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Last time:  Chaos in the planar 3BP for small angular 
momentum  

•Hyperbolic restpoints at r=0
•Stable and unstable manifolds of triple collision orbits
•Infinitely many solutions beginning and ending at 

equilateral triple collision caused by spiraling at the 
collinear restpoints

• Restpoint cycles and connection graph
•Chaotic invariant based on 4D windows

Next:  Describe an application of this work to the problem of 
realizing syzygy sequences (joint with R.Montgomery)



Recall the Reduced Configuration Space
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Q = R+⇥S2
can be visualized as the exterior of the unit sphere in R3

. The unit

sphere represents triple collision, that is, triangles of size r = 0. The singular

set ⌃ consists of this sphere together with three binary collision rays. A solution

of the reduced three-body problem sweeps out a curve in the complement Q\⌃.



Free homotopy classes

Closed loop �(t) in Q \ ⌃
Free homotopy class [�] 2 [S1, Q \ ⌃]

Theorem: For equal or near equal masses, every free homotopy class is realized

by a periodic solution of the reduced planar three-body problem

Periodic solution of the reduced, planar three-body problem

•The solutions may not be periodic for the unreduced problem
•Fixed negative energy and small, nonzero angular momentum  
•Repeated close approaches to triple collision
•Reminiscent of a theorem about minimal geodesics in differential 

geometry, but the proof is not variational.  Trying to minimize 
action just leads to collisions.



Syzygy Sequences

B23

B12 B13
B12 B13

Up to homotopy equivalence

Q \ ⌃ ' S2 \ {B12, B13, B23} (radial projection)

' R2 \ {B12, B13} (stereographic projection)

We can code homotopy classes using syzygy sequences. m1
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Reduced Syzygy Sequences

Free homotopy class [�] 2 [S1,S2 \ {B12, B13, B23}]

representative starting in N hemisphere and transverse to equator

even, periodic syzygy sequence
Using homotopies we can

• shift cyclically by an even shift
• cancel “stutters” (repeated pairs)

Get a reduced syzygy sequence (no repeated pairs)

12 3 12 3

112131311112 ! 213132 ! 3131



It suffices to show:  Every even, periodic reduced syzygy sequence is realized by 
a periodic solution.
In fact, we show:  Every bi-infinite syzygy sequence with sufficiently long 
stutter blocks is realized and periodic ones are realized by a periodic orbit.

. . . ✏n�1

�1 ✏n0
0 ✏n1

1 . . . ✏i 2 {1, 2, 3} ni su↵.large

Note: If ni is odd then ✏ni
i reduces to just ✏i

• for zero angular momentum and near equal masses there are orbits 
beginning and ending in triple collision realizing one syzygy block  
 

• perturbing to small nonzero angular momentum, triple collision is 
avoided and we can use symbolic dynamics to realize arbitrary 
concatenations of such blocks

✏n ✏ 2 {1, 2, 3}

The proof uses the orbits in the chaotic invariant set from the last lecture 
together with some further observations about those orbits.



Zero angular momentum — isosceles triple collision orbits

When the masses are all equal and angular momentum µ = 0, there are three

invariant isosceles subsystems of the planar three-body problem which have only

two-degrees of freedom.
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Using McGehee blow-up:
• r=0 invariant triple collision set
• triple collision orbits form stable and 

unstable manifolds of restpoints
• Lagrange (equilateral) restpoints yield 

spiraling surfaces with many intersections

m1

Syzygies 1

n
, n odd

Restpoint connections L� ! L⇤
+ or L+ ! L⇤

�



Zero angular momentum — Framework of restpoint connections
Extra information here:  for nearly equal masses, the restpoint 

connections can be chosen to be nearly isosceles — no collisions !

Spinning near collision: L⇤
+ ! L+ and L⇤

� ! L�

Three kinds of syzygy block orbits: L+ ! L⇤
� and L� ! L⇤

+ (not shown)

As we know, we can shadow any given sequence of these by making 
transitions near the the equilateral collision restpoints.
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Our Orbits Viewed in the Reduced Configuration Space
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B23
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Sequence of near-isosceles motions with transitions near triple collision.  Clearly 
we can get any homotopy class this way.

Isosceles shapes
1
2
3



More about Parabolic Infinity

We have been focussing on solutions near triple collision but the blow-up 
method is also useful for studying parabolic solutions.  Recall that these are 
solutions with energy h = 0  such that all bodies tend to infinity with zero 
asymptotic velocity.

Recall the results for the zero energy 2BP
•4D phase space, 3D energy manifold (not reduced by SO(2))
•Parabolic infinity manifold u = 1/r = 0 is a torus T2

•Circles of restpoints which are limits of parabolic orbits u -> 0
•Each restpoint with v>0 (limits of forward time parabolics) has a 

2D stable manifold; a Lagrangian submanifold of phase space
•The whole energy manifold is foliated by these
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Planar 3BP —-Equilateral Restpoints at Parabolic Infinity

Parabolic infinity restpoints: q± = (u, s, v, w) = (0, s, v, 0), v = ±
p

2U(s)
The eight eigenvalues are the same except for the sign of the first one

� = �v, v, 0,�v

2

,
�v

4

✓
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q
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Forward time parabolic: q+ : �,+, 0,� �,�,+,+ dimW s
(q+) = 4

Backward time parabolic: q� : +,�, 0,+ �,�,+,+ dimWu
(q�) = 4

The other manifolds are inside u=0

u

v

Recall the each CC determines two restpoints at parabolic infinity.  The 
Lyapunov function v  has opposite signs at these points.  From the 
differential equation u ‘ = -vu, the restpoint with v > 0 is the limit for orbits 
with u —> 0 in forward time.  Focus on the restpoints coming from the 
equilateral CCs.

q+q-



Generalization — Minimal Central Configurations
Return for a moment to the N -body problem in Rd with SO(d) symmetry with
phase space T (X��). Suppose s is a nondegenerate minimum of U on E . Then
the Hessian will have dimO(s) eigenvalues ↵ = 0 with all other eigenvalues
↵i > 0. The eigenvalues will be

� = 0, . . . , 0,�v

2
, . . . ,�v

2
,
�v ±

p
v2 + 16↵i

4

Since ↵i > 0, all eigenvalues are real and half of the eigenvalues involving the
↵i are of each sign. Hence

Forward time parabolic: q+ : dimW s(q+) =
1

2
dimT (X ��)

Backward time parabolic: q� : dimWu(q�) =
1

2
dimT (X ��)

Examples:
•equilateral CCs in the planar 3BP
•CCs of the 2Bp
•collinear CCs viewed in the collinear 3BP but in the planar 3BP 

they are saddles



Theorem: Let s be a nondegenerate minimum CC of the 
N-body problem in Rd and let q+ and q- be the 
corresponding restpoints at parabolic infinity.  Then Ws(q+) 
and Wu(q-) are Lagrangian submanifolds of the u>0 phase 
space.  Moreover, the parts near infinity are Lagrangian 
graphs over the configuration space.

Sketch of proof:  Recall that for the 2BP we had explicit formulas for the 
stable and unstable manifolds.  We calculated the symplectic structure in 
blown-up coordinates and just checked that it vanished on the tangent 
spaces to these manifolds.  That approach will not work here.  Instead the 
proof uses estimates based on the eigenvalues and eigenvectors at the 
equilibrium points.



Why is it a graph near infinity ?

This follows from the nature of the stable eigenvectors at q±. For example

at q+ (the restpoint with v0 > 0) there is an eigenvector

(�u, �v, �s, �w) = (�u, 0, 0, 0) � = �v0

in the u direction, several eigenvectors

(�u, �v, �s, �w) = (0, 0, �s,��s) ���v0
2

with �s tangent to the SO(2) orbit and eigenvectors

(�u, �v, �s, �w) = (0, 0, �s,��s) � =

�v0 �
p
v20 + 16↵i

4

with �s transverse to the SO(2) orbit. The eigenspace projects isomorphically

onto to the configuration space (�u, �s).



Why is it Lagrangian ?
Consider a forward-time parabolic solution

�(⌧) = (u(⌧), v(⌧), s(⌧), w(⌧)) ! q+ ⌧ ! 1.

Let a(⌧), b(⌧) be solutions to the variational equations along �(⌧) which are

tangent toW s
(q+). The symplectic form ⌦(⌧) = ⌦(�(⌧))(a(⌧), b(⌧)) is constant,

so it su�ces to show that ⌦(⌧) ! 0 as ⌧ ! 1.

The symplectic form in blown-up coordinates (u, v, s, w) can be written

⌦ = u� 3
2 dv ^ du+

X
mi

✓
u� 1

2 dsi ^ dwi +
1

2

u� 3
2 si · dwi ^ du

◆

and we will just estimate each term in this sum. Since u(⌧) ! 0 the factors

u� 1
2 , u� 3

2 ! 1. But since u0
= �vu and v(⌧) ! v0 and u(0) > 0 we can derive

upper bounds of the form

u� 1
2  c1 exp(v0⌧) u� 3

2  c2 exp(v0⌧)

The other factors tend to zero exponentially at rates determined by the stable

eigenvalues at q+:

�v0
2

, . . . ,
v0
2

,�i =
�v0 �

p
v20 + 16↵i

4

.

Since we are at a nondegenerate minimum, the eigenvalues not associated to

the SO(d) symmetry satisfy

�i < �v0
2

Using these estimates one can show that the exponential decay rates are su�-

cient to overcome the growth of u� 1
2 , u� 3

2
to give ⌦(⌧) ! 0.



Minimality Properties of Parabolic Orbits

If (q(t), v(t)), t 2 D is a solution of theN -body problem then for every [a, b] ⇢ D,

q(t) is a critical curve of the action functional

A(q) =

Z b

a
L(q(t), q̇(t)) dt L(q, v) =

1

2

kvk2 + U(s)

•q is minimizer on [a,b] if A(q) is minimal among all absolutely 
continuous curves γ with γ(a) = q(a) and γ(b) = q(b)

•q is a global minimizer if this is true for every [a,b] in D
•q is a (global) free time minimizer (FTM) if for every [a,b], A(q) is 

minimal among all absolutely continuous curves γ on some time 
interval [c,d] with γ(c) = q(a) and γ(d) = q(b)

FTMs for the N-body problem have been studied recently by Maderna, Venturelli, 
Da Luz, Percino, Sanchez Morgado, Barutello, Secchi, ….
and in a joint paper by me, Richard Montgomery and Hector Sanchez Morgado



Some Result about FTMs in the N-body Problem

• (DaLuz/ Maderna) Every FTM is a parabolic solution.  It follows that h = 0, all 
particles tend to infinity with zero asymptotic speed, the blown-up solution 
converges to the set of equilibria at u=0.  For the 3BP this means converging to 
one of the 5 CC shapes.

• (Maderna / Venturelli)  The equilateral homothetic solution starting at triple 
collision and tending parabolically to infinity is a FTM

• (Maderna / Venturelli, Percino / Sanchez)  Let s0 be a minimal CC of the NBP.  
Then given any initial configuration q0, there exists a FTM beginning at q0 and 
asymptotic to s0.   As a corollary:  the stable manifold of the corresponding 
restpoint at infinity must cover the whole configuration space. 

This existence result applies to the 2BP and to the equilateral CCs in 
the 3BP since these are minimal CCs



Relation with dynamics on the parabolic infinity manifold u = 0

What about the collinear CCs ?  Could we have a FTM for the 
3BP which is in the stable manifold of a collinear CC ?

Suppose that the mass ratios are chosen so that the collinear restpoint 
exhibits spiraling.  Then it turns out that the corresponding parabolic 
orbits cannot be minimal, much less FTM.  The intuitive explanation 
is that, due to the spiraling, nearby solutions oscillate around the 
parabolic solution producing “conjugate points”.  Then one gets 
nearby curves with lower action.  If all three collinear restpoints are 
spiraling (true for most masses) then any FTM must converge to an 
equilateral CC shape.  Open problem when no spiraling.

This is in the joint paper with R.Mont., H. Sanchez but also follows 
from work of Barutello and Secchi by a different proof.



Are all equilateral parabolic orbits FTMs ?

Theorem:  If q(t) is a parabolic orbit asymptotic to an 
equilateral CC, then the part of the orbit sufficiently 
close to infinity is a FTM.

Idea of proof:
•Limiting restpoint q+ at u=0 has a local stable manifold which is 

a Lagrangian graph
•Orbit in Lagrangian graphs are minimizers when compared 

with curves lying under the graph (lift the curves to the graph, 
then cleverly use the Lagrangian property to compare actions)

•The orbit segment close to infinity is a global minimizer since it 
would be too expensive to leave the region under the graph and 
then return

•Take q0 close to q+.  There exists a FTM starting at q0 and tending 
to q+.  It must be the the same as the global minimizer over q0



Hamilton-Jacobi Equation

Hamiltonian of the N-body problem:  Let pi = mi  vi 

Standard symplectic structure so Lagrangian graphs are of the form

p = df(q) for some real valued function f(q)

Apply this to the local stable manifold W s

loc

(q+). The energy equation gives

H(q, df(q)) =
1

2
kdf(q)k2 � U(q) = 0 Hamilton-Jacobi equation

On the other hand, Percino and Sanchez Morgado proved their existence result 
using a weak solution of the Hamilton-Jacobi equation.  The results above 
show that this solution is actually smooth near infinity.

H(q, p) =
1

2
kpk2 � U(q) kpk2 =

X |pi|2

mi



Fine (The End)


