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Phase Locking of Gravitationally Interacting Rigid Bodies 

Consider the familiar phenomemon of 
phase locking.  In the moon-earth 
system, the moon is phase locked but 
the earth is not.  We will consider the 
situation where all of the interacting 
bodies are phase locked..

Ideally, the whole system just rotates 
rigidly.   It’s a relative equilbrium (RE) 
motion.

“Real world” Examples

Pluto and Charon

Asteroid Pairs



For n = 2 bodies, some of these relative equilibrium states are local minima
and can give an explanation for phase locking.  What about n ≥ 3 ?

Could these three “asteroids” evolve into a phase 
locked, RE motion where the whole group just rotates 

rigidly about the center of mass ?



Possible Mechanism for Phase Locking ?

Dissipative forces, such as tidal friction, act in addition to gravity.   Assume that 
such forces cause the total energy of the system to decrease leaving the linear and 
angular momenta constant.  This leads to the following mathematical problem:

Consider n gravitationally interacting rigid bodies in R3
. Fix the center of

mass at the origin and the total angular momentum vector � 2 R3
. This defines

a submanifold M� of the phase space. Then find the minima and local minima

of the total energy function H restricted to M�.

The study of phase locking goes back to Lagrange, Laplace, George Darwin, … But this 
formulation is due to Smale in  “Topology and Mechanics I, II” which led to a lot of further 
work.  In general

Critical Point of

H|M�

Relative Equilibrium
States



Main Results
Part I:  

Implications:
• In a system of three or more masses, as energy decreases, either some of the bodies 

will collide (producing fewer bodies) or else some will escape
• In the system without dissipation, form the reduced mechanical system on
 
Then the resulting equilibria are never extrema of the Hamiltonian (so nonlinear 
stability is unlikely)

M�/SO(3)

This result was previously known for point masses where it follows from results about Morse 
indices of critical points (Palmore, Smale).  My interest in the rigid body problem is due to a paper 
of D.Scheeres, “Minimum energy configurations …” where the theorem above was conjectured.  
Scheeres also has results about minima on the boundary, i.e., with some bodies in contact, at least 
when the bodies are spheres.

Theorem: For n � 3, relative equilibrium states in M� are never local minima

of the energy.

• No restrictive assumptions about the shapes of the bodies



Part II:
Study the case n = 2 in more detail.  For general shapes the complexity of the 
gravitational potential makes it impossible to explicitly find the RE configurations.  
Instead try to give lower bounds for the number of critical points using Morse theory 
and Lusternik-Schnirelmann category

Main Results

Theorem: For |�| su�ciently large there are at least 32 RE configurations (in

a certain subset � of configuration space, up to rotation about �) provided the

critical points of HM� are nondegenerate. Without assuming nondegeneracy

there must be at least 12 RE up to rotation. There are always at least two

minima.

Theorem: For |�| su�ciently large there are exactly 576 RE configurations in

�, up to rotation about �, all nondegenerate, including 16 minima.

These estimates turn out to be rather weak. In the limit as |�| ! 1 one can

get an exact count which continues to hold for |�| very large. Similar results

were found by Maciejewski.



Full n-Body Problem (n rigid bodies)

Consider a collection of n rigid, massive bodies in R3
.

Body coordinate systems: Qi 2 R3 Bi ⇢ R3 dmi, i = 1, . . . , n.

Total mass: mi =
R
Bi

dmi > 0

Center of mass:

R
Bi

Qidmi = 0.

Symmetric 3⇥ 3 inertia matrix of Bi:

Ii =

Z

Bi

�
|Qi|2 id�QiQ

T
i

�
dmi

Bi

x = qi +AiQi

qi 2 R3
Ai 2 SO(3)

x = inertial coordinates

Qi = body coordinates



Configuration: Z = (q1, . . . , qn, A1, . . . , An) 2 U ⇢ R3n ⇥ SO(3)

n

U = {Z : center of mass = 0, bodies disjoint }

Phase space: TU
Velocities: vi = q̇i ⌦i = angular velocity in body coordinates

Lagrangian system with L(qi, Ai, vi,⌦i) = K � U

The kinetic energy K is relatively straightforward, but the potential energy

can be very complicated. U =

P
Uij where the relative potential between two

bodies is given by an integral

Uij(qi, qj , Ai, Aj) =

Z

Bi

Z

Bj

dmi(Qi) dmj(Qj)

|qi � qj +AiQi �AjQj |

Bi

Bj



Relative Equilibria
� = G(Z)e

↵ = !e Constant angular velocity vector ↵ = !e

Angular momentum vector � = I(Z)↵ where

I(Z) =

X

i

mi(|qi|2 id�qiq
T
i ) +

X

i

AiIiA
T
i

is the 3⇥ 3 total inertia matrix of the whole configuration.

e =

2

4
0
0
1

3

5

For RE, ↵ is an eigenvector of I(Z) so � = G(Z)e

G(Z) = e

T
I(Z)e =

P
i mi(x2

i + y

2
i ) +

P
i e

T
AiIiA

T
i e

qi = (xi, yi, zi)

For given λ,  RE configurations, Z, can be characterized as critical points in 2 ways

Amended Potential (Smale, ...): W�(Z) =

1
2�

T I(Z)�� U(Z)

Critical Energy Function (Scheeres): H�(Z) =

|�|2

2G(Z)

� U(Z)

•same critical points (RE)
•equal at critical points



Energy Minimizers
Recall that we are interested in local minima of the energyH onM� in phase

space. Now the amended potential is obtained by minimizing over velocities

(with given �) so we have

Local Minima of H|M� () Local Minima of W�

Lemma: Local minima of W� () local minima of H� (at least if the maximal

eigenvalue of I(Z) is not repeated).

Proof sketch for main theorem: Two steps. For n � 3, show that the
simpler function H� has no local minima. Then deal with the case of repeated
eigenvalues by considering W� directly.

Consider the partial Hessian of H� at a critical point with respect to the qi
variables (leaving the rotation matrices Ai fixed). Get an estimate for the trace
of this matrix

trace <
(6� 2n)|�|2

G(Z)2

So n � 3 =) trace < 0 =) not local min

In light of the complexity of U(Z) how can one estimate the trace ? It
turns out that the contribution to the Hessian from the potential U(Z) is zero,
essentially due to the fact that the Newtonian potential is a harmonic function
on R3.



Part II:  Morse theory for n=2

B1
B2

q = (x, y, z)

Configuration: Z = (q, A1, A2) 2 U ⇢ R3 ⇥ SO(3)⇥ SO(3)

Goal: Count RE configurations = Critical points of

H�(Z) =

|�|2

G(Z)

� U(Z)

G(Z) =

m1m2

m1 +m2
(x2

+ y2) + eTA1I1A
T
1 e+ eTA2I2A

T
2 e

e =

2

4
0
0
1

3

5

Rotation symmetry around e implies there will be circles of RE.  May assume q=(x,0,z).

Because of the complexity of U(Z) this is still a difficult problem even when n=2.   
Previous authors have considered simpler special cases where one or both bodies is a 
sphere (the potential of a sphere reduces to that of a point mass).  Or one can use only 
the first few terms in a Legendre expansion of the potential.



Simulation with simple shapes  — two “batons”

Minimum energy RE — stable Saddle point RE — unstable

For shapes consisting of spheres joined by massless rods, it is possible to

write down the potential energy, but still nontrivial to find all of the RE.



Scheeres’ work on two spheres

If each body is a uniform sphere, the mutual potential is the same as for two

point masses. But the spheres problem is di↵erent because the solid spheres

have moments of inertia which contribute to the energy when rotated. This

problem was studied by Dan Scheeres, who has also considered problems with

more than two spheres.

Result for two spheres of equal mass and equal radius

1
2 :

Blue curve shows positions of the 
RE (critical points of minimal 
energy function) for various 
angular momenta.

As angular momentum is increased

• low angular momentum: no RE
• two RE
• one of them reaches contact at 

the “fission parameter”
• only one RE for larger angular 

momentum
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Bodies in contact

q = (s, 0, 0), rotations irrelevant



Set Up for Morse Theory
Fix � = (0, 0, |�|).
Count critical points of the minimal energy function H�(Z) where

Z = (q, A1, A2) 2 R3 ⇥ SO(3)

2

By rotation around �, may assume q = (x, 0, z), x > 0

To avoid contact or interpenetration of nonconvex shapes, assume

x > �0 = separation constant

⇥ SO(3)2
ζ σ0 σ �λ�2

s

ζ

-ζ

z

Restrict (x,z) to this rectangle

rH� Lemma: For |�| moderately large

rH� points out on boundary



Z2 Symmetry

• Time reversal
• Rotation by ! around x-axis

Separately, each reverses the angular momentum vector, �, but the compo-

sition preserves it.

At this point one could use Morse theory to count critical points in the

manifold with boundary above:

� = Rectangle⇥ SO(3)⇥ SO(3)

but to get a better estimate one should take account of a Z2
symmetry. The

symmetry is the composition of two other symmetries:

x x

z z



Quotient Space Topology
The critical energy function determines a smooth function on the quotient �/Z2

Let

Z = (x, 0, z, A1, A2) 2 � = Rectangle⇥ SO(3)⇥ SO(3)

and

R =

2

4
1 0 0

0 0 �1

0 1 0

3

5

be the matrix of rotation by ⇡ around the x-axis. The Z2 action is

RZ = (x, 0,�z,RA1, RA2).

�/Z2 is a disk bundle over

(SO(3)⇥ SO(3))/Z2 ' SO(3)⇥ (SO(3)/Z2)

where the action is moved to the second factor by using (A

�1
2 A1, A2) as coordi-

nates.

Now it is well known that

SO(3) ' RP(3) ' S3
/Z2

and this implies

SO(3)/Z2 ' S3
/Z4 = L(1, 4)

a Lens Space !!!



Cohomology and Estimates
Using Z2 coe�cients, the cohomology groups Hi

(SO(3)), 0  i  3 all have

rank 1. The Poincaré polynomial is

1 + t+ t2 + t3.

It is a standard result that the Z4 cohomology of L is the same. Converting to

Z2 coe�cients the result is again that Hi
(L), 0  i  3 all have rank 1. The

Poincaré polynomial of the product space is then

P (t) = (1 + t+ t2 + t3)2 = 1 + 2t+ 3t2 + 4t3 + 3t4 + 2t5 + t6

Morse theory then gives at least 1 + 2+ 3+ 4+ 3+ 2+ 1 = 16 critical points in

�/Z2 and therefore at least 32 critical points in �, assuming all critical points

are nondegenerate.

Lusternik-Schnirelmann category gives a lower bound on the number of crit-

ical points without assuming nondegeneracy.

Number critical points � Cat(SO(3)⇥ L) � 1 + CL(SO(3)⇥ L)

where CL is the cup length (maximal length of a nontrivial cup product in

cohomology). Using Z2 coe�cents

CL SO(3) = 3 CLL = 2 CL (SO(3)⇥ L) = 5

So there must be at least 6 critical points in �/Z2 and at least 12 in �



Limit as |�| ! 1

These estimates seem to be far from optimal. It is possible to show that

in a limiting problem as |�| ! 1 there are exactly 576 relative equilibria, all

nondegenerate, and this remains true for all |�| su�ciently large. This result

is very close to those of Macjiewski. It makes the generic assumption that for

each of the bodies B1,B2, the three principle moments of inertia are distinct.

In the limit the RE configurations consist of all configurations with these axes

aligned with the coordinate axes.

There are 6⇥6 ways to choose which oriented axes are along the x direction

and then 4⇥ 4 ways to rotate the other axes: 6⇥ 6⇥ 4⇥ 4 = 576

If one chooses an axis of minimal moment of inertia along x and maximal

along z the resulting RE is a minimum. There are 16 minima. The other Morse

indices are given by the Morse polynomial

M(t) = 16(1 + t)

2
(1 + t+ t

2
)

2
= 16 + 64t+ 128t

2
+ 160t

3
+ 128t

4
+ 64t

5
+ 16t

6



Some questions for further research

• Are there examples with fewer than 576 RE ? Irregular shapes 
with no discrete symmetries at lower angular momenta ?

• What kind of bifurcations occur as angular momentum is 
decreased (preliminary work by Jodin Morey) ?

• Are there examples with more than the expected number of 
minima ?

• For simple shapes, can one prove existence of homoclinic and 
heteroclinic orbits connecting the unstable RE ?  Nearby 
chaotic motions ?

• Is there a reasonable theory for irregular bodies in contact 
(following Scheeres’ work with spheres) ?

• What about RE with irregular, possible nonconvex bodies 
very close but not in contact ?
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