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Hamiltonian system of 6 degrees of freedom. 

The Planar Three-Body Problem

Masses: m1,m2,m3 > 0

Positions: q1, q2, q3 2 R2

Momenta: p1, p2, p3 2 R2⇤

(q, p) 2 T ⇤R6

Mutual distances: rij = |qi � qj |
H(q, p) = K(p)� U(q)

K(p) =
|p1|2

2m1
+

|p2|2

2m2
+

|p3|2

2m3

U(q) =
m1m2

r12
+

m3m1

r31
+

m2m3

r23
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Symmetries: 

Symmetries and Singularities

Translation and rotation of positions qi in R2

=> Reduced Hamiltonian System of 3 degrees of freedom
Reduced phase space: T ⇤Q
Reduced configuration space: Q = R+ ⇥ S2

Size of triangle

Shape of triangle
The “Shape Sphere”

Singularities:  only due to collisions

Triple collision: 
Three binary collisions: r12 = 0 or r31 = 0 or r23 = 0

r12 = r31 = r23 = 0

Must restrict to U = {rij 6= 0} ⇢ Q
Flow on T ⇤U is not complete.

Levi-Civita regularization extends orbits through binary collisions in a 
natural way.  McGehee blow-up slows down triple collision solutions 
so they converge to equilibrium points in a boundary manifold. 
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Goal:  Describe a global reduction, regularization and blow-up for the 
planar three-body problem.  For each fixed energy and angular 
momentum, get a complete flow on a five-dimensional manifold.  
Emphasize the shape sphere point of view.

Some of the history this problem:

Levi-Civita: regularization of a single binary collision using the complex 
squaring map.
McGehee: blow-up of triple collision
Birkhoff, Thiele: regularization of two binary collisions in the R3BP 
using conformal maps
Bolotin: regularization of restricted n-body problem
Lemaitre: regularization of all three binary collisions, shape sphere point 
of view, local reduction using angle variables
Waldvogel: regularization of all three binary collisions, no shape sphere, 
no reduction
Waldvogel, Simo-Susin: reduction, regularization and blow-up for the 
zero angular momentum problem.
Heggie: Regularization using symmetrical variables, no blow-up, shape 
sphere or reduction
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Some novel aspects of our approach:

Combine global symplectic reduction with regularization of all three 
binary collisions and blow-up of triple collision.  

Realization of the shape sphere and regularized shape sphere as 
complex projective lines, CP(1).   Description of Lemaitre’s beautiful 
conformal regularizing map based on simple projective formulas.

Global descriptions of the flows on reduced phase spaces using 
homogeneous coordinates.

Explicit formulas for the “curvature terms” in the reduced equations 
resulting from the twisted symplectic structures on the reduced phase 
spaces.
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Some examples of orbits of the reduced and regularized flow.

Simple periodic orbit of the 
isosceles 3BP.  Binary 

collisions are unavoidable. 
Regularization is essential.
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Isosceles periodic orbit 
with binary collisions and 
close approach to triple 
collision

Zoom showing behavior 
near triple collision
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An orbit with many near collisions
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Usual method:
Reduction by Translations

Set p
tot

= p1 + p2 + p3 = 0 2 R2⇤

Fix center of mass at origin: m1q1 +m2q2 +m3q3 = 0.

Introduce coordinates on this invariant set.

Instead:
We start with

H(q, p) = K(p)� U(q) =

✓
|p1|2

2m1
+ . . .

◆
�
✓

m1m2

|q1 � q2|
+ . . .

◆

and view qi 2 C, pi 2 C⇤
so (q, p) 2 T ⇤C3

. Invariant under translations of

positions, qi 7! qi + c, c 2 C.
Define relative coordinates

Q12 = q1 � q2 Q31 = q3 � q1 Q23 = q2 � q3.

Note: linear map L : C3 ! C3
, Q = L(q) is not invertible.

Image of L is

W = {Q 2 C3
: Q12 +Q31 +Q23 = 0}. Q12

Q23Q31

Jacobi
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Nevertheless, pull-back the momenta using the dual map L⇤

p1 = P12 � P31 p2 = P23 � P12 p3 = P31 � P23

to get a new Hamiltonian on (Q,P )-space

Hrel = K(P )� U(Q)

=
|P12 � P31|2

2m1
+

|P23 � P12|2

2m2
+

|P31 � P23|2

2m3
� m1m2

|Q12|
� m3m1

|Q31|
� m2m3

|Q23|
.

Strange duality: the new Hamiltonian is invariant under translations of
momenta, P

ij

7! P
ij

+ c, c 2 C⇤ and the momentum map for this symplectic
group action is

Q
tot

= Q12 +Q31 +Q23.

In spite of the non-invertibility, it turns out that this new Hamiltonian repre-
sents the three-body problem in the following sense: The reduced Hamiltonian
flow induced by H(q, p) on the reduced space

{(q, p) : p
tot

= 0}/C

is equivalent to the reduced Hamiltonian flow induced by H
rel

(Q,P ) on

{(Q,P ) : Q
tot

= 0}/C⇤ ' T ⇤W.
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Reducing to 4 Degrees of Freedom

Parametrizing W:
Choosing any complex basis for the subspace W gives a di↵eomorphism

T ⇤W ' T ⇤C2

which carries out the reduction.
However, working with the variables Qij avoids arbitrary decisions about

coordinates and makes regularizing binary collisions easier later on.

Now we have a di↵erent Hamiltonian system with Hamiltonian H
rel

(Q,P )
on the (Q,P ) space, which is still the twelve-dimensional space T ⇤C3. To get the
reduction in dimension we need to restrict Q to the (complex) two-dimensional
subspace

W = {Q : Q
tot

= Q12 +Q31 +Q23 = 0}

and quotient by momentum translation symmetry P
ij

7! P
ij

+ c. The result
will be a Hamiltonian system with 4 degrees of freedom. Reduced phase space
is the (real) eight-dimensional T ⇤W.
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Homogeneous Spherical Coordinates
Replace Q 2 W ⇢ C3 by

r = |Q| Size of triangle

X = (X12, X31, X23) 2 S(W) ' S3 ⇢ S5 Normalized configuration

Hermitian mass metric on C3:

hV,W i = 1

m
(m1m2V̄12W12 +m3m1V̄31W31 +m2m3V̄23W23)

r2 = hQ,Qi = 1

m
(m1m2r

2
12 +m3m1r

2
31 +m2m3r

2
23)

where m = m1 +m2 +m3.

Note: r = 0 corresponds to triple collision.

View spheres as quotients under scaling, so

S

5
= (C3 \ 0)/R+

X 2 C3 \0 is a homogeneous spherical coordinate for a point in the sphere

where

X 0 ⇠ X i↵ X 0
= kX k > 0
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At this point we have actually increased the dimension to 14 ! But after

remembering the constraint above, restricting X to W and quotienting by mo-

mentum translation and scaling symmetries we get back to an eight-dimensional

reduced phase space

T ⇤R+ ⇥ T ⇤S(W) ' T ⇤R+ ⇥ T ⇤S3.

Cotangent bundle T ⇤S5 can be viewed as symplectic reduction of action of
G = R+ on T ⇤(C3 \ 0)

k · (X,Y ) = (kX, Y/k) k > 0.

The momentum map turns out to be

re(Ȳ12X12 + . . .) = 0

and the quotient of the zero-momentum level is T ⇤S5.
In the end we get a Hamiltonian system on T ⇤R+ ⇥ T ⇤(C3 \ 0) with

Hsph(r, pr, X, Y ) =
1

2
p2r +

|X|2

r2
K(Y )� 1

r
V (X)

where

K(Y ) =
|Y12 � Y31|2

2m1
+ . . .

V (X) = |X|U(X) = |X|
✓
m1m2

⇢12
+ . . .

◆

⇢ij = |Xij | homogeneous mutual ”distances”
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Reduction by Rotations -- Shape Sphere as CP(1)

Rotation group SO(2) acts on normalized configurations X 2 C3

ei✓ ·X = (ei✓X12, e
i✓X31, e

i✓X23).

X is already a homogeneous coordinate and the combined action of scaling and

rotation amounts to an action of G = C \ 0

k ·X = (kX12, kX31, kX23) k 2 C \ 0.

The quotient space is CP(2). For X 2 W we get an equivalence class

[X] 2 P (W) ' CP(1) Shape of Triangle.

We call P (W) ' S

2
the shape sphere.

Momentum map for the action of C \ 0 on phase space is

¯Y12X12 +
¯Y31X31 +

¯Y23X23 = 0 + i µ

where µ is the angular momentum.
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Reduced System for Size and Shape
All manifold of constant angular momentum are di↵eomorphic to one an-

other. Use a momentum shift map to translate the zero-angular momentum
level onto the µ-level

(X,Z) 7! (X,Y )

where
Z̄12X12 + Z̄31X31 + Z̄23X23 = 0 + 0 i

and Y is a certain µ-dependent translate of Z.
Hamiltonian becomes

Hµ(r, pr, X, Z) =
1

2
(p2r +

µ2

r2
) +

|X|2

r2
K(Z)� 1

r
V ([X])

with K,V as before.
Remembering all the constraints and quotienting by all the symmetries gives

a reduced system on the reduced phase space

T ⇤R+ ⇥ T ⇤P (W) ' T ⇤R+ ⇥ T ⇤CP(1).

However, there is a µ-dependent symplectic structure arising from the pullback
of the standard structure under the momentum shift map.
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Parametrizing the Shape Sphere--3 d.o.f.

Working with the Xij variables will be advantageous later, but one can get

an explicit reduction to 3 degrees of freedom as follows.

Choose any complex basis {e1, e2} for W to get

X = ⇠1e1 + ⇠2e2.

This map C2 7! W induces a parametrization of the shape sphere:

CP(1) 7! P (W).

Then choose your favorite way to handle [⇠1, ⇠2] 2 CP(1).
A�ne local coordinates to Riemann sphere:

u =

⇠2

⇠1
2 C [1.

Stereographic projection to round S2
in R3

;

w = (w1, w2, w3) = stereo(⇠1, ⇠2).
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Plot level curves of the shape potential V(X).  
Round sphere model (with equal masses).

Visualizing the Shape Sphere

Poles: Lagrange’s equilateral CC’s

Equator: collinear shapes including 
Euler CC’s and binary collisions

Binary collision

Reduced configuration space R+ ⇥P (W) ' R+ ⇥S2
could be viewed as the

solid region exterior of to this sphere.
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Some orbits plotted in reduced space

Figure eight orbit of Chenciner and Montgomery

Tuesday, July 17, 12



Broucke-Henon Orbit
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Isosceles periodic brake orbit
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Visualizing the Shape Sphere -- Affine Model, Equilateral Basis

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
Equal Masses

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
Masses 1,2,10

Choosing the basis for

e1 = (1,!, !̄) e2 = (�1,�!̄,�!) ! =

1

2

+ i

p
3

2

and using a�ne coordinates

u =

⇠2
⇠1

puts the collinear configurations on the unit circle, the binary collisions at the

third roots of unity and the equilateral shapes at u = 0,1.
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Regularization of Binary Collisions
Levi-Civita regularization of a binary collision

Q_12 z_12

Limiting behavior of near 
collision orbits is to have 
the masses bounce.

Complex squaring 
map straightens out 
the dynamics.

Q12 = z212
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Idea for regularizing all three binary collisions:  
Regularize the shape variables for the planar three-body problem 
using a branched covering map of the shape sphere.

George Lemaitre: 50’s and 
60’s via intricate 
trigonometric calculation.

We will pursue a simpler method based on 
the homogeneous variables Xij

Three Levi-Civita maps Xij = z2ij where zij are three new complex variables.
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Regularizing Map: X = �(z) where � : C3 ! C3

�(z12, z31, z23) = (z212, z
2
31, z

2
23)

If
X 2 W : X12 +X31 +X23 = 0

then
z 2 C : z212 + z231 + z223 = 0.

View � as a map � : C ! W of the complex algebraic surface C to the

complex two-plane W. Since everything is homogeneous we have induced maps

of projective algebraic curves

�pr : P (C) ! P (W) = shape sphere.

We will see that P (C) is also a two-sphere (called the regularized shape
sphere) and �pr is a branched covering map.
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Geometry of C and P (C)

C = {z 2 C3
: z212 + z231 + z223 = 0}

an algebraic surface (complex dimension 2 or real dimension 4). It turns out

that topologically

C ' cone over RP (3).

To see this note that if z12 = a12 + i b12, etc., then

a212 � b212 + a231 � b231 + a223 � b223 = 0

2(a12b12 + a31b31 + a23b23) = 0

which shows that the vectors in R3

a = re z = (a12, a31, a23) b = im z = (b12, b31, b23)

are orthogonal and have equal length:

|a|2 = |b|2 a · b = 0.

After rescaling scaling, we get an orthonormal frame

[a, b, a⇥ b] 2 SO(3) ' RP (3).
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P (C) = {[z] 2 CP(2) : z212 + z

2
31 + z

2
23 = 0}

a projective curve (complex dimension 1 or real dimension 2). It is a non-

degenerate conic and so, as is well-known,

P (C) ' CP(1) ' S2
.

The map taking a conic to the projective line is essentially stereographic

projection. A homogeneous version of this is given by the quadratic map

f : C2 ! C z12 = 2ix1x2 z31 = x

2
1 + x

2
2 z23 = i(x

2
1 � x

2
2).

This is a two-to-one map. Normalizing the sizes gives an induced two-to-one

map fsph : S3 ! RP(3). Since f is homogeneous it also induces

fpr : CP(1) ! P (C) [z] = fpr([x1, x2])

which turns out to be a di↵eomorphism.
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Visualizing the Regularized Shape Sphere

The parametrization fpr : CP(1) ! P (C) = {z212 + z

2
31 + z

2
23 = 0}

z12 = 2ix1x2 z31 = x

2
1 + x

2
2 z23 = i(x

2
1 � x

2
2)

can be combined with

A�ne coordinates: v =

x2

x1
2 C [1

Stereographic projection: c = stereo(x1, x2) 2 S2 ⇢ R3

to visualize P (C) as a plane or round sphere.

Use six binary collision as landmarks. In homogeneous coordinates

0 = ⇢12 = |X12| = |z212| = |2x1x2|2 =) [x1, x2] = [1, 0] or [0, 1]

0 = ⇢31 = |X31| = |z231| = |x2
1 + x

2
2|2 =) [x1, x2] = [1, i] or [0,�i]

0 = ⇢23 = |X23| = |z223| = |x2
1 � x

2
2|2 =) [x1, x2] = [1, 1] or [0,�1]
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Regularized Shape Sphere -- round version after stereographic projection

Octahedral symmetry -- imagine an octahedron inflated to become round.

Coordinates (c1, c2, c3) 2 R3
.

Can choose projection so

⇢12 = c21 + c22

⇢31 = c23 + c21

⇢23 = c22 + c23

Binary collisions are on coordinate axes.

⇢12 = 0 =) c1 = c2 = 0.

Collinear shapes on coordinate planes.

⇢12 = ⇢31 + ⇢23 =) c3 = 0.

Tuesday, July 17, 12



Lemaitre’s Conformal Map: � : C3 ! C3 Xij = z2ij

induces

�pr : P (C) ! P (W)

between regularized to unregularized shape spheres.

•four-to-one cover branched over the binary collisions
•each octant of regularized sphere maps to a hemisphere
•behaves like the squaring map near the six regularized binary collision points
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Affine version:

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-4 -2 0 2 4

-4

-2

0

2

4

Using a�ne local coordinates on both projective spaces

v =

x2

x1
on P (C) u =

⇠2

⇠1
on P (W)

and sending one binary collision to infinity, the regularizing map takes the form

u = �pr(v) =
1

2

(u

2
+ u

�2
)

a degree-four rational map, reminiscent of the R3BP.
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The preimage of the regularized shape sphere under the Hopf-like quotient 
map by SO(2).  There are six binary collision circles (shown as tubes) and 3 
collinear tori (transparent surfaces).

Regularized but unreduced ...
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Regularized Hamiltonian

The symplectic extension of the Levi-Civita squaring map is

Xij = z2ij Yij =
⌘ij
2z̄ij

where ⌘ij are new momentum variables. Use these to transform the reduced
Hamiltonian Hµ(r, pr, X, Y ).

Next rescale time using the Poincaré trick. Fix an energy level Hµ = h and
set

H̃µ = ⌧(Hµ � h).

Solutions with H̃µ = 0 correspond to solutions with Hµ = h with time rescaled
by the factor ⌧ . We use

⌧ =
⇢12⇢31⇢23

(⇢12 + ⇢31 + ⇢23)3
⇢ij = |Xij |

which vanishes at each of the binary collisions and is invariant under the scaling.
The factors of ⇢ij in the numerator of ⌧ will cancel out the corresponding factors
in the denominator of the potential.

The form of the regularized Hamiltonian depends on the choice of coordi-
nates. Here is one:
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Shape kinetic energy

Using x1, x2 2 C where

z12 = 2i x1x2 z31 = x2
1 + x2

2 z23 = i(x2
1 � x2

2)

and momenta y1, y2 gives

˜Hµ =

⌧ p2r
2

+

⌧ µ2

2r2
+



4r2
|y1x2 � x1y2|2 �

1

r
W (x)� h⌧

where

W (x) =
|X(x)| (m1m2⇢31⇢23 +m1m3⇢12⇢23 +m2m3⇢12⇢31)

(⇢12 + ⇢31 + ⇢23)3

⇢12 = |2x1x2|2 ⇢31 = |x2
1 + x2

2|2 ⇢23 = |x2
1 � x2

2|2

⌧ =

⇢12⇢31⇢23
(⇢12 + ⇢31 + ⇢23)3

|X(x)|2 =

m1m2⇢
2
12 +m1m3⇢

2
31 +m2m3⇢

2
23

m1 +m2 +m3

 =

m|X(x)|4

4m1m2m3 (⇢12 + ⇢31 + ⇢23)4

Regularization: The factors of ⇢ij in the denominator of the potential

term are gone. Note that

⇢12 + ⇢31 + ⇢23 6= 0

since the homogeneous mutual distances never vanish simultaneously.

The phase space is T ⇤R+⇥T ⇤
(C2 \0) but x, y are homogeneous coordinates

and there is a regularized induced system on T ⇤R+ ⇥ T ⇤CP(1). There is still a

singularity at triple collision: r = 0.
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Shape Kinetic Energy and the Fubini-Study Metric

The shape kinetic energy term



4r2
|y1x2 � x1y2|2

is conformal to the dual of the Fubini-Study metric on CP(1).
The standard Hermitian metric on C3 = {z = (z12, z31, z23)} induces the

Fubini-Study metric on CP(2) and hence also on the projective curve P (C),
the regularized shape sphere. There is a dual metric on the cotangent bundle
T

⇤
P (C) which turn out to be given in homogeneous coordinates by:

1

2
|y1x2 � x1y2|2

Note: this is invariant under the complex scaling (x, y) 7! (kx, y/k̄) defining the
cotangent bundle.

After stereographic projection, the Fubini-Study metric is a constant times
the usual round metric on S2.

Tuesday, July 17, 12



Curvature Terms

The reduced phase space is di↵eomorphic to

T ⇤R+ ⇥ T ⇤S2

but with a non-standard symplectic structure (due to the use of the momentum
shift map). This adds certain “curvature terms” to the usual Hamilton’s
equations.

For example, using the reduced Hamiltonian H̃
µ

(r, p
r

, x, y) we get

ṙ = (H̃
µ

)
pr

ṗ
r

= �(H̃
µ

)
r

ẋ = (H̃
µ

)
y

ẏ = �(H̃
µ

)
x

� 2µ⌧

r2
i y

The curvature term is a computed from a “curvature two-form” on CP(1)
which is a multiple of the imaginary part of the Fubini-Study Hermitian metric.
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The use of size and shape variables makes it easy to carry out McGehee’s 
blow-up of triple collision.  It just requires rescaling of the momentum 
variables and a further change of timescale to slow down the triple 
collision orbits.

Blow-up of Triple Collision

McGehee used the timescale factor r
3
2 which gives the right behavior as

r ! 0 but speeds up orbits near r = 1. To get a complete flow we used

✓
r

r + 1

◆ 3
2

.

As in the usual blow-up, the resulting system of ODE’s extends smoothly to
{r = 0} which becomes an invariant collision manifold. Triple collision orbits
(which all have angular momentum µ = 0), now converge to equilibrium points
in the collision manifold.

Since collision singularities have been removed and since orbits cannot be-
come unbounded in finite time, the resulting flow is complete.
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Some  Three-Body Orbits in the Regularized Configuration Space

Figure-eight orbit

The orbit in regularized shape space is remarkably simple!
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Isosceles orbit with a close approach to triple collision.
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Broucke-Henon Orbit
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Generalizations ....

Three-Body Problem in Space: Problems with reduction due to the

non-free action of SO(3). Get a shape disk (upper hemisphere of the shape

sphere). It seems that there will be singularities of the reduced system on the

boundary (collinear configurations).

Alternatively one can use Kustanheimo-Steifel regularization instead of Levi-

Civita regularization:

Xij = KS(zij) Xij 2 R3, zij 2 R4.

This introduces additional T 3
symmetry. It still seems hard to carry out a com-

plete reduction without introducing singularities on the collinear configurations.
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Planar Four-Body Problem We have

X = (X12, X13, X14, X23, X24, X34) 2 C6

subject to four linear constraints of the form Xij ±Xjk ±Xki = 0. Only three
of the equations are independent and we get X 2 W3 ⇢ C6. Projectively, we
have [X] 2 P (W) ' CP(2). Each of the six binary collisions defines a projective
line in this projective plane.

Setting Xij = z2ij gives quadratic equations z2ij ± z2jk ± z2ki = 0 which gives
a projective algebraic surface P (C) ⇢ CP(5). The regularizing map

�pr : P (C) ! P (W) ' CP(2)

is branched over the six binary collision lines.
The surface P (C) is singular over the points where three binary collision lines

intersect. The “desingularization” of the surface is apparently a K3 surface.
Not clear how to work with such objects and obtain a useful reduced and

regularized problem.
The result would still not be a complete flow since there are solutions tending

to infinity in finite time, a result of Mather and McGehee.
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Fin
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