A VARIATIONAL PROOF OF EXISTENCE OF TRANSIT
ORBITS IN THE RESTRICTED THREE-BODY PROBLEM

RICHARD MOECKEL

ABSTRACT. Because of the Jacobi integral, solutions of the planar, circular
restricted three-body problem are confined to certain subsets of the plane
called Hill’s regions. For certain values of the integral, one component of the
Hill’s region consists of disklike regions around each of the two primary masses,
connected by a tunnel near the collinear Lagrange point, La. A transit orbit
is a solution which crosses the tunnel, in a sense which can be made precise
using Conley’s isolating block construction.

For values of the Jacobi integral sufficiently close to its value at Lo, Conley
found transit orbits by linearizing near the equilibrium point. The goal of
this paper is to develop a method for proving existence of transit orbits for
values of the Jacobi constant far from equilbrium. The method is based on
the Maupertuis variational principle but isolating blocks turn out to play an
important role.

1. THE RESTRICTED THREE-BODY PROBLEM

The paper is divided into four sections. This section contains the equations
of motion for the planar, circular restricted three-body problem or PCR3BP. In
addition, the isolating blocks used by Conley [3] are described and used to define the
concept of transit orbit. In section 2 the classical Maupertuis variational principle
is explained and the idea of finding transit orbits as minimizers of this principle
for curves crossing a rectangle is introduced. Section 3 shows how isolating blocks
can be used to show that the variational minimizers are really classical solutions
of the problem. Finally, in section 4, the hypotheses of the existence theorem are
verified (with some numerical assistance) for two different choices of the mass ratio
and Jacobi constant.

1.1. Equations of Motion. The restricted three-body problem models the motion
of a small mass under the influence of the gravitational forces of two larger masses
called the primaries. The primaries, which have masses m; = 1 — u and mo = p,
are assumed to move on circular orbits of the two-body problem, unaffected by the
third mass. In a uniformly rotating coordinate system, the primaries will remain
on the z-axis at positions q; = (—p,0) and g2 = (1 — p,0). Let (z,y) € R? and
(u,v) € R? denote the position and velocity vectors of the third mass with respect to
the rotating coordinate system. Then if the primaries are rotating counterclockwise
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with unit angular velocity, the equations of motion will be:
T=u u=V,+2v
(1)

Y= v="V,—2u
where

Vi) = 3+ 9?) + ——E
713 723
and 713 = /(z + )2 + 32, ro3 = /(x + p — 1)? + y? are the distances to the pri-
maries. V is just the Newtonian gravitational potential with an extra term repre-
senting the centrifugal force due to the rotating coordinates.
Equations (1) are the Euler-Lagrange equations of the action functional:

2) I() = / " Lix,y.d,9) dt

to
L(z,y,u,v) = %(Uz + %) + V(z,y) + (zv — yu)

where y(t) = (z(¢),y(t)) is a parametrized curve in the plane.

1.2. Energy Manifolds and Hill’s Regions. The Jacobi integral
H(x,y,u,v) = %(u2 +0%) = V(z,y)
is a constant of motion for (1). For any constant i < 0 let
M(h) = {(z,y,u,v) € R*: H(z,y,u,v) = h}

H(h) = {(z,y) € R? : I(u,v) € R? H(z,y,u,v) = h}.

The constant h will be called the energy and M(h) will be called an energy manifold.
Its projection onto the configuration space, H(h), is the corresponding Hill’s region.

For points in M(h) one has V(z,y)+h = 2(u?+v?) > 0. In fact, this inequality
characterizes the Hill’s region and so

H(h) = {(z,y) € R? : V(z,y) > —h}.

The Hill’s regions can be visualized by making a contour plot of V(z,y) (see fig-
ure 1). The shaded region represents a value of h typical of those considered below.

1.3. The Lagrange Point L,. The critical points of V(z,y) are called the La-
grange points. They determine equilibrium points of the differential equations in
rotating coordinates. In non-rotating coordinates, they determine periodic solu-
tions for which the configuration rotates rigidly at constant speed. There are five
well-known critical points, all of which are visible in figure 1. The points L, and
L5 correspond to equilateral triangle configurations. The other three critical points
lie on the z-axis and so represent collinear configurations. These are critical points
of the collinear potential V' (z,0).

It turns out that V' (x,0) is a convex function with a unique critical point in each
of the intervals (—oo, —u), (u,1 — ), (1 — p,00). This paper is mainly concerned
with a neighborhood of Ly, the collinear Lagrange point which lies between the
primaries. Let & € (—u,1 — u) be the z-coordinate of Lo and let its energy be

H(z,0,0,0) = —V(Z,0) = h . The critical energy “manifold” M(h) is actually not
a manifold near the critical point. But the nearby manifolds M(h), h > h, are
non-critical. The shaded Hill’s region in figure 1 corresponds to such a value of
h. Of course these nearby manifolds do not contain the equilibrium point. Instead
they may contain orbits which remain for all time near L, but are not equilibria.
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FIGURE 1. Hill’s regions and Lagrange points for the planar re-

stricted three-body problems with y = % The shaded region is
the Hill’s region for energy h = —1.8.

For h —h > 0 and small, one can investigate this question by local methods.
First, consider the linearization of the differential equations near the equilibrium.
The 4 x 4 linearized system has a matrix A which always has two real eigenvalues
and two imaginary eigenvalues. In other words, the equilibrium is of saddle-center
type. It follows from the center manifold theorem that the manifolds M(h) each
contain a hyperbolic periodic orbit near Ly for h — h > 0 sufficiently small. When
h — h > 0 gets larger, it is not clear what will happen to this periodic orbit.

1.4. Isolating Blocks and Transit Orbits. In [3], Conley investigated the local
dynamics near Lo using isolating blocks. He considered a neighborhood of Ly in
the Hill’s regions, H(h), of the form a < x < b where —p < a < Z <b<1-—p.
Such a neighborhood, T}, (a,b), can be viewed as a “tunnel” between the two lobes
of the Hill’s region as illustrated in figure 2.

The preimage of Th(a,b) in M(h) will be called By(a,b). Conley showed that,
at least for h — h sufficiently small, the sets B}, are manifolds-with-boundary which
are convez to the flow. This means that any orbit which meets one of the boundary
manifolds where x = a or x = b tangentially must lie outside of B}, both before
and after the encounter. In later work with Easton, such submanifolds were called
isolating blocks and the maximal invariant sets inside them were called isolated
invariant sets [5, 6, 4]. The convexity condition ensures that the boundary points
of the block are not part of the maximal invariant set in the block so the invariant
set is in the interior of the block.

It is easy to formulate the isolating block condition for Bj, using second deriva-
tives. One requires that any orbit with z = a and & = 0 must also have & < 0 and
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FIGURE 2. Tunnels T} (a,b) for = 3 and energy, h = —1.8. Any
of the indicated line segments x = a on the left of the origin could
be paired with any segment x = b on the right to construct an
isolating block.

similarly that whenever x = b and & = 0 one must have £ > 0. Now
T=u
T=u="V,+ 2.

So the isolating block condition on the right boundary amounts to showing that
V. > —2v for every point (b,y,0,v) € M(h) (note: Conley assumed a clockwise
rotation of the primaries so there are some sign differences in his formulas). From
the convexity of V(z,0) it follows that V,(b,0) > 0. Also, the equation H = h
implies that v? < 2(V + h). Thus it suffices to show that

(3) Vi(z,y) > 8(V(w,y) +h)

holds for all points (z,y) € Hj, with & = b. A similar analysis at = a yields the
same inequality.

Inequality (3) can be verified for h—h > 0 small by using Taylor expansions near
Lo. This is one of Conley’s results in [3]. One can also try to analyze inequality (3)
for more general values of a, b, h. This can be done in some cases but the inequality is
complicated enough to require some computer-assisted computations. The shaded
region in figure 2 shows the part of the Hill’s region where (3) is violated. Any
vertical line segment in the complement will satisfy the convexity condition and so
could be used to define the wall of an isolating block.

The existence of an isolating block, B = By(a,b), makes it possible to give a
clean classification of the possible behaviors of orbits in the tunnel, T} (a,b). Let
¢; be the flow and define subsets

S={p:é:(p) € B,t € R}
ST ={p:¢:(p) € B,t >0}
S™ ={p:¢:(p) € B,t >0}

S = St NS~ is the maximal invariant set in the block and S* are its stable and
unstable sets. Orbits in the complement B\ (ST U S™) must leave the block in
both forward and backward time. They can be classified according to which wall,
x = a or x = b, they cross when entering and leaving. Let Uy, be the orbits (if any)
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FIGURE 3. Isolating block for y = % and h = —1.8. The orbits
shown include a probable period orbit from the invariant set S,
two orbits illustrating the convexity condition on the boundary
segments, and a transit orbit.

which enter through the wall x = a and leave through = = b and define U,,, Up,
and Uy, in a similar way. It follows easily from the convexity to the flow that each
of these sets is open, while the sets S, ST are closed. Moreover, they are invariant
under continuous changes in the positions of the walls, so long as the isolating block
condition is preserved.

The open sets U,, and Uy, are always nonempty because near any orbit which
meets the wall z = a or x = b tangentially there is an orbit which crosses the wall
and then immediately leaves through the same wall. It is not so easy to show that
the sets of transit orbits Uy, and Up, are nonempty though such orbits can be found
numerically (see figure 3). The goal of the present paper is to develop a method
for proving that they exist.

Although this paper is about transit orbits, the sets S, S*, S~ are also of interest.
For h — h > 0 small, S consists of a single orbit, the hyperbolic periodic orbit
mentioned above. The sets ST, S~ are its stable and unstable manifolds. These
are two-dimensional submanifolds of the three-dimensional energy manifold M(h).
For larger energies, the nature of these sets in not clear. However, using the Conley
index theory, one can show that .S is always a nonempty compact invariant set and
that S*, S~ have topological dimension two and separate the energy manifold.

One of the motivations for this paper is a theorem of Easton which uses the
existence of transit orbits to deduce some topological information about S. He
shows that if all four of the sets U;; are nonempty then the Cech cohomology group
H'(S) # 0, so at least the invariant set has something in common with the circle
[6]. For the three-dimensional restricted three-body problem, a similar isolating
block can be constructed. For h — h > 0 sufficiently small, the invariant set is now
a normally hyperbolic invariant three-sphere. In this case, Easton’s theorem shows
that for larger energies, the existence of the isolating blocks and transit orbits imply
that H3(S) # 0. Since a transit orbit for the planar problem is also a transit orbit
for the three-dimensional problem, this will follow from the existence proof below.
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2. SOME VARIATIONAL EXISTENCE THEOREMS

This section describes a classical variational existence theorem which applies, in
particular, to the restricted three-body problem

2.1. Maupertuis’ Variational Principle. As noted above, the differential equa-
tions of the restricted three-body problem are the Euler-Lagrange equations of the
action functional I of (2). For the construction of transit orbits, it is necessary to
restrict attention to a fixed energy level H(z,y,u,v) = h. Solutions on this energy
level are stationary curves of a different action functional:

t1
(4) J(v) = t F(a,y,&,7)dt

0

F(z,y,u,v) = \/2(V(z,y) + h) Vu? + 02+ (zv — yu)

where this time the curve y(t) = (z(t),y(t)) is required to lie in the Hill’s region
H(h) = {(x,y) € R? : V(z,y) +h > 0}. The value of the functional J is invariant
under reparametrizations of v. Every stationary curve of [ is also stationary for J
but a stationary curve of J is stationary for I only when it is parametrized so that
H = h. In studying J, however, any convenient convention about parametrizations
may be used. For example, one may assume that the time interval is [to, 1] = [0, 1].

2.2. Classical Results on Parametric Problems. There is an extensive classi-
cal theory of “parametric” variational problems like (4). Let U C R? be an open
set. F(x,y,u,v) will be called a parametric integrand on U if it is C* function on
U x (R?\ 0) which is positively homogeneous of degree one with respect to (u,v),
ie.,
F(x,y, ku, kv) = kF(x,y,u,v)

for every real number k£ > 0. This condition assures that the corresponding func-
tional is invariant under sense-preserving reparametrizations of the curve. Differ-
entiating the homogeneity relation with respect to k at k = 1 gives uF, +vF, = F.
Then differentiating again with respect to u and with respect to v gives:

wFyy +vFy = uFy, + vF,, =0.

It follows that the following three ratios are equal (where defined):
Fuu F’U'U _ Fuv

v w2 uv
For u? +v? # 0, let Fy(z,y,u,v) denote this common value. For example, if F' is
the integrand of (4) then
2(V(x,y) +h)
(ot

The following result can be found in [2, ch.VII]

(5) Fi(z,y,u,v) =

Theorem 1. Suppose F' is parametric integrand on U and that R C U is a compact,
conver subset such that

F(x7y7u’v) > 0 Fl(x7y7u7v) > 0
in R x (R?\ 0). Then given two points P,Q € R, the functional

(6) J(y) = /0 F(e,y,é,9) dt
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attains an absolute minimum on the set KC of rectifiable curves in R from P to Q.

A few remarks are needed about rectifiable curves and about the interpretation
of the integral; see [2, 7] for details. Let v(t) = (x(t),y(t)) denote a continuous
curve. The distance d(y,7’) between continuous parametrized curves defined on a
common interval, [t, 1], will be the usual uniform distance in R2. If h : [t}, ;] —
[to, t1] is a sense-preserving homeomorphism then the curve v/(¢) = y(h(t)) will be
considered equivalent to . More generally, two continuous curves v, are called
equivalent when there is a sequence of such reparametrizations, h, (), such that
d(y(hn(t)),7'(¢)) — 0. An equivalence class can be viewed as an unparametrized
curve. The length of a parametrized curve is defined in the familiar way by taking
the supremum of the lengths of approximating polygons over all partitions of [tg, ¢1].
The lengths of equivalent curves are equal so the length of an unparametrized curve
is well-defined. A curve is rectifiable if it has finite length. The distance between
unparametrized curves is defined as the infimum of the d(~,~’) over parametrized
representatives of the two curves. If v(¢) = (x(t),y(t)) is any parametrization of a
rectifiable curve then the functions z(t), y(t) are of bounded variation and hence are
differentiable for almost all ¢ € [0,1]. If these functions have no higher regularity
then the integral (6) has to be interpreted as a “Weierstrass integral”. Because of
the positive homogeneity of F', the value of this integral is independent of the choice
of parametrization. But any rectifiable curve can be reparametrized by arclength
(or by a constant multiple of arclength to arrange that the time interval be [0, 1]).
If this is done, then the functions x(t),y(t) are Lipschitz and so their derivatives
#(t),y(t) will be in Loo([0,1]). Then (6) can be interpreted as a Lebesgue integral.

Here is an outline of the proof of theorem 1. Since F' > « > 0 for some constant
a > 0, the functional satisfies J(v) > aL(y) where L denotes the length of the
rectifiable curve. Let p = inf cx J(y) > 0. Then one can restrict attention to the
set Ky of rectifiable curves from P to () whose length does not exceed A = (u+1)/a.
By a theorem of Hilbert, this set of curves is compact with respect to the metric
described above. The hypothesis F; > 0 can be used to show that J defines a lower
semicontinuous function on this space of curves. The existence of a minimizer
follows immediately.

The regularity of the minimizing curve, 4 € IC, is also addressed in the classical
literature. It is based on the locally minimizing properties of the classical solutions.
The following result is due to Weierstrass [2, sec.28e]:

Theorem 2. Under the hypotheses of theorem 1, there are constants 9,69 > 0 such
that any two points P,Q € R with |P — Q| < dp are joined by a unique classical
solution of length less than §. Moreover, this solution is the minimizer of J over
all rectifiable curves from P to QQ which remain in R, the d neighborhood of R.

This leads to the following result about the minimizer ¥ [2, ch.VII]:

Theorem 3. Let %(t),0 <t <1 be a minimizing rectifiable curve as in theorem 1.
Then 7 has no self-intersections. Moreover, if I C [0,1] is an open interval such
that 4(t) is in the interior of R for all t € I, then 7|1 is a C? solution of the
FEuler-Lagrange equations.

The positivity of F' rules out self-intersections since the part of the curve between
the intersections could be deleted to give a lower value of J. The proof of the second
statement uses theorem 2. Any two sufficiently near points on 4 which are in the
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interior of R will be connected by a unique minimizing classical solution curve in
the interior of R and this curve must agree with the segment of 4 between these
points since 7 is minimizing.

2.3. Application to the Restricted Three-Body Problem. To use this the-
orem for the restricted three-body problem, it is necessary to avoid the boundary
of the Hill’s region. Let U be the interior of H(h) and let R C U be a rectangular
region (see figure 4). Clearly F is C® and positively homogeneous with respect to
(u,v) on U x (R?\ 0) and (5) shows that F; > 0.

After a slight modification of the functional, the positivity condition F' > 0 will
hold provided the rectangle R is not too large. To see this, first choose constants
¢(R),C(R) such that

(7) 0 <ce(R) <V2(V(x,y) +h) < C(R)

for all (z,y) € R. So the first term of F is at least ¢(R)vVu? + v2. Next, let (o, )
denote the center of R and ki, ko the half-width and half-height, respectively. If
the second term in F', xv — yu, is replaced by (x — a)v — (y — B)u, then J(v) is only
changed by a constant, independent of v and the value of F is not affected. So
after a translation of coordinates, one may assume without loss of generality that
(o, B) = (0,0). Then since zv — yu = (z,y) - (v, —u), the Cauchy inequality gives

F(z,y,u,v) > (C(R) — Va2 + y2) Vu? + 02,

If the rectangle is chosen so that

(8) c(R) > \/ki+ k3

then the required condition F' > 0 will hold in R x (R?\ 0).
Using theorem 1 and theorem 3 for the case of the restricted three-body problem
gives:

Theorem 4. Let R be a rectangle in the interior of the Hill’s region H(h) such
that inequality (8) holds. Let P,Q € R and let IC be the set of rectifiable curves in
R from P to Q. Then there is a curve in KC, ¥(¢t),0 < t < 1, which minimizes J on
K. Moreover, on any open interval I C [0,1] such that %(t) is in the interior of R,
7(¢) is a classical solution of the restricted three-body problem.

3. EXISTENCE OF TRANSIT ORBITS

Fix a value of h and constants a, b so that Bj(a,b) is an isolating block. Theo-
rem 4 will be applied to a rectangle of the form R = [a,b] x [—c, ¢] with the points
P, Q) chosen on the left and right edges. Then any classical solution connecting P
and @ in R will be a transit orbit. By theorem 4, the minimizer 7(t) will be such a
solution provided it lies in the interior of the rectangle R (except for its endpoints
P and Q). To guarantee this, one needs to impose additional conditions on R.

3.1. Directional Convexity to the Flow. The constant ¢ > 0 will be chosen so
that the bottom edge of R is convex to the flow for solutions moving from left to
right while the top edge is convex for solutions moving from right to left. More
precisely, the required condition on the bottom edge is that for any solution with
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FIGURE 4. Rectangle convex to the flow for p = %, h = —1.8. The
left and right edges are taken from an isolating block; the top and
bottom are only directionally convex to the flow.

energy h such that a <z <b, y=—c, y =0 and & > 0, one has § < 0. Now since
=V, —2uand v =2 > 0, it suffices to check that the inequality

(9) Vi(z,y) < 4u® =8(V(x,y) + h)

holds along the bottom edge of R. A similar discussion for the top boundary leads
to the same inequality. The lemon-shaped region in figure 4 shows the part of
Hill’s region where the required inequality holds. A rectangle R satisfying all of the
required convexity conditions is also indicated.

The convexity conditions on the boundary of R will keep the minimizer from
intersecting three out of the four boundary segments, as the following lemma shows.

Lemma 1. Let R be chosen so that (8) holds and so that the left and right edges are
convezx to the flow and the bottom boundary is convex to the flow for orbits moving
left to right. If P and Q are chosen on the left and right edges, respectively, then
a miniming curve ¥(t) as in theorem 4 does not intersect the left, right or bottom
edges of R.

Proof. Consider, for example, the right edge E where = b. Suppose P; = (t1)
and Py = 7(t2), t1 < tg, are intersection points of the minimizing curve with E.
The convexity to the flow implies that if P, P, are sufficiently close, then they
are connected by a solution of the Euler-Lagrange equations which lies strictly to
the left of E. To see this, note that convexity to the flow is valid for nearby line
segments E' = {x = b’} with b — b’ sufficiently small. Now any pair of sufficiently
near points in R are connected by a small solution curve. If the solution connecting
the given points P, and P, did not lie strictly inside R, it would have to be tangent
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from the left side to some line segment E’, a contradiction. By theorem 2, these
small connecting curves give the minimum possible value of J for all curves in R
from P; to P> (in fact, even in Rs D R) and so they must agree with the curve
(), t1 <t < ts. Since 4 has no self-intersections, it follows that there are no other
intersection points of 4 and E between P; and P,. Hence the intersection of %
and F consists, at most, of isolated points. Now suppose Py = J(¢o) is an isolated
intersection with 0 < tg < 1. Let E’ denote a nearby vertical line segment = = b’
in R with & < b. If b — b is sufficiently small then 4 must contain two nearby
intersection points Py, Py with E’. But E’ is also convex to the flow, so the same
argument would imply that the minimizing curve must lie to the left of E’. Since
Py lies to the right of E’, this is a contradiction. It follows that 7(t),0 < ¢ < 1 has
no intersections with E at all. Similar arguments apply to the left edge.

Now let E denote the bottom edge. The convexity to the flow for left to right
solutions means that for any two sufficiently close points of that edge, the Euler-
Lagrange solution from the left one to the right one lies above E. Now if P, =
(t1), P2 = 7(t2), t1 < to, are intersections with the bottom edge, then P; must
lie to the left of P,. Otherwise, the curve segment J(t), 0 < t < ¢; would separate
the point P, from the endpoint @ forcing 4 to have self-intersections. As above, it
follows that the intersections of 4 with the bottom edge are isolated. But near any
isolated intersection one could find intersections Pj, Pj with a nearby horizontal line
segment and these would also have to be ordered from left to right. Since this nearby
line segment shares the convexity property, this would lead to a contradiction.
Hence there can be no intersections of 4 with £ and the proof is complete.  QED

A similar result holds for minimizers moving from right to left. If P is on the
right and @ on the left and if the top boundary is convex to the flow for right to
left solutions, then the minimizer from P to @) in R cannot intersect the left, right
or top edges.

Convexity conditions on the boundary, including directional convexity, have been
used in the calculus of variations for many years [11, 9, 1]. It is interesting that the
same conditions arise for topological reasons in the theory of isolating blocks.

3.2. An Existence Theorem for Transit Orbits. It only remains to keep the
minimizer §(¢) from intersecting the fourth edge of the rectangle R. Consider the
case where P is on the left edge and @ is on the right. Fixing the points P and @,
let v(P, Q) = infxc J(v) be the infimum of J on the set, K, of rectifiable curves from
P to @ in R and let vy(P, Q) = infic, J(7) be the infimum on the subset o C K of
curves with no self-intersections which meet the top of the rectangle. Clearly the
inequality

(10) v(P,Q) <w(P,Q)

suffices to show that a minimizer %(¢) in K does not intersect the top edge. Com-
bining this with theorem 4 and lemma 1 gives:

Theorem 5. Let R be chosen such that (8) holds, such that the left and right edges
are convex to the flow and such that the bottom boundary is convex to the flow
for orbits moving left to right. If P and Q) are chosen on the left and right edges,
respectively, and if (10) holds then there exists a transit orbit from P to Q in R.

Of course a similar result holds when P is on the right and @ is on the left.
Transit orbits in the other direction can also be obtained from symmetry. In fact,
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it is easy to see that if a classical solution is reflected through the z-axis and time
is reversed, another solution is obtained.

4. EXAMPLES

This section is devoted to demonstrating (with the aid of some numerical compu-
tations) the existence of transit orbits for two particular choices of the mass ratio,
1, and the energy, h. A rectangle R and points P, Q will be found which satisfy all
the hypotheses of theorem 5.

4.1. Equal Primaries. The simplest choice of mass ratio is yu = % Then the
Newtonian potential

V(x7 y) = ! + !
2/@+37+y? 2@ 12+
is an even function of both x and y. The Lagrange point L, is at the origin and the
critical energy level is H(0,0,0,0) = —V(0,0) = —2. When the energy is h = —1.8
the segments with = +0.1 determine an isolating block. The top and bottom
boundaries of the rectangle, y = +¢, must be chosen so that (9) holds. Since
Vy(x,0) = 0 it clearly holds for all ¢ sufficienly small, but in order to verify the
inequality (10) it is necessary to use a rectangle whose aspect ratio k/h is not too
small. The choice ¢ = 0.15 is simple and is close to the maximum possible based on
the numerical computation. So R = [—0.1,0.1] x [—0.15,0.15] will be used. This is
the shaded rectangle in figure 4.
The maximum and minimum of V' (z, y) occur at the points (£0.1,0) and (0, £0.15),

respectively. So the constants ¢(R) and C(R) are given by

¢(R) = v/2(V(0,0.15) — 1.8) > 0.503  C(R) = /2(V(0.1,0) — 1.8) < 0.76.

So inequality (8) becomes
0.503 > v/0.0325 ~ 0.181.

It only remains to verify (10). For this it is convenient to modify the functional
J(v) by changing the path of integration for the term zv — yu so that it includes
the given path v from P to @ but then follows the right, bottom and left edges of
the rectangle to complete a loop back to P. Since the added part of the path does
not depend on «, this just changes J by an additive constant. If J’ denotes this
new functional then

7'(7) = / V2V () Th) Vi T R dt — 2A(y)

where A(7y) > 0is the area below 7 in R (assuming the path has no self-intersections).
It will be shown that v/ < v} where v/, 1/ are the infima of J' on K, Ky.

Let ~,(t) be the straight line path from P to @ and let Ag(P,Q) be the area
below this path in R. Then

V/(PaQ) < J/(’yl) < C(R)|P - Q| - AO(Pv Q)

where |P — Q| denotes the Euclidean distance. For example, if P and @ are the
lower left and right corners of R then v/(P,Q) < 2C(R)h < 0.152. (This rather
crude estimate will suffice, but a more accurate value is v/(P, Q) ~ 0.109.)
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Ficure 5. Hill’s regions and Lagrange points for the planar re-
stricted three-body problems with p = 8%. The shaded region is
the Hill’s region for energy h = —1.587.

To estimate vo(P, @) from below, note that
J'(7) = e(R)L(7) — 8kik2

since 4k1ko gives the area of the whole rectangle. The minimum value of L(v) for
a path in Ky is the length of the path of a light ray from P to @ which bounces off
the top edge of R. This can be written as |P — Q'| where @’ is the reflection of @
through the top boundary line. Thus

(11) vo(P.Q) = e(R)|P = Q' — 8k k.
For example, if P and @ are the lower left and right corners of R then v{(P, Q) >
2¢(R)+\/k{ + 4k3 — 8k1k2 > 0.198. Thus, for the lower corners of the rectangle, one

has
V'(P,Q) < 0.152 < 0.198 < V(/)(P, Q)

and hence also v(P, Q) < vo(P, Q). By continuity of the functions used as bounds,
this inequality continues to hold for all points sufficiently close to the bottom of
the rectangle. Thus there exist transit orbits connecting any such pair of points.

4.2. The Lunar Case. Next let y = % which approximates the relative masses
of the earth and the moon. This time the Hill’s regions are not so symmetric (see
figure 5). There is a large lobe near the earth and a small lobe near the moon.
The Lagrange point Lo is now located at (Z,0) where Z ~ 0.836 and the critical
energy is h ~ —1.59507. It will be shown that transit orbits exist for the energy
h = —1.587.

Let R = [0.798,0.864] x [—0.039,0.039]. The boundaries are chosen so that the
convexity conditions are satisfied. Figure 6 shows the rectangle together with the
boundary curves of the regions where the convexity inequalities hold. The left
and right edges, * = a, b, must be chosen outside the kidney-shaped curve so that
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FIGURE 6. Rectangle convex to the flow for u = 57 h = —1.587.

Bp(a,b) is an isolating block. Evidently this is the case for [a,b] = [0.798,0.864].
The top and bottom edges must be chosen inside the other curve in the figure to
achieve the required directional convexity.

The maximum of V(x,y) on R is achieved at (0.798,0) and the minimum is
achieved on the top and bottom edges at a point whose position has been estimated
numerically. In this way one obtains numerical estimates

0.0992 < ¢(R) < 0.0993  C(R) > 0.174.

The half-width and half-height of R are k1 = 0.033 and ks = 0.039. Inequality (8)
holds (after translating coordinates to the center of the rectangle) since 0.0992 >
VK2 + k3 ~ 0.052.

Inequality (10) is more challenging this time and more careful estimates of the
actions will be needed. As for the previous case, let P, Q be the bottom corners of
the rectangle and replace the functional J by J’. Using the straightline path, one
finds

b
V(P,Q) < J' () = / V2(V (z,—0.039) — 1.587) da: < 0.0078

where numerical evaluation of the definite integral has been used to get the last
inequality.

On the other hand, the simple estimate (11) gives approximately 0.0065 which is
not good enough. The problem is that the minimum value ¢(R) gives too small an
estimate for \/2(V(z,y) + h). To get a better estimate, divide the rectangle into
three horizontal strips Ry = [a, b] x [-0.039, —0.02], Rz = [a, b] x [—0.02,0.02] and
Rs = [a,b] x [0.02,0.039]. On the middle strip the minimum of \/2(V (x,y) + h)

is numerically found to satisfy co > 0.12. Let J"(y) = fol flzy)/a2+ g2 dt —
8k1 ko, where f(x,y) has the constant value ¢(R) in rectangles Ry and R3 and ¢y
in rectangle Rs. Now the minimum of the integral in J”(v) over paths from P to
@ which meet the top of the rectangle is achieved along the path, 7, of a light
ray which reflects off the top edge but also obeys Snell’s law of refraction at the
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boundaries between the strips. It is not difficult to estimate this numerically. One
finds {(P, Q) > J"(v0) > 0.0083. This suffices to show that v/(P, Q) < vj(P, Q) as
required.

10.

11.

12.
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