a CC with the given ordering of the bodies along the line.

Instead of working on the normalized space where I(x) = 1 the uniqueness

proof will use the function F (q) = U(q) + I(q) on the cone Ṽ of all rays through
the origin passing through V (in figure 37 this would be an infinite triangular

wedge based on one of the six arcs). Let x, y ∈ Ṽ and consider a line segment
p(t) = (1 − t)x + ty, 0 ≤ t ≤ 1. Note that since the ordering is fixed, the sign of
pi(t)− pj(t) = (1− t)(xi − xj) + t(yi − yj) is equal to the common sign of xi − xj
and yi − yj . It follows that p(t) ∈ Ṽ for all t and so Ṽ is a convex set. It will be
shown that if x 6= y then F (p(t)) has a strictly positive second derivative. It follows
that x, y cannot both be critical points of F (x).

First consider F (rij) as a function of the mutual distances rij on (R+)
n(n−1)

2 .
The second partial derivative is

∂2F

∂r2ij
=

2mimj

r3ij
+

2mimj

m
> 0.

Now since the configurations x, y are collinear, the mutual distances reduce to
rij(t) = |pi(t) − pj(t)| and as the ordering is constant along the segment, this is a
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Figure 39. Normalized configuration space for the collinear four-
body problem. The collision planes divide the sphere into triangles
representing the possible orderings of the bodies.

linear function of t. It follows that F (p(t))′′ is a sum of terms

∂2F

∂r2ij
(p(t))

(
r′ij(t)

)2
.

These terms are all nonnegative and at least one is positive if x 6= y. QED

Exercise 7.6. Prove Proposition ??.

Exercise 7.7. Suppose q = (q1, q2, q3) ∈ R6 is a configuration of three bodies in
the plane which happens to be collinear, say qi = (xi, 0). Prove that, in contrast to
the noncolliinear case, it is not possible to find a smooth curve q(rij) with all of the
other distances rkl held constant. Hint: You can move r12, say, without changing
r13, r23 but the resulting curve cannot be parametrized as a smooth curve q(r12).

Exercise 7.8. Redo the proof of Euler’s Proposition 7.11 using the idea of the
proof of Proposition 7.12.

Exercise 7.9. Use symmetry to prove the a regular n-gon is a central configuration
of n equal masses. Similarly, show that a regular n-gon of n equal masses with
another mass of possibly different size at the origin, is a central configuration of
n + 1 masses. Hint: Rotate so that one of the bodies, say q1, is on the x-axis and
show that ∇1U(q) points along the x-axis. Then use rotational symmetry.

7.3. Homographic Solutions and Relative Equilibria. Central configurations
first came up in Section 7.1 in connection with the homothetic solutions. Propo-
sition 7.4 shows that every CC q gives rise to a homothetic solution q(t) = r(t)q
where r(t) is any solution of the collinear Kepler problem. If q = (q1, . . . , qn),
qi ∈ R2 is a planar CC then it also gives rise to a family of so-called homographic
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solutions. These are constructed from the solutions of the planar Kepler problem,
that is, the familiar ellipses, hyperbolas and parabolas.

It’s convenient to express the planar Kepler problem using complex coordinates.
Write the position as a complex number z(t) = r(t) exp(iθ(t)) ∈ C. Then the
differential equation is

(77) z̈(t) = − λz

r(t)3

and the energy equation is 1
2 (ṙ2 + r2θ̇2)− λ

r = h.
Based on this, one can construct analogous solutions of the n-body problem.

Starting from some initial configuration, each of the n bodies will move on its own
conic section as in Figure 40. The shape of the configuration will remain the same;
only the size and the rotation angle of the configuration will change. As was the
case for the homothetic solution, this is only possible if the initial configuration is
a central configuration.

Figure 40. Two homographic solutions based on the CC of 8
equal mass of Figure 34 (right). In the left solution, the bodies
move on circular orbits of the Kepler problem (this is a relative
equilibrium solution). On the right, they move on similar ellipses.

Proposition 7.13. Let q0 ∈ R2n be a planar configuration of n bodies in R2. Then
q(t) = z(t)q0, z(t) ∈ C is a solution of the n-body problem if and only if q0 satisfies
the CC equation (75) with constant λ and z(t) is a solution of the planar Kepler
problem (77). Here q0 = (q1, . . . , qn) is regarded as a complex vector with qi ∈ C.

Proof. Let q(t) = z(t)q0. Then q(t) solves Newton’s equation if and only if

Mz̈(t)q0 = ∇U(z(t)q0) = z(t)r(t)−3∇U(q0)

where both the homogeneity and the rotation invariance of the potential have been
used. Writing this as (r(t)3z̈(t)/z(t))Mq0 = ∇U(q0), the right-hand side is a con-
stant vector so the left-hand side must also be constant. Writing (r(t)3z̈(t)/z(t)) =
−λ for some λ gives both equations (77) and (75). QED
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There are two notable special cases of homographic solutions. The planar Kepler
problem with zero angular momentum gives rise to solutions z(t) = r(t) exp(iθ0)
moving along a ray of constant angle θ0. The resulting homographic solution is one
of the homothetic, total collision solutions. On the other hand, one could choose a
circular solution z(t) = r0 exp(iωt) with constant radius r0 as in Figure 40 (left). In
a uniformly rotating coordinate system, this would appear as an equilibrium points,
so it is a relative equilibrium (RE) solution, similar to those of the PCR3BP. The
stability of these RE will be discussed later.

The starting point for the homographic solutions is a planar CC. What about
nonplanar central configurations such as the regular tetrahedron in Figure 36?
While it is not possible to find homographic motions of the tetrahedron in R3,
it turns out that it is possible in R4. It’s also possible to find homographic motions
in R4 starting from a four-dimensional CC. Three-dimensional CCs can be seen as
special cases of four-dimensional ones.

Proposition 7.14. Let q0 ∈ R4n be a CC of n bodies in R4 which satisfies the CC
equation (75) with constant λ. Let J ∈ so(4) be any antisymmetric 4 × 4 matrix
with J2 = −Id. Finally, let z(t) = r(t) exp(θ(t)) be any solution of the planar
Kepler problem (77). Then

q(t) = r(t) exp(θ(t)J)q0

is a homographic solution of the n-body problem in R4. Here exp(θ(t)J) ∈ SO(4)
is the matrix exponential.

Proof. The left-hand side of Newton’s equation is

Mq̈ = M(r̈ + rθ̇2J2) exp(θJ)q0 + (rθ̈ + 2ṙθ̇)M exp(θJ)Jq0

= (r̈ − rθ̇2) exp(θJ)Mq0 + (rθ̈ + 2ṙθ̇) exp(θJ)JMq0

where since the matrices J and exp(θ(t)J) act on each body separately, they com-
mute with the mass matrix M . On the other hand, the homogeneity and rotation
invariance of the potential and the CC equation imply that the right-hand side is

∇U(r exp(θJ)q0 = r−2 exp(θJ)∇U(q0) = −λr−2 exp(θJ)Mq0.

Comparing the two sides of the equation, one sees that q will be a solutions provided

r̈ − rθ̇2 = − λ

r2
rθ̈ + 2ṙθ̇ = 0.

But this is just the planar Kepler problem in polar coordinates. QED

Using the series formula for the matrix exponential shows exp(θJ) = cos θ Id +
sin θJ so the i-th body of the homographic solution moves in the plane spanned by
qi, Jqi according to

qi(t) = r(t) cos θ(t)qi + r(t) sin θ(t)Jqi

where the CC is q0 = (q1, . . . , qn), qi ∈ R4. Thus each body is moving on its own
Keplerian ellipse, parabola or hyperbola, but these conic sections lie in different
planes in R4. Figure 41 shows a 3D projection of a 4D homographic motion of the
regular tetrahedron CC. In fact, it’s a RE solution obtained by choosing a circular
solution of the Kepler problem. Each body is rotating uniformly in some plane in
R4.
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Figure 41. Three-dimensional projection of a relative equilibrium
motion in R4. The configuration is the regular tetrahedron with
four equal masses. As the tetrahedron rotates in R4, each body
sweeps out a circle in its own plane. In the projection, these appear
as ellipses.

It turns out that it’s possible to find RE solutions (but not more general homo-
graphic ones) starting from certain configurations which are not CCs. For example,
this is possible for any isosceles triangle in the three-body problem with two equal
masses, say m1 = m2. Recall that this is not a CC unless it is equilateral. For this,
one needs a rotation in R4 which rotates two orthogonal planes at two different
angular velocities ω1, ω2. See Exercise 7.11. In order to find these generalized RE,
the initial shape has to be a so-called balanced configuration [2, 16].

Exercise 7.10. Suppose q(t) = r0 exp(iωt)q0 is a RE solution of the n body prob-
lem based on a CC q0. Suppose q0 solves the CC equation (75) with a certain
constant λ. Find formulas for the energy h, angular momentum C and period T of
the periodic solution q(t).

Exercise 7.11. Consider the 3BP with masses m1 = m2 and a possibly dif-
ferent mass m3. Let q0 = (q1, q2, q3) be an isosceles triangle configuration in
R4 with q1 = (−x, 0, z, 0), q2 = (x, 0, z, 0) and q3 = (0, 0, z3, 0) where (m1 +
m2)z + m3z3 = 0. Show that there is a block-diagonal 4 × 4 rotation matrix

R(t) = diag(

[
cosω1t − sinω1t
sinω1t cosω1t

]
,

[
cosω2t − sinω2t
sinω2t cosω2t

]
) such that q(t) = R(t)q0

solves the 3BP in R4.

7.4. Restpoints on the Collision Manifold. Using McGehee coordinates, so-
lutions which experience a total collision at some finite time are transformed into
solutions converging to the set of restpoints on the collision manifold. These are
the points (r, s, ν, w) with

r = w = 0 s = normalized CC ν = ±
√
U(s)

where the negative value for ν corresponds to collisions in forward time and the
positive sign to collisions in backward time. In this section, the eigenvalues of the
restpoints will be studied. Typically, the restpoints are hyperbolic except for the
inevitable presence of zero eigenvalues due to rotational symmetry. In this case,
it will be shown that the collision solutions converge to just one restpoint, rather
than just to the set of restpoints.
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Consider the linearized differential equations of (70) at an equilibrium point

(0, s0, ν0, 0), ν0 = ±
√

2U(s0):

(78)


δr′

δν′

δs′

δw′

 =


ν0 0 0 0
0 ν0 −∇U(s0) 0
0 0 0 I

0 0 D∇̃U(s0) − 1
2ν0I



δr
δν
δs
δw


where I denotes the dn × dn identity matrix. Recall that s, w are not indendent
variables in Rdn but rather, they are subjected to the constraints ‖s‖2 = sTMs = 1,
〈〈s, w〉〉 = sTMw = 0 as well as the center of mass constraints. If the energy is fixed,
the variables also satify (72). Since these equations define invariant sets for (70),
differentiation gives the following invariant subspace S for the linearized ODE (78)

(79)
〈〈s0, δs〉〉 = 〈〈s0, δw〉〉 = 0 ν0δν = hδr

m1δs1 + . . .+mnδsn = m1δw1 + . . .+mnδwn = 0.

Note that in the derivative of the energy equation, the term ∇U(s0) · δs has been
dropped since at a CC, ∇U(s0) = U(s)Ms0 and therefore ∇U(s0) ·δs = 〈〈s0, δs〉〉 =
0. For a similar reason, the entry ∇U(s0) in (78) can be dropped when working on
S.

The invariant subspace S has dimension 2 + 2dn − 2n − 3 = 2d(n − 1) − 1, the
same as the energy manifolds. Let A be the matrix of the linearized ODE. The
goal is to find the eigenvalues and eigenvectors of A. First note that the (δr, δν)
plane consists of eigenvectors with eigenvalue λ = ν0, but only the line spanned
by (δr, δν) = (h, ν0) lies in S. The rest of the eigenvectors will lie be of the form

(0, 0, δs, σw). The following lemma relates these to the eigenvectors of D∇̃U(s0).

Lemma 7.1. Let δs be an eigenvector of the second derivative matrix D∇̃U(s0)
with eigenvalue α. Then (δr, δν, δs, δw) = (0, 0, δs, λ±δs) are two eigenvectors of A
with eigenvalues

λ± =
−ν0 ±

√
ν20 + 16α

4
.

Note that D∇̃U(s0) = M−1(D∇U(s0) + M). The second derivative matrix

D∇U(s0) and the mass matrix M are symmetric and it follows that D∇̃U(s0) is

symmetric with respect to the mass inner product. That is 〈〈v,D∇̃U(s0)w〉〉 =

〈〈D∇̃U(s0)v, w〉〉. Just as for ordinary symmetric matrices, it follows that all of

the eigenvalues α are real and, moreover, D∇̃U(s0) has a basis of eigenvectors (see

Exercise 7.13). So D∇̃U(s0) has d(n− 1)− 1 eigenvectors with zero center of mass
and 〈〈s0, δs〉〉 = 0 and then the lemma provides 2d(n − 1) − 2 eigenvectors of A in
S. Together with the eigenvector (δr, δν, δs, δw) = (h, ν0, 0, 0) with λ = ν0, this
accounts for all of the eigenvectors of A in S.

Due to the rotational symmetry of the potential, it is inevitable that some of
eigenvalues of D∇̃U(s0) are α = 0. By the lemma, the two corresponding eigenval-
ues of A are λ± = 0, ν0/2. This means that the restpoints on the collision manifold
are degenerate. It is easy to check that if α 6= 0 then the eigenvalues λ± 6= 0 and,
in fact, λ± always have nonzero real parts. So except for the zero eigenvalues, the
restpoints on the collision manifold are hyperbolic.

For CCs of the n-body problem in Rd there can be as many as (d− 1)(d− 2)/2
zero eigenvalues arising from rotational symmery. To see this, recall that d(d−1)/2
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is the dimension of the rotation group SO(d). If s0 is a normalized CC and a
is any anti-symmetric matrix then the curve of configurations s(t) = exp(ta)s0
consists entirely of normalized CCs (where the rotation acts on each component of

s0 = (s1, . . . , sn)). Thus U(s(t)) = U(s0) is constant and ∇̃U(s(t)) = 0. Therefore

d

dt
|t=0∇̃U(s(t)) = D∇̃U(s0)as0 = 0

which shows that the vector δs = (aδs1, . . . , aδsn) is in the kernel of D∇̃U(s0) and
(δr, δν, δs, δw) = (0, 0, δs, 0) is in the kernel of A. There are d(d − 1)/2 linearly
independent choices for the antisymmetric matrix a. If the vectors as0 are also
linearly independent, d(d− 1)/2 is the dimension of the kernels.

For example, consider the planar n-body problem (d = 2, n ≥ 2). The rotation

group SO(2) has dimension d(d−1)/2 = 1, a =

[
0 −1
1 0

]
is a nonzero antisymmetric

matrix and as0 = (as1, . . . , asn) 6= 0 for every s0 6= 0. So the kernels of D∇̃U(s0)
and A always have dimension at least one. For the spatial problem (d = 3, n ≥ 2)
SO(3) has dimension d(d− 1)/2 = 3. As long as s0 is not a collinear configuration,

the dimensions of the kernels of D∇̃U(s0) and A are indeed 3, but if s0 is collinear,
this drops to 2 because rotation around the line of the bodies fixes s0.

Definition 7.2. A normalized central configuration is called nondegenerate if the
dimension of the kernel of D∇̃U(s0) (and of A) is the minimum permitted by ro-
tational symmetry.

Let s0 be a nondegenerate, normalized CC. Because of the action of the rotation
group, s0 is part of a compact manifold of normalized CCs obtained by rotating s0
in all possible ways. This is called the rotation group orbit of s0

Orb(s0) = {Rs0 : R ∈ SO(d)}.

Similarly, the equilibrium points p = (r, s, ν, w) = (0, s0,±
√
U(s0), 0) are part

of compact manifolds of equilibrium points Orb(p). An equivalent definition of

nondegeneracy is that the dimension of the kernel of D∇̃U(s0) is the same as the
dimension of the manifold Orb(s0). Using this, one can show

Proposition 7.15. Suppose s0 is a nondegenerate CC. Then the rotation group
orbit Orb(s0) is an isolated within the set of normalized CCs (that is, some neigh-
borhood of Orb(s0) contains no other equilibria). If a restpoint p = (r, s, ν, w) =

(0, s0,−
√
U(s0), 0) is in the omega limit set ω(γ) of some total collision solution,

γ, then ω(γ) = {p}. In other words, γ(τ) converges to one restpoint rather than
just to the set of restpoints.

This rules out the possibility of infinite spin for total collision orbits converging
to nondegenerate CCs.

Proof. The rotation group orbit of p is a manifold of restpoints. The tangent space
to the orbit is an eigenspace of the linearized ODE with eigenvalue λ = 0, but all
of the other eigenvalues have nonzero real parts, so for the linearized flow, they are
either attracting or repelling. The rest of the proposition follows from some general
facts from dynamical systems theory.

For an ODE in Rn, suppose p is part of a compact manifold M of restpoints of
dimension k and suppose that all of these restpoints have n − k eigenvalues with
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nonzero real parts. Furthermore suppose that of these m − k eigenvalues l have
Re(λ) < 0 and m have Re(λ) > 0. Let W s(M), Wu(M) be the local stable and
unstable sets of the manifold M, that is, the sets of initial conditions near M
whose orbits converge to M in forward and backward time, respectively. Then it
can be shown that W s(M) has dimension k+l, each point p ∈M has its own stable
manifold of dimension l and that W s(M) = ∪p∈MW s(p). A similar result holds for
the unstable manifolds. In other words, instead of just converging toM, solutions in
W s(M) converge to just one point of M. One says that the convergence happens
with a well-defined asymptotic phase. This is basically a variation on the usual
stable manifold theorems for hyperbolic restpoints or hyperbolic periodic orbits.
Clearly this is just what is needed to get the proposition. QED

Exercise 7.12. Prove Lemma 7.1. Hint: Eigenvectors and eigenvalues satisfy
δw = λδs and D∇̃U(s0)δs− 1

2ν0δw = λδw.

Exercise 7.13. Let S be a real k×k matrix which is symmetric with respect to some
inner product on Rk, that is, 〈〈v, Sw〉〉 = 〈〈Sv,w〉〉. Show that all of the eigenvalues of
S are real, that the eigenvectors corresponding to distinct eigenvaiues are orthogonal
(with respect to the mass inner product) and that S is diagonalizeable. Hint: recall
the proof for ordinary symmetric matrices.

Exercise 7.14. Here is a simple example of convegence with asymptotic phase.
Consider an ODE in R2 of the form ẋ = f(x, y)y, ẏ = −y where f(x, y) is a bounded,
smooth function. Show that the x axis R×0 consists entirely of equilibrium points,
that W s(R× 0) is the whole plane and that every solution actually converges to a
unique restpoint (x0, 0) ∈ R × 0. Hint: for the last part, show that the improper
integral

∫∞
0
ẋ(t) dt is convergent.

7.5. Total Collision for n = 2. The last few sections provide a lot of theoretical
results about total collisions and restpoints on the collision manifold. The simplest
example is the planar two-body problem. Parametrizing the center of mass subspace
by q = q2 − q1 ∈ R2, the mass metric becomes

‖q‖2 = µ|q|2 µ =
m1m2

m1 +m2

where |q| is the Euclidean norm. The size of the configuration is r = |q|/√µ and the

normalized configuration s = s2 − s1 lies on the circle |s| = µ−1/2 which represents
the ellipsoid E . The potential on this ellipsoid is U(s) = m1m2/|s| = m1m2

√
µ

which will be called U0. Since the ellipsoid E is a circle, it can be parametrized
by an angle, θ. The tangential velocity w can be replaced by θ′ = ω. Using these
variables, the McGehee equations (70) become

(80)

r′ = νr

ν′ =
1

2
ν2 + ω2 − U0

θ′ = ω

ω′ = −1

2
vω.

The energy and angular momentum equations are

1

2
ν2 +

1

2
ω2 − U0 = rh C =

√
rω.
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Even though this is the simplest case, it is still an ODE in R4 with a 3D energy
manifold. A convenient way to reduce the dimension is to quotient by the rotational
symmetry. In this case, this amount to just ignoring the angular variable θ and
considering the other three ODEs in (r, ν, ω)-space. The energy equation defines
2D surfaces which are paraboloids for h 6= 0 and a cylinder for h = 0. Figure 42
shows the parts of these surfaces in the physically relevant region r ≥ 0. All of the
energy surfaces intersect along the collision manifold, a circle in the plane r = 0,
which forms their common boundary. The figure also shows the level curve of

Figure 42. Energy surfaces for the two-body problem in blown-up
coordinates with rotational symmetry quotiented out. One surface
is shown for each of the cases h > 0, h = 0, h < 0. The contours
show curves of constant angular momentum.

the angular momentum. Since this is a constant of motion, these level curves are
exactly the orbits of the equations (80). In other words, these are the familiar orbits
of the Kepler problem (ellipses, parabolas and hyperbolas) as viewed in blown-up
coordinates.

Figure 43 shows the flow in more detail for the negative energy case, including the
flow on the collision manifold itself. Recall that the solutions for fixed energy are a
family of ellipses, all with with the same major semiaxes and periods as in Figure 8.
It’s interesting to see how these appear in the figure. There are two circular orbits
with the given energy, one clockwise and one counterclockwise. Since the angle
has been quotiented out, these appear as two restpoints on the paraboloid, one
in front and one in back. Similarly, there are two families of elliptical orbits with
eccentricities 0 < e < 1 filling out the front and back of the surface. As e→ 1 these
converge to the collinear, collision solution moving in and out along a line segment
and beginning and ending at total collision. This an example of a homothetic orbit
as in Proposition 7.4 and Figure 33. However, the new figure shows not just the
two limiting restpoints, but the whole flow of the collision manifold.

Apparently the flow on the quotiented collision manifold consists of two orbits
connecting the restpoints in the opposite direction from the homothetic orbit. The
homothetic orbit has a total collision in forward time, converging to the restpoint
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Figure 43. Flow on a negative energy surface of two-body prob-
lem in blown-up coordinates with rotational symmetry quotiented
out. Also shown is the flow on the collision manifold (red) with its
restpoints and the homothetic orbit (blue) connecting them.

with ν = −
√

2U0 < 0, and a total collision in backward time, converging to a
restpoint with ν =

√
2U0 > 0. The solutions on the collision manifold connect these

restpoints in the direction of increasing ν. Taken together, there are two restpoint
cycles, one representing the limit of elliptical orbits with angular momentum C > 0
as e → 1 and the other the limit of the orbits with C < 0. One can understand
the orbits in the collision manifold as limits of the rapid spinning around the origin
which the elliptical orbits exhibit near r = 0. Whereas the e = 1 orbit just moves
in and out, the nearby elliptical ones move in, spin around, and then move out.
In blown-up coordinates, the limit of the spinning behavior produces the orbits in
r = 0.

Before moving on to the 3BP, the flow on the unquotiented energy manifold will
be described. To make a 3D visualization of the energy manifold, use the energy
equation 1

2ν
2 + 1

2ω
2 −U0 = rh in the negative energy case h < 0 to eliminate r via

r =
1

2|h|
(2U0 − ν2 − ω2).

Since r ≥ 0, the variables (ν, ω) lie in the closed disk ν2 + ω2 ≤ 2U0 with the
boundary circle ν2 + ω2 = 2U0 representing the collision manifold. Including the
angular variable θ, one finds that the energy manifold is a solid torus with the
boundary torus representing the collision manifold. Figure 44 shows the some
features of the resulting flow. Comparing with the quotient flow in Figure 43,
the full flow has two circles of restpoints (θ, ν, ω) = (θ,±

√
2U0, 0), 0 ≤ θ ≤ 2π.

These are connected by a family of homothetic orbits (blue arrows) and also by
two families of orbits in the collision manifold (red). The homothetic orbits have
constant θ, while along the orbits in the collision manifold θ changes by ±2π where
the sign depend on that of ω.

Finally, it’s instructive to interpret the general results about the eigenvalues
of the restpoints from Section 7.4 for this simple case. In the four-dimensional
(r, ν, θ, ω) space there will be four eigenvectors, but only three of them are tangent
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Figure 44. Flow on a 3D negative energy surface of two-body
problem in blown-up coordinates. The coordinates in this projec-
tion are (θ, ν, ω). The manifold is a solid torus with the collision
manifold r = 0 represented by the boundary surface. The collision
manifold has two circles of restpoints which are connected pairs
of orbit running between the circles at ν = ±

√
2U0. Also shown

are some of the homothetic orbit (blue) connecting them in the
opposite direction.

to the energy manifold. The linearized system is
δr′

δν′

δθ′

δω′

 =


ν0 0 0 0
0 ν0 0 0
0 0 0 1
0 0 0 − 1

2ν0



δr
δν
δθ
δω

 .
As always, there is the eigenvector (h, ν0, 0, 0) with λ = ν0. In the 3D projection

of Figure 44, this is the vertical vector (ν0, 0, 0) tangent to the homothetic orbits.
It’s an attracting direction for the restpoints with ν0 < 0 and repelling for those
with ν0 > 0. By Lemma 7.1, the eigenvalues, α, of D∇Ũ(s0) determine the other

eigenvalues. Since U(s) is constant on the one dimensional ellipsoid E , D∇Ũ(s0) =
0 (this is the 0 in the (4, 3) position in the matrix). Its only eigenvalue is α = 0.
The corresponding eigenvectors and eigenvalues of the linearized system are

(δr, δν, δθ, δω) = (0, 0, 1, 0), λ = 0 (δr, δν, δθ, δω) = (0, 0, 1,−1

2
ν0), λ = −1

2
ν0.

In the 3D projection of Figure 44, the first eigenvector is tangent to the line of
restpoints and the second is tangent to the red connecting orbits in the collision
manifold. The latter are repelling for ν0 < 0 and attracting for ν0 > 0 as seen in
the figure.

Exercise 7.15. Consider the solutions on the collision manifold r = 0 for the 2BP.
For each restpoint p = (r, ν, θ, ω) = (0,−

√
2U0, θ0, 0) there is a pair of solutions

starting at p and converging to a restpoint q = (r, ν, θ, ω) = (0,
√

2U0, θ1, 0) (see
Figure 44). Show that the change in the angle θ(t) along these solutions is ±2π

where the sign depends on the sign of ω along the orbit. Hint: Consider dθ
dν = θ′

ν′ .
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7.6. Total collision and relative equilibria for n = 3. For the planar 3BP,
the translation-reduced phase space has dimension 4(n − 1) = 8 and the energy
manifolds have dimension 7. By forming a quotient space, the dimension can be
reduced to 5. It will not be possible to visualize these directly, but some of the
features encountered above, such as homothetic orbits and circles of restpoints on
the collision manifold, as well as homographic orbits, will be present there.

For the study of triple collision, the restriction to the planar problem is no loss
of generality. By Proposition 7.5, the angular momentum of any total collision
solution must be zero. It turns out that for the 3BP, orbits with zero angular
momentum are always planar (see Exercise 7.18).

To understand triple collision, the main task will be to find the eigenvalues of
the restpoints. Lemma 7.1 shows that the key is to understand the eigenvalues of
D∇̃U(s0) whose eigenvectors satisfy

(81) 〈〈s0, δs〉〉 = 0 m1δs1 +m2δs2 +m3δs3 = 0.

Since the dimensions are large, some tricks will be used to simplify the computa-
tions.

It is easy to guess several eigenvectors of D∇̃U(s0). First consider the con-
figuration vector s0 = (s1, s2, s3). Since U is homogeneous of degree −1, ∇U is
homogeneous of degree −2 and therefore D∇U(s)s = −2∇U(s). Since s0 is a
normalized central configuration, ∇U(s0) + U(s0)Ms0 = 0 and therefore

D∇̃U(s0)s0 = M−1D∇U(s0)s0 + U(s0)s0 = 3U(s0)s0.

In other words, s0 is an eigenvector with eigenvalue α = 3U(s0). However, s0 does
not satisfy the normalization conditions (81).

Next, consider translation vectors of the form w = (k, k, k) where k ∈ R2. Since

∇U(s) is translation invariant, we have D∇U(s0)w = 0 and D∇̃U(s0)w = U(s0)w.
There are two independent eigenvectors of this type with α = U(s0), but these also
do not satisfy (81).

Finally, the rotational symmetry of U(s) implies that s⊥0 is an eigenvector of

D∇̃U(s0) with eigenvalue α = 0 where s⊥0 = (s⊥1 , s
⊥
2 , s
⊥
3 ), the vector with each si ro-

tated by 90◦ in the plane. s⊥0 does satisfy the normalization conditions. Lemma 7.1
gives eigenvalues λ = 0,−ν02 for the linearized ODE. There are two more eigenvec-
tors satisfying (81) and they will determine what will be called the “nontrivial”

eigenvalues of D∇̃U(s0). Here is the result for the equilateral CCs.

Proposition 7.16. The nontrivial eigenvalues of D∇̃U(s0) at an equilateral central
configuration are

α1, α2 =
3U(s0)

2

(
1±
√
k
)

where

(82) k =
(m1 −m2)2 + (m1 −m3)2 + (m2 −m3)2

2(m1 +m2 +m2)2
.

The four corresponding nontrivial eigenvalues at one of the Lagrangian restpoints
at triple collision are

λ =
−ν0

4

(
1±

√
13± 12

√
k

)
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The proof will be given at the end of this section. An important corollary is the
fact the the triple collision orbits form submanifolds in the phase space, a result
first proved by C.L.Siegel [21, 22].

Corollary 7.1. There are two circles of equilateral restpoints on the collision man-
ifold with with ν0 < 0 and two with ν0 > 0. Up to symmetry these are nondegen-
erate. In each manifold of constant energy, each restpoint with ν0 < 0 has an
analytic stable manifold of dimension 3. These are the initial conditions leading to
triple collision in forward time. Similarly, each restpoint with ν0 > 0 has a three-
dimensional analytic unstable manifold consisting of all initial conditions leading
to triple collision in backward time. These manifolds are entirely contained in the
zero-angular-momentum submanifold.

Proof. In the energy manifold, the seven eigenvalues at each equilateral restpoint
are ν0, 0,− 1

2ν0 and the four nontrivial eigenvalues from Proposition 7.16. If ν0 < 0,
the three “trivial” ones are real and have signs −, 0,+ with the negative eigenvalue
ν0 having a nonzero δr component. One can show that the constant k in the
proposition satisfies 0 ≤ k < 1 (see Exercise 7.16). Then a moments thought shows
that the nontrivial eigenvalues are all real and have signs given by the choice of
± outside the square root in the formula. Therefore, two of them are positive
and two are negative. There are a total of three attracting eigenvalues. Since 0
is a simple eigenvalues, the equilateral restpoints are nondegenerate in the sense
of Definition 7.2. It follows that the stable manifold of the corresponding circle
of restpoints is the union of the stable manifolds of the individual restpoints (the
stable manifold orbits have asymptotic phase) and the dimension of these individual
manifolds is 3. A similar discussion applies near the restpoints with ν0 > 0. QED

Next consider one of the Euler configurations, say the configuration for which
m2 lies between m1 and m3. Recall that the distance ratio r = r23/r12 for this
configuration is the unique positive root to the fifth degree equation (76). Let

(83) κ =
m3(1 + 3r + 3r2) +m1(3r3 + 3r4 + r5)

(m1 +m3)r2 +m2(1 + r)2(1 + r2)
.

Proposition 7.17. The nontrivial eigenvalues of D∇̃U(s0) at the collinear central
configuration with m2 between m1,m3 are

α1, α2 = −U(s0)κ, U(s0)(3 + 2κ)

with κ given by (83). The four corresponding nontrivial eigenvalues at the Eulerian
equilibrium points at triple collision or at infinity are

(84) λ =
−ν0

4

(
1±
√

1− 8κ
)
,
−ν0

4

(
1±
√

25 + 16κ
)
.

The values at the other Eulerian restpoints are found by permuting the subscripts
on the masses.

The restpoints corresponding to the collinear restpoints have stable and unstable
manifolds of dimension two for ν0 < 0 and ν0 > 0, respectively.

Corollary 7.2. There are six circles of collinear restpoints on the collision manifold
with ν0 < 0 and six with ν0 > 0. Up to symmetry these are nondegenerate. In each
manifold of constant energy, each restpoint with ν0 < 0 has an analytic stable man-
ifold of dimension 2. Similarly, each restpoint with ν0 > 0 has a two-dimensional
analytic unstable manifold.
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In addition to having zero angular momentum, it turn out that these collinear
triple collision orbits are entirely contained in the invariant submanifolds of solu-
tions which are collinear for all time (the collinear 3BP). Namely, for each ordering
of the bodies along a line, there is an invariant submanifold of such solutions. This
will be discussed in detail in Section 7.7. For now, the relevant point is that, in-
side the collinear 3BP energy manifolds, the stable and unstable manifolds of the
collinear restpoints also have dimension 2. Since the dimensions are the same, it
follows that the stable manifolds from the planar 3BP are identical to those of the
collinear problem. As a result, triple collision with a collinear asymptotic shape is
only possible if the solution is actually collinear for all time.

Another interesting feature of the collinear restpoints is the presence of nonreal
eigenvalues. If the constant κ > 1

8 then there is a pair of nonreal eigenvalues with
Re(λ) > 0 at the restpoints with ν0 < 0. These unstable eigenvalues have eigenvec-
tors transverse to the collinear 3BP submanifolds. This causes the nearby solutions
to spiral around the collinear manifolds near triple collision. This phenomenon has
important implications for the existence of chaotic motions near triple collision, but
this will not be discussed here [18, 17].

The results of Propositions 7.16 and 7.17 can also be applied to analyze the linear
stability of the relative equilibrium solutions of the planar 3BP corresponding to
the five types of CCs. Recall that in the PCR3BP, the collinear RE were unstable
but that the equilateral ones could have all imaginary eigenvalues if one of the two
primaries is much larger that the other. Similar results will now be obtained for
the planar 3BP. Since the RE solutions rotate at a constant angular speed, they
will become equilibria in rotating coordinates. Since the size variable r is constant,
the rotation rate will also be constant using the McGehee timescale, τ . Let

R(τ) =

[
cosωτ − sinωτ
sinωτ cosωτ

]
be the rotation matrix with angular velocity ω and period 2π/ω. Starting from
McGehee variables (r, ν, s, w) introduce new, rotating coordinates S,W with s =
R(τ)S,w = R(τ)W where the rotation acts on each components Si,Wi ∈ R2 sepa-
rately, as usual. Then the ODE (70) becomes

(85)

r′ = νr

ν′ =
1

2
ν2 + ‖W‖2 − U(S)

S′ = W − ωKS

W ′ = ∇̃U(S)− 1

2
νW − ‖W‖2S − ωKW

whereK is the block-diagonal 6×6 matrixK = diag(

[
0 −1
1 0

]
,

[
0 −1
1 0

]
,

[
0 −1
1 0

]
).

The energy equation is

1

2
ν2 +

1

2
‖W‖2 − U(S) = rh.

A RE solution will have some constant radius r = r0 and so must have ν = 0.
The normalized configuration with be some constant CC S0 with ∇̃U(S0). The
ODE gives

W = ωKS ‖W‖2 = ω2 = U(S0).
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With ω = ±
√
U(S0), there is an equilibrium point at (r, ν, S,W ) = (r0, 0, S0, ωKS0).

The energy equation shows that the size r0 satisfies

r0h+
1

2
ω2 = 0.

Although the angular velocity in the rescaled time is uniquely determined up to
sign by the CC, the angular velocity ω̂ in the usual timescale depends on the size
via

ω̂ = r
− 3

2
0 ω = ±r−

3
2

0

√
U(S0).

To analyze stability, the eigenvalues of the linearized system will be found. The
linearized ODE at the restpoint (r, ν, S,W ) = (r0, 0, S0, ωKS0) is

(86)


δr′

δν′

δS′

δW ′

 =


0 r0 0 0
0 0 −∇U(S0) 2WTM
0 0 −ωK I

0 0 D∇̃U(S0) −ωK



δr
δν
δS
δW


Since S = (S1, S2, S3),W = (W1,W2,W3) have dimension 6, the matrix is 14× 14.
As before, only the eigenvectors with

〈〈S0, δS〉〉 = 〈〈S0, δW 〉〉 = 0

m1δS1 + . . .+mnδSn = m1δW1 + . . .+mnδWn = 0

are relevant. This time, the energy equation gives

〈〈W, δW 〉〉 = 〈〈ωKS0, δW 〉〉 = hδr.

There will be seven eigenvectors satisfying these constraints (the dimension of the
energy manifold).

First note that the vector (δr, δν, δS, δW ) = (0, 0,KS0,−S0) (tangent to the
circle of restpoints) is an eigenvector with eigenvalue λ = 0. Next, the vectors
(δr, δν, δS, δW ) = (ω, 0, 0, hKS0), (0, 2hω, hKS0, hωS0) satisfy the constraints and

form an invariant two-dimensional plane with matrix

[
0 −ω2

1 0

]
. The restriction of

the linearized ODE to this plane has two imaginary eigenvalues λ = ±ω. The other
four eigenvectors will satisfy δr = δν = 0 and 〈〈KS0, δS〉〉 = 0. They will be related

to the nontrivial eigenvectors of D∇̃U(S0) from Propositions 7.16 and 7.17.

Lemma 7.2. Let v1, v2 be the eigenvectors associated to the nontrivial eigenvalues
α1, α2 of D∇̃U(S0). Then, up to a scalar multiple, v2 = Kv1.

Proof. Consider the 6×6 matrices D∇̃U(S0) and K. The first is symmetric and the
second is antisymmetric with respect to the mass metric, that is, for all v, w ∈ R6

〈〈v,D∇̃U(S0)w〉〉 = 〈〈D∇̃U(S0)v, w〉〉 〈〈v,Kw〉〉 = −〈〈Kv,w〉〉.
As noted above, it follows that the eigenvectors of D∇̃U(S0) are orthogonal (mean-
ing, with respect to the mass metric). If S ⊂ R6 is an invariant subspace for

D∇̃U(S0) then its orthogonal complement (with respect to the mass metric) is
also invariant. This is a standard fact about ordinary symmetric matrices which
generalizes to this case. Similarly, if S is invariant for the antisymmetric matrix
K, then its orthogonal complement is also K-invariant. Now the four-dimensional
subspace S spanned by (1, 0, 1, 0, 1, 0), (0, 1, 0, 1, 0, 1), S0,KS0 is invariant for both

D∇̃U(S0) and K. It follows that its orthogonal complement, a two-dimensional
subspace S⊥, is also invariant for both linear maps. There will be two eigenvectors
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in S⊥ and these must be the vectors v1, v2. Now the antisymmetry of K implies
that 〈〈v1,Kv1〉〉 = 0. But also 〈〈v1, v2〉〉 = 0, since they are both eigenvectors. Since
S⊥ has dimension two, it must be that v2 = cKv1 for some scalar c 6= 0. QED

Corresponding to the invariant subspace S⊥ with basis v1, v2 = Kv1 there is
a four-dimensional invariant subspace for the linearized ODE. Namely, with δr =
δν = 0, let (δS, δV ) = (v1, 0), (v2, 0), (0, v1), (0, v2). With respect to this basis, the
4× 4 matrix of the restriction of the linearized ODE to this subspace is

0 ω 1 0
−ω 0 0 1

α1 − ω2 0 0 ω
0 α2 − ω2 −ω 0


and the characteristic polynomial is

λ4 + (4ω2 − α1 − α2)λ2 + α1α2.

For the equilateral restpoints, this becomes

λ4 + ω2λ2 + ω4 27(m1m2 +m1m3 +m2m3)

4(m1 +m2 +m3)2

where the equations ω2 = U(S0) and α1, α2 = 3
2U(s0)(1 ±

√
k) have been used.

For spectral stability, the solutions of this quadratic equation for λ2 should both be
real and negative. Since the coefficients are positive, this will be true if and only if
the discriminant is nonnegative, that is

Proposition 7.18. The Lagrange equilateral triangle relative equilibria are spec-
trally stable if and only if

27(m1m2 +m1m3 +m2m3) ≤ (m1 +m2 +m3)2.

This is Routh’s stability criterion. Just as for the PCR3BP, the inequality fails
to hold for most masses. In fact it only holds when one mass is much larger than
the other two. For example, suppose the masses are normalized so that m3 = 1 is
the largest mass. Then Figure 45 shows the masses m1,m2 for which the equilateral
triangle is spectrally stable.

0.05 0.10 0.15 0.20
m1

0.05

0.10

0.15

0.20

m2

Figure 45. The shaded region show the masses (m1,m2) for
which the equilateral relative equilibrium of the planar 3BP is spec-
tally stable, assuming that m3 = 1 is the largest mass.
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Just as for the PCR3BP, the collinear RE solutions are unstable. Their eigen-
values can be computed in a similar way. Then the eigenvectors with eigenvalues
λ = 0,±i ω are as for the equilateral case. Lemma 7.2 applies and one obtains the
same 4×4 matrix as before. This time, Proposition 7.17 shows that α1 = −U(S0)κ,
α2 = U(S0)(3 + 2κ) and the characteristic polynomial of the 4× 4 matrix is

λ4 + ω2(1− κ)λ2 − ω4(3κ+ 2κ2).

Since the constant term is negative, the values of λ2 are real with opposite signs.
The positive root gives a pair of real eigenvalues −λ < 0 < λ which means that the
collinear RE are always unstable.

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.5

1.0

1.5

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 46. Relative equilibria of the 3BP. Lagrange RE for m1 =
1,m2 = 10,m3 = 300 is spectrally stable (left). Euler RE for
masses m1 = 1,m2 = 2,m3 = 3 is unstable (right).

7.6.1. How to compute the eigenvalues. To prove propositions 7.16 and 7.17 one has
to find the nontrivial eigenvalues α1, α2 of D∇̃U(s) for the equilateral and collinear
central configurations of the three-body problem. It is straightforward to calculate
the 6× 6 matrix D∇U(s) with the result

(87) D∇U(s) =

D11 D12 D13

D21 D22 D23

D31 D32 D23


where the 2× 2 blocks are

Dij =
mimj

r3ij

(
I − 3uiju

t
ij

)
, uij =

qi − qj
rij

for i 6= j

and

Dii = −
∑
j 6=i

Dij .

It is more convenient to work with the matrix

P =
I(s)

U(s)
M−1D∇U(s).

Since P is invariant under scaling and translation, it can be computed without
imposing the normalizations ‖s‖ = 1 and m1s1 +m2s2 +m3s3 = 0. If β is an eigen-

value of P then α = U(s)(β + 1) is an eigenvalue of D∇̃U(s) for the corresponding
normalized s. So one is reduced to finding the nontrivial eigenvalues β1, β2 of P .
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Proof of Proposition 7.16. Consider an equilateral triangle configuration s. Work-
ing with P one can use the unnormalized configuration

s1 = (1, 0) s2 = (−1

2
,

√
3

2
) s3 = (−1

2
,−
√

3

2
)

for which

U(s0) =
m1m2 +m1m3 +m2m3√

3
I(s0) =

3(m1m2 +m1m3 +m2m3)

m
.

Using these together with (87) gives

P = 1
4m



5(m2 +m3) 3
√

3(m3 −m2) −5m2 3
√

3m2 −5m3 −3
√

3m3

3
√

3(m3 −m2) −(m2 +m3) 3
√

3m2 m2 −3
√

3m3 m3

−5m1 3
√

3m1 5m1 − 4m3 −3
√

3m1 4m3 0

3
√

3m1 m1 −3
√

3m1 −m1 + 8m3 0 −8m3

−5m1 −3
√

3m1 4m2 0 5m1 − 4m2 3
√

3m1

−3
√

3m1 m1 0 −8m2 3
√

3m1 −m1 + 8m2


One can guess 4 of the 6 eigenvalues of P . If e1 = (1, 0), e2 = (0, 1) then (e1, e1, e1)
and (e2, e2, e2) are eigenvectors with eigenvalue β = 0. Also s0, s

⊥
0 are eigenvectors

with eigenvalues β = 2,−1 respectively. Since the trace of P is 2, the remaining
eigenvalues satisfy β1 + β2 = 1. Alternatively, the numbers γi = βi + 1 satisfy
γ1 + γ2 = 3. One can also find the product γ1γ2 as follows. We have

(trP )2 − trP 2 = (1 + β1 + β2)2 − (5 + β2
1 + β2

2) = 2β1β2 − 2 = 2γ1γ2 − 6.

With some computer assistance, this gives

γ1γ2 =
27(m1m2 +m1m3 +m2m3)

4(m1 +m2 +m3)2

Solving the quadratic equation γ2 − 3γ + γ1γ2 = 0 gives the eigenvalues αi =
U(s)γi = ν20γi/2 of D∇̃U(s) listed in the proposition. Then Lemma 7.1 gives the
nontrivial eigenvalues λ of the restpoint. QED

Proof of proposition 7.17. Consider a normalized collinear central configuration such
that si = (xi, 0) ∈ R2. Then the unit vectors uij = (±1, 0) so the 2 × 2 matrices
Dij reduce to

Dij =
mimj

r3ij

[
−2 0
0 1

]
i 6= j.

Rearranging the variables as q = (x1, x2, x3, y1, y2, y3) produces a block structure

(88) M−1D∇U(s0) =

[
2C 0
0 −C

]
where C is the n× n matrix

C =


m2

r312
+ m3

r313
−m2

r312
−m3

r313
−m1

r312

m1

r312
+ m3

r323
−m3

r323
−m1

r313
−m2

r323

m1

r313
+ m2

r323

 .
An eigenvalue µ of C determines two eigenvalues

α = −µ+ U(s0), 2µ+ U(s0)

for D∇̃U(s0) = M−1D∇U(s0) + U(s0)I.
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It is possible to guess two eigenvectors of C. First of all v1 = (1, 1, 1) is an eigen-
vector with eigenvalue 0. Next, let v2 = (x1, x2, x3) be the vector of x-coordinates
of the collinear central configuration. Then it is easy to see that

Cv2 = −M0
−1∇xU

where ∇x is the partial gradient with respect to the x-coordinates and M0 =
diag(m1,m2,m3). Since s is a normalized central configuration, we have Cv2 =
U(s0)v2, so v2 is also an eigenvector, with eigenvalue U(s0). The remaining, non-
trivial eigenvalue of C can now be found as µ = τ − U(s0) where τ = tr(C), i.e.,

τ =

(
m1 +m2

r312
+
m1 +m3

r313
+
m2 +m3

r323

)
.

Therefore the nontrivial eigenvalues of of D∇̃U(s0) are

α = 2τ − U(s0), 2U(s0)− τ.

To get the form shown in the proposition, let κ be the translation and scale
invariant quantity

κ =
I(s)

U(s)
τ − 2.

Then for the normalized configuration α1, α2 = −U(s0)κ, U(s0)(3 + 2κ) and it
remains to show that κ has the indicated form.

Here is a computer assisted way to prove it. Using the configuration s1 =
(0, 0), s2 = (1, 0), s3 = (1 + r, 0) we have

r12 = 1 r23 = r r13 = 1 + r.

Substituting these into the formulas for I(s), U(s), τ expresses κ = I(s)
U(s)τ − 2 as a

rational function κ(r). Subtracting the expression (83) and factorizing the difference
reveals that there is a factor of g(r) in the numerator, where g(r) is the fifth degree
polynomial (76) giving the location of the central configuration. So κ(r) is indeed
given by (83) at the central configuration. QED

Exercise 7.16. Prove that the constant k in (?? satisfies 0 ≤ k < 1 for all masses
mi > 0. Hint: the question can be reduced to finding the maximum of the numer-
ator of (?? on the simplex where m1 +m2 +m3 = 1.

Exercise 7.17. Suppose m1 = m3 = 1 and m2 > 0. For which values of m2 do
the collinear restpoints of Proposition 7.17 have nonreal eigenvalues (so there is
spiralling) ?

Exercise 7.18. Suppose q(t) = (q1(t), q2(t), q3(t)) ∈ R9 is a solution of the 3BP in
R3 with center of mass at the origin and angular momentum vector C = (0, 0, 0).
Show that q(t) is planar, that is, all of the positions qi(t) lie in some fixed plane
for all time. Hint: In Jacobi coordinates, x1, x2 ∈ R3, the angular momentum is
C = µ1x1 × u1 + µ2x2 × u2 where ui = ẋi. Show that if xi ∈ R2 × 0 then the
velocities are also in R2 × 0. The case when the positions are collinear requires
some care.
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7.7. The Collinear Three-Body Problem. The planar 3BP is difficult to vi-
sualize due to the high dimensions of the phase space. The collinear 3BP is an
interesting special case where the phase space has dimension 4 and the energy
manifolds have dimension 3, just like the planar 2BP. It was the first case stud-
ied by McGehee and provides a nice application of the blow-up method [13]. The
details here differ somewhat from McGehee’s presentation.

Consider the collinear three-body problem with masses m1,m2,m3 and positions
be qi ∈ R. Here it will be assumed that the order of the bodies along the line is
q1 < q3 < q2. Since the bodies are all on a line, binary collisions are inevitable but
they will be regularized such that the solutions continue after a “bounce”. Figure ??
shows a spacetime plot of typical solution. For each time, t, the positions of bodies
are shown along a vertical line. The solution features several collisions, after which
m2,m3 go off together in a tight binary while m1 moves off in the other direction.

2 4 6 8 10
t

-4

-3

-2

-1

1

2

q

Figure 47. Spacetime diagram for a typical solution of the
collinear 3BP. The points (t, qi(t)), i = 1, 2, 3, are plotted in the
(t, q) plane.

Assume without loss of generality that total momentum is zero and that the
center of mass is at the origin and introduce Jacobi variables

(89) x1 = q2 − q1 x2 = q3 − (α1q1 + α2q2) αi =
mi

m1 +m2

and their velocities ui = ẋi. This is like Example 3.2 except that here the variables
are all scalars.

Then the equations of motion are the Euler-Lagrange equations for L = 1
2K+U

where

(90)
K =

1

2
µ1|u1|2 +

1

2
µ2|u2|2

U =
m1m2

r12
+
m1m3

r13
+
m2m3

r23

and where µ1 = m1m2

m1+m2
, µ2 = (m1+m2)m3

m1+m2+m3
. The mutual distances are given by

(91)

r12 = |x1|
r13 = |x2 + α2x1|
r23 = |x2 − α1x1|
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and the mass norm is given by

r2 = ‖x‖2 = µ1x
2
1 + µ2x

2
2.

The use of Jacobi coordinates eliminates the translational symmetry of the problem
and reduces the number of degrees of freedom from 3 to 2.

Here it will be assumed that the order of the bodies along the line is q1 < q3 < q2.
Then x1 ≥ 0 and −α2x1 ≤ x2 ≤ α1x1. The normalized configuration s = x/r
satisfies µ1s

2
1 + µ2s

2
2 = 1. Define an angle variable such that

(92) x1 =
1
√
µ1
r cos θ x2 =

1
√
µ2
r sin θ

and let ω = θ̇. The choice of ordering implies that −π2 < θ1 ≤ θ ≤ θ2 < π
2 where

tan θ1 = −α2

√
µ2

µ1
tan θ2 = α1

√
µ2

µ1
.

Then the blown-up equations (70) become

(93)

r′ = νr

ν′ =
1

2
ν2 + ω2 − V (θ)

θ′ = ω

ω′ = Vθ −
1

2
vω.

where

V (θ) =
m1m2

r12
+
m1m3

r13
+
m2m3

r23

and the mutual distances are

(94)

r12 = | 1
√
µ1

cos θ|

r13 = | 1
√
µ2

sin θ + α2
1
√
µ1

cos θ| = A1 sin(θ − θ1)

r23 = | 1
√
µ2

sin θ − α1
1
√
µ1

cos θ| = A2 sin(θ2 − θ)

where

A1 =

√
m1 +m3

m1m3
A2 =

√
m2 +m3

m2m3
.

The energy equations is
1

2
ν2 +

1

2
ω2 − V (θ) = rh.

The triple collision has been blown up into the invariant manifold {r = 0} but
the differential equations are still singular due to the double collisions at θ = θ1, θ2.
There are several ways to regularize these collisions. One way is just to introduce
a new timescale by multiplying the vectorfield by a factor of

φ(θ) = sin(θ − θ1) sin(θ2 − θ)
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Figure 48. The potential V (θ) for the collinear 3BP with m1 =
1,m2 = 2,m3 = 3. V is convex on (θ1, θ2). There is a unique
critical point at the Euler central configuration around θ =
−0.284895.

and a new velocity variable γ such that γ = ωφ(θ).

(95)

r′ = φνr

ν′ = W − 1

2
φν2 + 2rhφ

θ′ = γ

γ′ = φWθ −
1

2
φνγ + φθ(2rhφ+W − φν2)

where W (θ) = φ(θ)V (θ), that is,
(96)

W (θ) =
m1m2

√
µ1 sin(θ − θ1) sin(θ2 − θ)

cos θ
+
m1m3 sin(θ2 − θ)

A1
+
m2m3 sin(θ − θ1)

A2

In deriving the differential equations, the energy relation

(97)
1

2
φ2ν2 +

1

2
γ2 − φW (θ) = rhφ2

has been used. Since the rescaled potential W (θ) is smooth for θ1 ≤ θ ≤ θ2, the
double collisions have been regularized.

Equations 95 have a time-reversal symmetry which will be important later.

Proposition 7.19. If (r(τ), θ(τ), ν(τ), γ(τ)) is a solution of the collinear 3BP,
then so is (r(−τ), θ(−τ),−ν(−τ),−γ(−τ)).

In other words, reflecting the velocity variables and reversing time takes solutions
to solutions. In particular, this operation will take solutions having triple collision
in forward time to those having a triple collision in backward time.

Figure 49 show the projection of the collision manifold to (θ, ω, ν) space. The
solid inside the surface represents a manifold of fixed negative energy. The size
variable r could be recovered via r = 1

2|h|φ (2W − φ2ν2 − γ2) which gives a unique

value except on the double collision set. On the collision manifold, r = 0, the
equation for ν′ can be written ν′ = 1

2γ
2/φ ≥ 0 showing that ν is an increasing

Lyapunov function, as expected. In the figure, the level curves of ν are shown.
The θ variable is monotonically increasing on the ω > 0 half of the surface and
decreasing on the other half. So the general character of the solutions on the
collision manifold is to wind around the surface while spiraling upward. Inside the
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Figure 49. The collision manifold for the collinear 3BP with
m1 = 1,m2 = 2,m3 = 3. A manifold of fixed negative energy
could be viewed as the solid inside the collision manifold. The
variables are (θ, ω, ν) with the Lyapunov function ν vertical. Also
shown are level curves of ν, the restpoints on the collision manifold
and the homothetic orbit (blue arrow) connecting them.

surface, the homothetic solution generated by the Euler CC is shown, connecting
the restpoints in the direction of decreasing ν.

To understand the flow near triple collision, the eigenvalues of the restpoints will
be needed. Since the eigenvalues will be independent of the choice of coordinates,
the unregularized ODE (93) can be used. Then the linearized ODE at the restpoint
(r, ν, θ, ω) = (0, ν0, θ0, 0) is

δr′

δν′

δθ′

δω′

 =


ν0 0 0 0
0 ν0 0 0
0 0 0 1
0 0 Vθθ(θ0) − 1

2ν0



δr
δν
δθ
δω

 .
Here θ0 is the Euler central configuration with Vθ(θ0) = 0. Vθθ(θ0) > 0 is the

second derivative which plays the role of the tangential gradient ∇̃U(s0) in the
general theory. So α = Vθθ(θ0) > 0 is the only eigenvalue and the general theory
shows that the three eigenvalues and eigenvectors of the linearized ODE which are
tangent to the energy manifold are

(ν0, h, 0, 0), λ = ν0 (0, 0, 1, λ±), λ± =
−ν0 ±

√
ν20 + 16α

4
.

Since α > 0 the eigenvalues λ± with eigenvectors tangent to the collision manifold
are real and have opposite signs. So both restpoints are saddle points in the collision
manifold. In the 3D energy manifold, the restpoint p− = (0,−

√
2U(s0), θ0, 0) has

an additional stable direction in r > 0 (tangent to the homothetic orbit). So there is
a 2D stable manifold of orbits tending to triple collision in forward time. Similarly,
the restpoint p+(0,

√
2U(s0), θ0, 0) gets an additional unstable direction so there

is also a 2D unstable manifold of orbits tending to triple collision in backward
time. Figure 50 shows several orbits in the 2D manifold Wu(p+). Each of these
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solutions tends to the triple collision restpoint p+ in backward time. Evidently, they
spread out dramatically in forward time. Because of the time-reversal symmetry,
the manifold W s(p−) of solutions ending in triple collision can be obtained by
reversing the velocities. In the figure, this would just be reflection through the
horizontal axis.
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Figure 50. Orbits beginning at triple collision for a masses m1 =
1,m2 = 2,m3 = 3. The 2D unstable manifold Wu(p+) contains
many solutions with r > 0, projected here to the (θ, ν) plane.

The fact that Wu(p+) and its reflection W s(p−) are 2D justifies the observation
from the previous section that triple collision in the general 3BP with a collinear
asymptotic shape is only possible for orbits which are collinear for all time. Namely,
the corresponding manifolds for the general problem were also 2D, so must be
identical to those found here for the collinear problem.

7.7.1. Flow on the Collision Manifold and Nonregularizability. Following McGehee,
one can try to understand solutions which approach triple collision but do not
actually collide. In other words, consider initial conditions close to but not actually
on the stable manifold W s(p−). Now the unstable manifold Wu(p−) has dimension
1. It lies entirely in {r = 0} and consists of the two unstable branches of the saddle
(see Figure 51). An orbit starting close to W s(p−) will pass near p0 and then
leave close to the collision manifold along one of these two branches. For example,
a solution approaching triple collision in forward time, but not actually colliding
would pass close to the restpoint p− and then follows one of the branches of Wu(p−)
(blue or green curves in the figure) close to the collision manifold.

Figure 52 shows the behavior of the branches for several choices of the masses.
Evidently, they typically wind around the collision manifold a variable number of
times and then spiral up one of the two “arms”.

If the two branches of Wu(p−) end up in different arms on the collision manifold,
then the behavior of orbits near triple collision will depend on which branch they
follow. After the close approach to the triple collision, orbits which follow one
branch will end up in a tight binary configuration with m1,m3 close together while
for orbits which follow the other branch, m3,m2 will be close. This proves the
nonregularizability of the triple collision. More precisely, suppose there were a way
to extend solutions in W s(p−) through the triple collision which was continuous
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Figure 51. Branches of Wu(p−) (blue, green) and W s(p+) (red,
orange) for a masses m1 = 1,m2 = 2,m3 = 3, projected to the
(θ, ν) plane. The two manifold are related by reflection through
the horizontal axis.
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Figure 52. Branches of the unstable manifold of the restpoint p−
for masses m1 = 1,m2 = 2,m3 for m3 = 0.1, 1, 2, 3. These orbits
lie in the collision manifold but this is the projection to the (θ, ν)
plane. For 3 of these four cases, the two branches spiral up opposite
“arms”. This is the key point in the proof of nonregularizeablity
of triple collision.

with respect to initial conditions. Then solutions near W s(p−) should emerge
from their near collisions close to the extended collision solutions. For example,
in the Kepler problem, solutions near the collinear collision solutions are on highly
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eccentric conics and remain close to the regularized collision orbits. But for the
collinear 3BP, the near-collision solutions will be far part if they follow different
branches of Wu(p−).

A crucial point in McGehee’s proof is to prove that the behavior of the branches
of Wu(p−) changes as the masses change. More precisely, the number of times that
the branches wind around the collision manifold as ν increases from −ν0 to ν0 can
be arbitrarily large.

Proposition 7.20. If m3 → 0 with m1 = m2 = 1 fixed, the number of binary
collisions of the branches of Wu(p−) as ν increases from −ν0 to ν0 tends to infinity.

Proof. Let m1 = m2 = 1 and m3 = ε2 where ε > 0 is small. The normalized mutual
distances become

r12 =
√

2 cos θ r13 =

√
1 + ε2

ε
sin(θ + θ∗) r23 =

√
1 + ε2

ε
sin(θ∗ − θ)

where tan θ∗ = ε√
2+ε2

. Then θ∗ = ε/
√

2 +O(ε2).

Define a new shape variable ξ such that θ = θ∗ξ. Then the relevant interval for
ξ is [−1, 1] and the mutual distances are

r12 =
√

2 +O(ε) r13 =
1√
2

(1 + ξ)f13 r23 =
1√
2

(1− ξ)f23

where fij(ξ, ε) are smooth functions with fij(ξ, ε) = 1 +O(ε). The potential is

V = (1− ξ2)−1

(
1√

2 +O(ε)
+

√
2ε2(1− ξ)
f13

+

√
2ε2(1 + ξ)

f23

)
.

The central configuration is at θ = ξ = 0 and ν20 = 2V (0) = 1/
√

2 +O(ε).
On the collision manifold, the differential equation for ν can be written ν′ =

γ2/(2φ) and also ξ′ = γ/θ∗ so
dν

dξ
=
θ∗γ

2φ
.

Now θ∗ = O(ε) and the energy equation shows that that

|γ
φ
| ≤

√
2W/φ =

√
2V ≤ K√

1− ξ2

for some constant K.
Since this upper bound is integrable on [−1, 1] it follows that as ξ increases from

−1 to 1 or decreases from 1 to −1, the change in the increasing function ν is O(ε).
Thus the number of oscillations of ξ over this interval in order that ν increases from
−ν0 to ν0 tends to infinity like O(1/ε) as ε→ 0 QED

Suppose the masses are such that at least one of the branches of Wu(p−) winds
up one of the arms of the collision manifold. Along the branch the size variable
r(τ) = 0 while the size velocity ν(τ) → ∞. It follows that, given any constant N ,
there exist near-collision solutions reach ν(τ) = N with r(τ) > 0 arbitrarily small.
It’s interesting to consider what happens to the three bodies for such a solution.

Consider an initial condition with ν(0) = N, r(0) = r0 > 0 and suppose for
definiteness that the solution has followed a branch of Wu(p−) near θ = θ1. If
N is sufficiently large, this implies that m1,m3 form a tight binary, relatively far
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from m2. To see this note that, assuming that rmin = r13 is the smallest of the
(normalized )mutual distances, the energy equation gives

1

2
ν2− r0h ≤ V =

m1m2

r12
+
m1m3

r13
+
m2m3

r23
≤ K

r13
K = m1m2 +m1m3 +m2m3.

If ν ≥ N this implies rmin ≤ 2K/(N2− 2r0h). If N is large, r13 will be small. Now
the normalization equation implies that the largest normalized distance, rmax = r12
in this case, satisfies

1 =
1

m
(m1m2r

2
12 +m1m3r

2
13 +m2m3r

2
23) ≤ K

m
r2max

where m = m1 +m2 +m3. Therefore the ratio

rmin
rmax

=
r13
r12
≤ 2K

3
2

√
m(N2 − r0h)

which is small when N is large. Then since r23 = r12 − r13 = rmax − rmin, the
ratio r13/r23 is also small. Of course these statements about ratios also apply to
the mutual distances of the unnormalized configuration.

Next it will be shown that if N large, the lone body m2 moves away from the
binary formed by m1,m3 at high velocity. For this it’s convenient to introduce
another set of Jacobi coordinates y1 = q3 − q2, y2 = q2 − β1q1 − β3q3 where
βi = mi/(m1 +m3). It will be shown that ẏ2 is large and positive.

The size variable r satisfies

r2 = µ1y
2
1 + µ2y

2
2 rṙ = µ1y1ẏ1 + µ2y2ẏ2

where now µ1 = m1m3/(m1 + m3) and µ2 = m2(m1 + m3)/(m1 + m2 + m3). In
terms of the blown-up variables, ṙ = ν/

√
r so rṙ =

√
rν. If |y1| = rr13 is the

smallest of the unnormalized mutual distances, the unnormalized energy equation
gives

µ1ẏ
2
1 ≤ 2h+

2K

|y1|
so µ1y

2
1 ẏ

2
1 ≤ (2h|y1|+ 2K)|y1| and

µ2y2ẏ2 ≥
√
rν −

√
µ1(2h|y1|+ 2K)|y1|.

Recall that with fixed r0 > 0, one can arrange that the ratios r13/r12, r13/r23 can
be made arbitrarily small by choose ν ≥ N with N sufficiently large. This implies
that the ratios |y1|/|y2|, |y1|/r can also be made arbitrarily small, say less than

some δ > 0. Then r0 and y2 > 0 are related by r0 ≤ Cy2. where C =
√
µ1δ2 + µ2.

Then

µ2ẏ2 ≥
CN
√
r0
− C

√
µ1(2hδ + 2K/r0).

For fixed r0 > 0, one can make ẏ2 arbitrarily large.
To summarize: if the branches of the saddles in the collision manifold spiral up

the arms then one can find near collision solutions which emerge from their close
encounter with collision in an arbitrarily tight binary configuration. Moreover,
the velocity of separation between the binary and the third mass can be made
arbitrarily large.

Exercise 7.19. Prove Proposition 7.19.
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