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Last time:  Zero angular momentum, planar 3BP.   

•Hyperbolic restpoints at r=0
•Stable and unstable manifolds of triple collision orbits
•Infinitely many solutions beginning and ending at equilateral 

triple collision caused by spiraling at the collinear restpoints 

Now we will see how by perturbing to small, nonzero angular 
momentum, we can produce a chaotic invariant set described by 
symbolic dynamics.  The phase space has dimension 5, Poincaré 
sections have dimension 4.  The symbolic dynamics is based on a 
network of 4D windows which are stretched across one another by 
the flow.



Zero Angular Momentum — Restpoint Cycles
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We have restpoint connections                             between the equilateral 
restpoints in the collision manifold.  There are also connections in the 
other direction inside the collision manifold r=0.  Together these cycles 
of restpoints make a framework for the recurrent phenomena when we 
perturb to nonzero angular momentum.
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Restpoint Cycles in the 2BP for λ = 0

The negative energy 2BP already contains such a cycle of restpoints

The flows on
converge to the 
restpoint cycles 
as 
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The red orbits in r=0 represent the two 
bodies spinning around by 2π near collision.



Planar 3BP — Homothetic Restpoint Cycle

Each of the five CCs has a similar restpoint cycle.  Here is an equilateral one.

The red orbit in r=0 represent the 
equilateral triangle spinning 
around by 2π near collision.
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Zero Angular Momentum — Framework of connections
Of course for the 3BP we have many other restpoint connections 
besides the homothetic ones.
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Goal:  Show that for nonzero angular momentun, we can shadow 
any sequence of these connections to get a chaotic invariant set.



Digression on Symbolic Dynamics —The Smale Horseshoe

A simple example of shadowing and the use of 
symbolic dynamics to describe a chaotic invariant 
set is provided by Smale’s horseshoe map

0.5 1.0 1.5

0.5

1.0

1.5

There is a hyperbolic 
fixed point at the origin 
with stable manifold 
(red) and unstable 
manifold (black) along 
the axes.  Folding 
produces a transverse 
homoclinic point.



A Simple Trellise
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1.5 Repeated folding and stretching of 
the invariant manifolds produces a 
beautiful trellise just as Poincaré 
imagined for the 3BP:

each of the two curves must not cross 
itself but it must fold on itself in a very 
complicated way to intersect all of the 
meshes of the fabric infinitely many 
times. 

In particular we get infinitely 
many other intersections 
(bi-asymptotic orbits) nearby.



Symbolic Dynamics and Chaos
Poincaré may not have known the full story about the nearby dynamics.  
Nowadays we use symbolic sequences (itineraries) to code the trajectories.
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We have a one-to-one correspondence 
between orbits of the horseshoe map 
which remain in the unit square and bi-
infinite sequences of 0’s and 1’s which 
describe how the orbit “hops” between 
box 0 and box 1.

This is an (uncountably) infinite set of 
orbits which includes all of the 
(countably infinite) intersection points 
of the stable and unstable curves but 
many other orbits as well.

All itineraries are realized by an orbit, 
even “random” ones produced, say, by 
a coin toss.



 Different Kinds of Itineraries 
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The fixed point (3/4, 3/4) has its own 
stable and unstable manifolds which 
form a separate trellise which 
interlace with the trellise of (0,0). For 
example the yellow and red curves 
must fold in such a way that they 
never cross.

But the itineraries of all these point 
account for only countably many 
itineraries.  The point is that all of the 
uncountably many itineraries are 
realized.

Fixed Point (0, 0) . . . 00000.00000 . . .

Homoclinic Point (1, 1) . . . 00001.10000 . . .

Other Homoclinic Points . . . 00000✏m . . . ✏n00000 . . .

Fixed Point (
3

4
,
3

4
) . . . 11111.11111 . . .

Heteroclinic (0, 0) ! (
3

4
,
3

4
) . . . 00000✏m . . . ✏n11111 . . .



Windows and Connection Graphs
We can summarize the chaos in the horseshoe map by saying that there are 
two boxes or “windows” (Easton’s terminology) which are stretched across 
one another by the map.  For the windows we will use in the 3BP, the 
windows will be 4-dimensional and stretching will not be as nice as in the 
horseshoe map.  For example, we can set up windows when stable and 
unstable curves intersect non-transversely as long as they still 
“cross” (topological transversality).

The situation is represented by a directed 
graph which describes which itineraries are 
realized by orbits:

0 1

Later will describe chaotic behavior in other 
situations using windows and connection 
graphs.
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The Strategy for the Planar 3BP
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Zero angular momentum Small nonzero angular momentum

Set up windows along the connecting orbits of our framework in the zero 
angular momentum problem.  There will be many windows along the 
connections in r > 0 and one window along the connection in r = 0 (which 
represents the equilateral triangle spinning around by 2π.  Then we will see 
that the corresponding windows in the nonzero angular momentum 
problem get stretched across one another as in the Smale horseshoe.



Symbolic Dynamics with 4D “Windows”
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Viewed in a Poincaré section,

each restpoint connection is a transverse

intersection of 2D stable and unstable manifolds.

Choose the 4D windows aligned with these.

Then the windows are stretched in a

favorable way near the restpoints.

Two directions are hyperbolically stretched

and two are contracted.

4D box aligned with W s
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The energy manifoldsM(h, µ) are 5-dimensional and we can set up local Poincaré

sections of dimension 4. We are going to set up a network of 4-dimensional boxes

or windows which will be stretched across one another by the flow (as in the

Smale horseshoe map). There will be one window near each of the restpoint

connections in our framework. As for the horseshoe map, the stretching implies

we can find orbits mapping through any given sequence of windows.



Local Behavior near L+
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Topological Stretching or Correct Alignment

A topological definition of what it means for one window to be stretched across 
another is easier to verify than the usual one and still implies the existence of orbits 
mapping from one box to the next (Easton developed a version of this idea).  Our 
version is that the Poincaré map should induce an isomorphism of certain relative 
homology groups (and similarly for its inverse map, not shown).

w ' D2 ⇥D2

@+ ' S1 ⇥D2

H2(w, @+) ' Z stretched directions

Auxiliary window (W,�+)

P⇤ : H2(w, @+) ! H2(W,�+) isomorphism

This kind of stretching is sufficient to show:  Given a sequence of window, each stretched 
across the next one in this way, there will be a nonempty set of initial conditions which 
maps through the windows in the given order.
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If w0 is stretched across w1 in this way then there the set of points in w0 which 
map into w1 is a nonempty compact set (light blue) with the property that it 
intersects the support of any generator of the homology H2(w0,δ+) (green).  If 
w1 is then stretched across w2 the set in w0 which first maps to w1 and then to 
w2 gives a subset (dark blue) which still has this property and so on.

The proof uses some algebraic topology

The auxiliary window pair (W1,∆+) should retract
onto the window pair (w1,d+)giving an isomorphism
of homology groups.  Apply this retraction then the
Poincare map.

W1



Thus specifying any finite sequence of windows in forward time gives such a 
subset of w0.  Similarly specifying a finite sequence of windows in backward time 
gives a similar set (orange) with the property that it intersects the support of any 
generator of H2(w0,δ-) (purple).  Then an algebraic topological argument shows 
that any two such sets must have a nonempty compact intersection (red) which 
realizes both the forward and the backward sequences.  Finally one gets bi-
infinite sequences as an intersection of these sets for longer and longer finite 
sequences.

If the blue set intersects every “horizontal 
generator” and the orange set intersect 
every “vertical generator” then the orange 
set and the blue set must meet.



Periodic Orbits
For a periodic  sequence of windows, we get a composition of Poincaré maps 
taking a window into its own auxiliary window in a topologically nontrivial way.  
This is enough to guarantee at least one fixed point.  Here is a 2D analogue.  
Suppose a rectangle maps into its own auxiliary rectangle as shown.  Then one can 
show there is at least one fixed point inside.
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P : (w, @+) ! (W,�+) induces an isomorphism H1(w, @+) ' H1(W,�+)

or equivalently H0(@+) ' H0(�+)



Symbolic Dynamics for the Planar 3BP

Choose masses such that the collinear equilibrium point Ej with the j-th mass in the 
middle exhibits spiraling.  Then we have a network of restpoint connections for zero 
angular momentum as described above.  Construct a connection graph as shown:

L+ L-Ej

The symbols represent windows near some of the connecting orbits with r > 0.

L+,-  : along equilateral homothetic orbits

Ej  : several windows near collinear homothetic orbit

The arrows represent Poincaré maps stretching these windows across one another

The main result is that all of the paths in the graph are realized by solutions 
of the 3BP.  In other words, one can specify any sequence of symbols and find 
a orbit passing through the corresponding windows in the given order.



L+ L-Ej

Theorem: For almost all masses with spiraling at Ej, for every negative energy 
h<0 and for nonzero λ sufficiently small, every bi-infinite path in the graph is 
realized by a nonempty compact set of orbits in  M(h,λ)/SO(2).  Moreover, every 
periodic path is realized by at least one (relative) periodic orbit.

Example: sequence …. L+ L+ Ej L- …..

spin by 2π 
near collision

spin by 2π 
near collision

spin by 2π 
near collision



For most masses we have spiraling at all 
three collinear restpoints, in which case a 
more complicated symbol graph is realized.   
One can emerge from near collision with 
any of the three collinear CC shapes !

L+ L-

E1
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m1

m3

m2

real eigenvalues at E3

non-real eigenvalues at all three restpoints





A simpler case:  Chaos in Sitnikov’s Problem

Here is a typical orbit.  We will be especially interested 
in orbits where z tends to infinity and then the third 
mass flies off the screen.   So it is convenient of replace 
z by a bounded variable.

We will now focus on an even simpler three-body system where the homo-

clinic tangles are easier to see. In the 3D isosceles three-body problem we have

two equal masses, say m1 = m2 = 1, moving symmetrically around the z-axis

which a third body of mass m3 moves up and down on the axis. The shape of

is always an isosceles triangle.

The special case m3 = 0 is the Sitnikov problem. Then m1,m2 move on

symmetrical elliptical orbits in the (x, y)-plane. It is a dynamical system with 1

1
2

degrees of freedom. The state of the third body is determined by one position z

and velocity ż but there is a time-periodic forcing. We have a three-dimensional

flow on R2 ⇥ S1
= {(z, ż, t mod 2⇡)}.



Sitnikov problem in θ coordinates

Setting z = 1
2 tan ✓, Newton’s laws give the following system of three ODE’s:

✓̇ = 2 cos2 ✓ v

v̇ = � 4 sin ✓ cos2 ✓

(cos2 ✓(1 + ✏ cosu(t))2 + sin2 ✓)
3
2

ṫ = 1

where ✏ is the eccentricity and u(t) is the eccentric anomaly of the two-body
motion of the primaries. u(t) satisfies Kepler’s equation

t = u(t) + ✏ sinu(t).

✓ remains in [�⇡
2 ,

⇡
2 ].

Orbits with z ! ±1 now converge
to the top or bottom of the box with
✓ ! ±⇡

2 .

θ



Near Triple Collision  ε = 0.96
We can get near-triple collision orbits in Sitnikov’s problem by choosing a 
high eccentricity for the orbit of the primary masses and then timing the third 
body to pass through the origin when the elliptical bodies are close.

This orbit is a highly unstable, hyperbolic 
periodic orbit with a close approach to triple 
collision (there is a corresponding 
hyperbolic fixed point of the Poincaré map).

It is close to the Lagrange equilateral 
collision solution in the planar problem. 



More near-collision orbits 

One can show that there are many more such 
near-triple-collision periodic orbits.  They 
differ in their detailed behavior while 
approaching triple collision.

Here is another orbit for ε=0.96 which 
“wobbles” above and below the plane of the 
primaries near triple collision. 

 An infinite sequence of such hyperbolic fixed 
points of the Poincaré map is created as the 
eccentricity ε --> 1 (though for any fixed 
ε < 1, there will only be finitely many).

Also, the reflections of these orbit are distinct 
solutions.



2D Poincaré map for ε = 0.96
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We have (at least) six hyperbolic fixed points all with stable and unstable curves.
1+ 1� Parabolic Infinity

P+ P� Near triple collision

Q+ Q� Near triple collision with wobbles



There is a rich network of transverse 
homoclinic and heteroclinic connections 
between the six fixed points



Symbolic Dynamics
As a result, there will be orbits realizing every path in the graph below.  In other 
words one can choose any sequence of the six symbols and find an orbit which 
exhibits that sequence of behaviors.
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Each vertex represents a window near 
one of the six fixed points.

To realize a sequence means that the 
orbit passes through the corresponding 
sequence of windows for the Poincaré 
map.

This is rather delicate in practice since 
the behavior is sensitive changes in 
initial conditions.



Realizing the sequence

e á 0.96

...,1+, Q�, P+,1+, ....



Realizing the sequence ...,1+, Q�, P+,1+, ....


