Math 3118, section 3

Spring 2001

Constructing angle bisectors

  

I. The construction.

We're given the angle AOB

Step 1. Draw a circular arc centered at  O.

Step 2. Let  C  and  D  be the points where the arc intersects the sides of the angle.
Draw (sufficiently large circular arcs centered at  C  and  D respectively. Let  E  and  F  be the points where these two arcs intersect. Draw the line joining  E  and  F. (This line should go through the point  O.)

Step 3. We claim that the line  EF  is the bisector of the angle  >AOB.
  

II. Why does the construction work?

Step 1. CF = DF because the two circles have equal radii. So,  DCOF @ DDOF  by the  SSS property.

Step 2. DACD @ DBCD  by the SSS property. (Note that  CD  is congruent to itself.)

Step 3 (conclusion). COF @ DOF   because corresponding parts of congruent triangles are congruent. Equivalently,  AOF @ BOF.  This proves that  EF  is the bisector of  AOB.

  

Back to the HW suggestoins.

  

Back to the class homepage.