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Poincaré’s first encounter with chaos came in his revision of his Prize Memoir on celestial mechanics.  He 
realized that the invariant curves associated to an unstable periodic motion could cross one another and that 
this would produce complicated dynamical behavior nearby.  Later, near the end of the last volume of his 
treatise “Les Méthodes Nouvelles de la Mécanique Celeste,” he wrote the famous description:

Poincaré and Chaos

If one tries to imagine the figure formed by these two 
curves with an infinite number of intersections, each 
corresponding to a doubly asymptotic solution, these 
intersections form a kind of trellis, a fabric, a 
network of infinitely tight mesh; each of the two 
curves must not cross itself but it must fold on itself in 
a very complicated way to intersect all of the meshes 
of the fabric infinitely many times.

One will be struck by the complexity of this picture, 
which I will not even attempt to draw.

Homoclinic tangle, homoclinic chaos
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Examples of Chaos in the Three-Body Problem

Poincaré’s chaos -- PCR3BP

Chaos near infinity in the Sitnikov problem

Chaos near triple collisions in the Sitnikov problem

Since Poincaré there has been a lot of work on proving that such chaotic 
behavior occurs in the three-body problem.  One goal of the talk is to survey a 
small part of this work.

Work of Poincaré, Sitnikov, Alexeev, Moser, McGehee, Conley, Easton, Simo, 
Llibre, Xia, Bolotin, Mackay, Gorodetski, Kaloshin, R.M.

(Other examples: near Lagrange points, near double collisions, planar three-
body problem, etc.)
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Another goal of the talk is to show some pictures that Poincaré could only 
imagine.

Attempting To Draw

With a little help from our friends 
(the computers) we can visualize 
Poincaré’s trellises and also simulate 
the chaotic motions of the three 
bodies that they represent.

Macintosh + Mathematica

It turns out that Poincaré had a really good imagination -- 
even with computers some of the things he imagined are 
hard to see. 
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Poincaré’s Three-Body Problem
Poincaré worked mostly on the Planar, Circular, Restricted Three-Body 
Problem or PCR3BP.  We have two primary bodies with masses

m1 = 1� µ m2 = µ

These move on a circular orbit of the two-body problem.  A third body of 
negligible mass moves in the plane under the influence of the gravitational 
forces of the primaries.

In this example,  
the Green body has mass 0.9
the Blue body has mass 0.1
the Black body has mass 0 

The green and blue masses are 
moving around the origin in circles 
at constant angular velocity 1.  The 
motion of the black mass is more 
interesting.

Friday, November 9, 12



Rotating Coordinates
In a uniformly rotating coordinate system, the primaries remain fixed on the x-axis 
and we can concentrate on the third body.  Here is the same solution as on the last 
slide.  We can see that in the rotating frame, the black mass moves on a very simple 
periodic orbit.  Poincaré called this a periodic solution of the first sort.

The PCR3BP in rotating coordinates is a  dynamical 
system of two degree of freedom.  The state of the black 
body is determined by two position variables (x,y) and 
the corresponding velocity variables (u,v).  Thus the 
phase space has dimension 4.  However, there is a 
conserved quantity which we will call the “energy”:

Thus the motion takes place on a three-dimensional 
submanifold in the four-dimensional phase space

1

2
(u2 + v

2)� V (x, y) = h = const

V (x, y) =
1

2
(x2 + y

2) +
1� µp

(x+ µ)2 + y

2
+

µp
(x+ µ� 1)2 + y

2
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Hill’s Regions
The conservation of “energy” implies that the third body moves in the region

At each point (x,y) there is a circle of 
admissible velocities (u,v).  On the boundary 
curve, only the zero velocity vector   

(u,v)= (0,0)   
is admissible.

H(h) = {(x, y) : V (x, y) + h � 0}
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Here is a contour plot of V(x,y).   A Hill’s region for a fixed energy h is shaded 
in light blue.  For a motion with this energy, (x(t),y(t)) must remain in the 
blue region.
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Example of a PCR3BP Orbit in its Hill’s Region

This is a “transit” 
orbit which makes 
(possibly chaotic) 
excursions from one 
primary mass to the 
other.  Imagine a 
spacecraft  moving 
back and forth 
between the earth 
and the moon.
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Poincaré Continuation -- First Sort Orbits
When µ = 0 we have primary masses m1 = 1 and m2 = 0. The third body

is influenced only by m1 so the PCR3BP reduces to the two-body problem (but

in rotating coordinates). Following Poincaré, we can let m3 move on a circular

two-body orbit and then ask what happens when µ > 0. Using the implicit

function theorem, one can continue these orbits to simple periodic solutions of

the PCR3BP – the periodic orbits of the first sort.

Here is a sequence of first-sort orbits, starting 
from the circular orbit with

µ = 0

0  µ  1
2

and continuing it over the range

The shapes change but we always have a simple, 
periodic orbit which closes up after one 
revolution (in rotating coordinates).
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Second-Genre Orbits (Harmonics)

First-sort orbit Nearby second-genre orbit with n=3

Choosing one of these first-sort orbits (here we choose one with µ = 0.4), we
can look for nearby periodic motions which close up after n revolutions. Their

periods will be close to nT where T is the period of the first sort orbit. Poincaré

devoted many pages of his “Méthodes nouvelles ..” to the study of these orbits

and it is here where he found chaos.
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Poincaré Sections
Another of Poincaré’s big ideas in dynamical systems is that the behavior of 
dynamical systems of two degrees of freedom (i.e., the continuous-time motion 
of a phase point moving on a three-dimensional energy manifold) can often be 
reduced to the behavior of a discrete-time Poincaré return map of a two-
dimensional surface, a Poincaré section of the flow.

For example, in the PCR3BP we can record the state of the third body every time 
it crosses the x-axis in the rotating system.   The periodic orbit of the first sort 
which we have been using as an example is a fixed point of the corresponding 
Poincaré map since after one revolution of the rotating plane, it return to its 
initial state.

In both the rotating and inertial frames, we could say that we are recording the 
syzygies or eclipses of the orbit -- states where the three bodies are collinear.  In the 
Poincaré section, the state of the third body is of the form  (x,y,u,v) = (x,0,u,v) 
where (u,v) is on the circle of velocities corresponding to the position (x,0).  

We will eliminate v and use (x,u) as two coordinates on the Poincaré section.
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Poincaré Section for 

Elliptic second-genre orbit

Hyperbolic second-genre orbit

Poincare map of (x,u)-plane.  Gray fixed point represents the first-sort orbit. 
Green and blue period three points represent second-genre orbits.

µ = 0.4, h = �1.70711. . .

x

u
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Asymptotic and bi-asymptotic solutions

This picture shows short pieces of 
the stable and unstable manifolds 
of the 2nd-genre orbit.

The curves are invariant under the 
dynamics so they can be extended 
by repeatedly applying the 
Poincaré map and its inverse.

To find bi-asymptotic solutions we 
want the extended curves to 
intersect.

Hyperbolic periodic solutions have stable and unstable manifolds consisting
of solutions which converge to the periodic solution as t ! ±1. Poincaré called
these asymptotic solutions. A solution which lies in the both the stable and
unstable manifolds approaches the periodic solution in both time directions and
is called bi-asymptotic.

For our Poincaré map, the stable and unstable manifolds are curves in the
(x, u)-plane. Orbits in the stable curve (red) approach the period-3 point in
forward time; orbits in the unstable curve (black) approach in backward time.
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Extending the Invariant Manifolds
Here is what happens as we extend the stable and unstable manifolds.  It 
appears that the stable and unstable manifolds overlap to produce curves of 
bi-asymptotic solutions.  These seem to converge to the periodic orbit in 
both time directions but with a phase shift of 1/3 period.
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Poincaré’s Chaos-- Transversality of the Curves

Poincaré’s famous paragraph from the 
beginning of the talk arose from his 
realization (while pondering his errors 
in his original prize manuscript)  that 
while the stable and unstable curve 
had to intersect, they did not have to 
overlap exactly.  In fact, more likely, 
they could intersect transversely.

Then because they are invariant the  
hyperbolic dynamics forces them to 
fold and cross in a very complicated 
manner.

This seems to be true here, but the 
trellises are very small and hard to see, 
even with the computer.
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Blow-up of a (very) small 
neighborhood of one of the 
period-3 points.
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The Smale Horseshoe

Smale’s horseshoe map is a simple model of the 
dynamics produced when stable and unstable 
manifolds cross transversely.  Repeated hyperbolic 
stretching followed by folding applied to the unit 
square produces a fractal shape.  
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1.0

1.5

There is a hyperbolic 
fixed point at the origin 
with stable manifold 
(red) and unstable 
manifold (black) along 
the axes.  Folding 
produces a transverse 
homoclinic point.
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A Simple Trellise
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1.5 Repeated folding and stretching 
of the invariant manifolds 
produces a beautiful trellise just 
as Poincaré imagined:

each of the two curves must not 
cross itself but it must fold on itself 
in a very complicated way to 
intersect all of the meshes of the 
fabric infinitely many times.

In particular we get infinitely 
many other intersections 
(bi-asymptotic orbits) nearby.
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Symbolic Dynamics and Chaos
Poincaré may not have known the full story about the nearby dynamics.  
Nowadays we use symbolic sequences (itineraries) to code the trajectories.

. . . ✏�2 ✏�1 .✏0 ✏1 ✏2 . . . ✏n = 0, 1
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We have a one-to-one correspondence 
between orbits of the horseshoe map 
which remain in the unit square and bi-
infinite sequences of 0’s and 1’s which 
describe how the orbit “hops” between 
box 0 and box 1.

This is an (uncountably) infinite set of 
orbits which includes all of the 
(countably infinite) intersection points 
of the stable and unstable curves but 
many other orbits as well.

All itineraries are realized by an orbit, 
even “random” ones produced, say, by 
a coin toss.
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Itineraries related to the fixed points
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The fixed point (3/4, 3/4) has its own 
stable and unstable manifolds which 
form a separate trellise which 
interlaces with the trellise of (0,0). 
For example the yellow and red 
curves must fold in such a way that 
they never cross.

But the itineraries of all these point 
account for only countably many 
itineraries.  The point is that all of the 
uncountably many itineraries are 
realized.

Fixed Point (0, 0) . . . 00000.00000 . . .

Homoclinic Point (1, 1) . . . 00001.10000 . . .

Other Homoclinic Points . . . 00000✏m . . . ✏n00000 . . .

Fixed Point (
3

4
,
3

4
) . . . 11111.11111 . . .

Heteroclinic (0, 0) ! (
3

4
,
3

4
) . . . 00000✏m . . . ✏n11111 . . .
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Windows and Connection Graphs
We can summarize the implications of homoclinic chaos in the 
horseshoe map by saying that there are two boxes or “windows” 
which are stretched across one another by the map.  For other 
problems, the stretching will not be as nice as in the horseshoe 
map.  For example, we can set up windows when stable and 
unstable curves intersect non-transversely as long as they still 
“cross”.

The situation is represented by a directed 
graph which describes which itineraries are 
realized by orbits:

0 1

Later will describe chaotic behavior in other 
situations using windows and connection 
graphs.

W0

F (W0) F (W1)

W1 F
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Chaos near Infinity in Sitnikov’s Problem

Here is a typical orbit.  We will be especially interested 
in orbits where z tends to infinity and then the third 
mass flies off the screen.   So it is convenient of replace 
z by a bounded variable.

We will now focus on an even simpler three-body system where the homo-

clinic tangles are easier to see. In the 3D isosceles three-body problem we have

two equal masses, say m1 = m2 = 1, moving symmetrically around the z-axis

which a third body of mass m3 moves up and down on the axis. The shape of

is always an isosceles triangle.

The special case m3 = 0 is the Sitnikov problem. Then m1,m2 move on

symmetrical elliptical orbits in the (x, y)-plane. It is a dynamical system with 1

1
2

degrees of freedom. The state of the third body is determined by one position z

and velocity ż but there is a time-periodic forcing. We have a three-dimensional

flow on R2 ⇥ S1
= {(z, ż, t mod 2⇡)}.
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Sitnikov problem in ! coordinates

Setting z = 1
2 tan ✓, Newton’s laws give the following system of three ODE’s:

✓̇ = 2 cos2 ✓ v

v̇ = � 4 sin ✓ cos2 ✓

(cos2 ✓(1 + ✏ cosu(t))2 + sin2 ✓)
3
2

ṫ = 1

where ✏ is the eccentricity and u(t) is the eccentric anomaly of the two-body
motion of the primaries. u(t) satisfies Kepler’s equation

t = u(t) + ✏ sinu(t).

✓ remains in [�⇡
2 ,

⇡
2 ].

Orbits with z ! ±1 now converge
to the top or bottom of the box with
✓ ! ±⇡

2 .

!
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Integrable Limit 
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q

v

When the eccentricity ✏ = 0 the problem becomes a time-independent system
of one degree of freedom. The orbits move on curves of constant energy

H =
1

2
v2 � 2 cos ✓ = h.

Orbits with z ! ±1 converge to restpoints at ✓ = ±⇡
2 . In particular

1± : (✓, v) = (
⇡

2
, 0)

represent parabolic infinity, i.e., convergence to infinity with limiting speed zero.

Parabolic Infinity

Hyperbolic Infinity

Stable Manifold of Infinity

Unstable Manifold of Infinity

The parabolic restpoints have 
stable and unstable manifolds 
which coincide.

v

!
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Poincaré Map for ✏ > 0
When ✏ > 0 we have a Poincaré map of the (✓, v)-plane representing the

state of the third mass at times t = 0 mod 2⇡ (when the elliptical bodies are at

maximal distance).

There are fixed points at infinity and now the stable and unstable manfolds

of 1± cross transversely.

✏ = 0.2
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Homoclinic Tangle for ✏ = 0.2

Extending by iteration of the Poincaré map, the two (red) stable manifolds 
fold without intersecting one another but they cross the two (black) unstable 
manifolds to produce homoclinic and heteroclinic orbits as in the horseshoe.

Even more complicated than the 
horseshoe -- homoclinic tangencies
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Increasing eccentricity 

e á 0.1e á 0.1

As the eccentricity of the primaries increases, the stable and unstable 
manifolds of infinity invade more and more of the phase space.  We will say 
more about the large eccentricity case later.
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Increasing eccentricity 

e á 0.2e á 0.2

As the eccentricity of the primaries increases, the stable and unstable 
manifolds of infinity invade more and more of the phase space.  We will say 
more about the large eccentricity case later.
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Increasing eccentricity 

e á 0.3e á 0.3

As the eccentricity of the primaries increases, the stable and unstable 
manifolds of infinity invade more and more of the phase space.  We will say 
more about the large eccentricity case later.
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Increasing eccentricity 

e á 0.4e á 0.4

As the eccentricity of the primaries increases, the stable and unstable 
manifolds of infinity invade more and more of the phase space.  We will say 
more about the large eccentricity case later.
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Increasing eccentricity 

e á 0.5e á 0.5

As the eccentricity of the primaries increases, the stable and unstable 
manifolds of infinity invade more and more of the phase space.  We will say 
more about the large eccentricity case later.
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Increasing eccentricity 

e á 0.6e á 0.6

As the eccentricity of the primaries increases, the stable and unstable 
manifolds of infinity invade more and more of the phase space.  We will say 
more about the large eccentricity case later.
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Increasing eccentricity 

e á 0.7e á 0.7

As the eccentricity of the primaries increases, the stable and unstable 
manifolds of infinity invade more and more of the phase space.  We will say 
more about the large eccentricity case later.
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Increasing eccentricity 

e á 0.8e á 0.8

As the eccentricity of the primaries increases, the stable and unstable 
manifolds of infinity invade more and more of the phase space.  We will say 
more about the large eccentricity case later.
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Increasing eccentricity 

e á 0.9e á 0.9

As the eccentricity of the primaries increases, the stable and unstable 
manifolds of infinity invade more and more of the phase space.  We will say 
more about the large eccentricity case later.
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Symbolic Dynamics
We can set up a window near each of ±1. These are stretched across one

another by a suitable iterate of the Poincaré map. We can describe orbits with

sequences of +’s and -’s. At each step one can choose to stay near the same

parabolic fixed point or else transfer to the other. Long sequences of the same

symbol represent orbits which spend a long time near infinity.

- +

Oscillatory Orbits:
lim sup |z(t)| = 1 lim inf |z(t)| = 0
. . .+�++�+++�+++++++� . . .
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Chaos near Triple Collisions
We can get chaotic behavior by finding “windows” which are stretched 
across one another by the Poincaré map.  In previous slides,  the 
stretching has been associated with stable and unstable curves of fixed 
or periodic points.  Another source of stretching in the three-body 
problem is close approaches to collision. 

There are two kinds of collisions and near-collisions:

Binary collisions
Triple collisions

We will look at some orbits 
near triple collision in the 
Sitnikov problem

Lagrange equilateral 
triangle solution
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Near Triple Collision  " = 0.96
We can get near-triple collision orbits in Sitnikov’s problem by choosing a 
high eccentricity for the orbit of the primary masses and then timing the third 
body to pass through the origin when the elliptical bodies are close.

This orbit is a highly unstable, hyperbolic 
periodic orbit with a close approach to triple 
collision (there is a corresponding 
hyperbolic fixed point of the Poincaré map).

It is close to the Lagrange equilateral 
collision solution in the planar problem. 
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More near-collision orbits 

One can show that there are many more such 
near-triple-collision orbits.  They differ in 
their detailed behavior while approaching 
triple collision.

Here is another orbit for "=0.96 which 
“wobbles” above and below the plane of the 
primaries near triple collision. 

 An infinite sequence of such hyperbolic fixed 
points of the Poincaré map is created as the 
eccentricity " --> 1 (though for any fixed 
" < 1, there will only be finitely many).

Also, the reflections of these orbit are distinct 
solutions.
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Poincaré map for " = 0.96

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.5

1.0

1.5

We have (at least) six hyperbolic fixed points all with stable and unstable curves.
1+ 1� Parabolic Infinity

P+ P� Near triple collision

Q+ Q� Near triple collision with wobbles
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  There is a rich network of transverse 
homoclinic connections between the six 
fixed points
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Symbolic Dynamics
As a result, there will be orbits realizing every path in the graph below.  In other 
words one can choose any sequence of the six symbols and find an orbit which 
exhibits that sequence of behaviors.

1+
1�

P� P+

Q+Q�

To realize a sequence means that the 
orbit passes through the corresponding 
sequence of windows for the Poincaré 
map.

This is rather delicate in practice since 
the behavior is sensitive changes in 
initial conditions.
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Realizing the sequence . . . , 1+, Q+�, P+, 1+, ...

e á 0.96e á 0.96

Friday, November 9, 12



Realizing the sequence . . . , 1+, Q+�, P+, 1+, ...

e á 0.96e á 0.96

Friday, November 9, 12



Realizing the sequence . . . , 1+, Q+�, P+, 1+, ...

e á 0.96e á 0.96

Friday, November 9, 12



Realizing the sequence . . . , 1+, Q+�, P+, 1+, ...

e á 0.96e á 0.96

Friday, November 9, 12



Realizing the sequence . . . , 1+, Q+�, P+, 1+, ...

e á 0.96e á 0.96

Friday, November 9, 12



Realizing the sequence . . . , 1+, Q+�, P+, 1+, ...
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Realizing the sequence . . . , 1+, Q+�, P+, 1+, ...
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Mechanism for Chaos Near Collision

*

L
+

L-
L

+

L-
**

E

E

The limiting case " = 1 is the planar 
isosceles problem where we have the 
Lagrange and Euler triple collision 
solutions.  Using McGehee’s blow-up 
method these become hyperbolic 
equilibrium points on an invariant 
triple collision manifold.

Spiraling of the Lagrange stable and 
unstable manifolds produces 
infinitely many solutions bi-
asymptotic to equilateral triple 
collision.

Why are there so many hyperbolic fixed points and heteroclinic points ?
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Heteroclinic Loops of Equilibria

RR*

M(h,0)

M(h,t)

Mo

r

C
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Other kinds of chaos

Near collinear Lagrange points

E1

E3

E2

B3

B2
B1

L-

L+

Binary

Euler

Lagrange

Symbolic dynamics for the low angular 
momentum planar three-body problem.

Use 4D “windows”.
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Fin

Mapping Poincaré ...

... with the Sitnikov 
problem Poincaré 
map with " = 0.1
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Fin

Mapping Poincaré ...

... with the Sitnikov 
problem Poincaré 
map with " = 0.1
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