Math 3118, section 3

Spring 2001

Constructing perpendicular bisectors

  

I. The construction.


 

We're given the segment  AB

Step 1. Draw (sufficiently large) circular arcs (of equal radius) centered at  A  and  B  respectively.

Step 2. Let  C  and  D  be the points where the two arcs intersect.
Draw the line that connects  C  and  D. This line intersects the segment  AB  at the point  M.

Step 3. We claim that  (i)  M  is the midpoint of the segment  AB,  and  (ii)  the line  CD  is the perpendicular bisector of the segment  AB.
  

II. Why does it work?

Step 1. AC = BC because the two circles have equal radii. So, DACB is isosceles, and  ACB @ ABC

Step 2. DACD @ DBCD  by the SSS property. (Note that  CD  is congruent to itself.)

Since corresponding parts of congruent triangles are congruent,  ACD @ BCD.

Step 3. DACM @ DBCM   by the ASA postulate. (The point of steps 1 and 2 was just for checking the required angles for this step.) Since corresponding parts of congruent triangles are congruent,  AM = BM,  and  AMC @ BMC.  Since these two angles add to 180º, it follows that they are right angles.

Step 4 (conclusion). Since AM = BM,  we conclude that  M  is the midpoint of  AB.
Since AMC  and  BMC are right angles, the lines  CD  and  AB  are perpendicular.
Thus, we have constructed the perpendicular bisector.

  

Back to the HW suggestions.

  

Back to the class homepage.