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1. Heron's formula (Theorem 8 in §3.5).  Here is a proof that doesn't depend on the formulas from
Chapter 2. The starting point is the observation that there are two different ways to use the
Pythagorean Theorem to write a formula for  h2  in the following figure.

By definition,  F  is the foot of the altitude (perpendicular) drawn from  B  to  AC .  As usual,  a, b 
and  c  denote the lengths of the sides opposite the vertices  A, B,  and  C  respectively.  We define
 x  to be the distance from  C  to  F:  positive in case  F  is in the ray  CA   and negative if not.
(We would get a negative value if we had an obtuse angle at  C.)  Similarly,  b -x  is the distance
(with ± sign) from  A  to  F. 

      With this setup,  h2 = a2 - x2,  and also  h2 = c2 - (b - x)2 = c2 - b2 + 2bx - x2.  Setting these two
expressions equal, we obtain:
                a2 - x2 = c2 - b2 + 2bx - x2,
so that:

               2bx = a2 + b2 - c2,        and therefore       x = (a
2 + b2 - c2)/2b .

Substituting this into the equation  h2 = a2 - x2,  we obtain:

                h2 = a2 – ((a2 + b2 - c2)2
/4b2)  = (2a2b2 + 2a2c2 + 2b2c2 - a4 - b4 - c4)/4b2 .

This leads to a formula which is equivalent to formula (3.3) of the text:

                           ||∆ABC||2 = 1/4 b
2h2 = (2a2b2 + 2a2c2 + 2b2c2 - a4 - b4 - c4)/16 .
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    And exactly as in the text, the numerator can be factored.  One way to see that is to note that the
numerator, namely  -(c4 - 2(a2 + b2)c2 + (a4 - 2a2b2 + b4)),  is of 4th degree in  c  with only even
exponents and is thus a quadratic expression in  c2.  If we set it equal to zero and regard it as a
quadratic equation with  c2  as the unknown, then the quadratic formula produces the following
roots:

              c a b a b2 2 2 2 24= + ±( )  = (a2 ± 2ab + b2)

Therefore, we have the following factorization:
              -(c4 - 2(a2 + b2)c2 + (a4 - 2a2b2 + b4)) = -(c2 - (a + b)2)(c2 - (a - b)2).
Since the last terms are differences of squares, this leads to:
             -(c4 - 2(a2 + b2)c2 + (a4 - 2a2b2 + b4)) = -(c + (a + b))(c - (a + b))(c + (a - b))(c - (a - b)).
If the minus sign is absorbed into the second factor on the right, then we obtain a nearly final
result:

            ||∆ABC||2 = (a + b + c)(a + b - c)(a  + c - b)(b + c - a))/16

To get a more traditional version of the formula, we set  s = (a + b + c)/2  (sometimes called the

semi-perimeter)  and then observe that  s - a = (a + b + c)/2,  and so forth, thus leading to:

           ||∆ABC||2 = s(s - a)(s - b)(s - c),       or       ∆ABC s s a s b s c= − − −( )( )( )

  
2. §3.4: Another proof of Theorem 6.   Here, we'll use a figure very similar to the one used in the

proof of Heron's formula presented above.  Indeed, the only change is that we've labeled the

distance from  A  to  F  as  y  instead of  b - x,  since we'll actually want to find its value.
      As in the previous proof, we have two ways to calculate  h  namely  h2 = a2 - x2,  and also

h2 = c2 - y2.  Setting them equal to each other, we obtain the following equation:
                a2 - x2 = c2 - y2.
And here is our other equation:
                x + y = b.
Substituting  y = b - x  into the first equation, we have  a2 - x2 = c2 - b2 + 2bx - x2.  Thus:

               2bx = a2 + b2 - c2,       so that       x = (a
2 + b2 - c2)/2b .

By doing a similar calculation, or by setting  y = b - (a
2 + b2 - c2)/2b , we obtain:

                y = (b
2 + c2 - a2)/2b .

Now, what does this tell us about the barycentric coordinates of  F?  A preliminary guess might be
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that  F = (y/b,0,x/b)∆ = ((b2 + c2 - a2)/2b2,0, (a
2 + b2 - c2)/2b2)∆,  but this guess would be wrong!!

Well, at a minimum, it would be the "opposite" of what's predicted in Theorem 6.  To see why,
and to determine which choice really is correct, consider the actual barycentric coordinates
 F = (r,0,t) ∆.  In rectangular coordinates, this is  F = rA + tC.  So, to get the distance from  A,  we

calculate:
               F - A = (rA + tC) - A = (r - 1)A + tC = -tA + tC = t(C - A).
Thus, the signed(±) distance from  A  is  tb.  In other words, the distance from  A  to  F  is
associated with the 3rd barycentric coordinate.  And in a similar way the distance from  B  to  F  is
associated with the 1st barycentric coordinate.  Accordingly:

 F = ((a2 + b2 - c2)/2b2,0, (b
2 + c2 - a2)/2b2)∆, 

The results can summarized as in the following table.  (The calculation above gives the middle
row.)

Vertex opposite side Foot of altitude

A BC (0, (a
2 + b2 - c2)/2a2, (a

2 + c2 - b2)/2a2)∆

B AC ((a2 + b2 - c2)/2b2,0, (b
2 + c2 - a2)/2b2)∆

C AB ((a2 + c2 - b2)/2c2, (b
2 + c2 - a2)/2c2, 0)∆

3. §3.7: The barycentric coordinates of the incenter.  It appears that the proof of this was omitted
from the text.  The discussion that follows is based on the proof that was presented in class.  Thus,
we assume that the incenter is  I = (r,s,t)∆,  so that we need to find formulas for the barycentric

coordinates.  We denote the radius of the inscribed circle as  ρ  (rather than  r)  to avoid confusion

with the first barycentric coordinate.  Accordingly,  ρ  is the distance of  I  from each side of the

triangle.

  
      By Theorem 16 of Chapter 2,  the distance of  I = (r,s,t)∆  from  AC   is  hBs,  where  hB  is the

distance from  B  to  AC ,  i.e., the length of the altitude from  B  to  AC .  Thus, we have the
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equation  ρ = hBs.  {Literally applied, the theorem would require multiplying by  |s|  rather than  s, 

but  s > 0  because the incenter is at the intersection of the angle bisectors, and is thus in the
interior of the triangle.}  In a similar way, we obtain the equations   ρ = hAr  and  ρ = hCt.   If we

eliminate  ρ  from these three equations, we are left with the following two equations:

              hAr = hBs     and     hBs = hCt.
  
To get an equation that relates the altitudes to other known quantities, we can observe (for

instance) that we have the relation  ||∆ABC|| = hBb/2,  which gives  hB = 2||∆ABC||/b.  Using this,

along with similar equations that involve the other altitudes, we can transform our equations into:

              2r||∆ABC||/a = 2s||∆ABC||/b     and     2s||∆ABC||/b = 2t||∆ABC||/c,

or simply:

             r/a = s/b     and     s/b = t/c.

If we take these two equations, along with the standard equation  r + s + t = 1,  then we get a
system of linear equations that can be solved to yield the expected answer, namely:

               I
a

a b c

b

a b c

c

a b c
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+ + + + + +

, ,
∆

.

  

Incidentally, we also can combine this with the equations  ρ = hBs  and  hB = 2||∆ABC||/b  to derive

the formula  ρ =
+ +

2 ∆ABC

a b c
,  also given in the text as part of Theorem 16.

  
4. §3.10:  The inner product and the cosine.  In Chapter 1, we defined angular measure of an angle,

whose sides are rays with direction indicators  U  and  V,  to be equal to the integral  
ds

sU V 1 2

1

−
∫
,

, 

We also observed that this expression defines the integral as a strictly decreasing function of its
lower endpoint, and we decided to call this function the arccosine.  Thus, the arccosine turns out
to be a strictly decreasing function that maps the closed interval  [-1,1]  to the closed interval
 [0,π].  Since a strictly increasing function or a strictly decreasing function is a bijective mapping
from its domain to its range, it has an inverse function.  The inverse function of the arccosine
function is the cosine.  Thus, the cosine is a strictly decreasing function that maps the interval

 [0,π]  to the interval  [-1,1].  So, if  θ = 
ds

sU V 1 2

1

−
∫
,

 = arccos(〈U,V〉)  is the measure of our angle,

then we have  〈U,V〉 = cos(θ)  in the case where  U  and  V  are unit vectors.

More generally,   if  U  and  V  are direction indicators of the sides of an angle (but not necessarily
unit vectors), and if  θ  is the angular measure, then we have the following important identity:

             〈U,V〉 = ||U|| ||V|| cosθ,

which may be familiar from vector calculus courses.  To check it in our situation, we observe that
 U = aU0  and  V = bV0,  where  U0  and  V0  are unit vectors, and  a  and  b  are positive real
numbers.  (We want  U0  and  V0  to point in the same direction as  U  and  V  respectively.)  So,
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 ||U|| = a,  and   ||V|| = b,  while  〈U,V〉 = ab〈U0 ,V0〉.  Therefore, the identity  〈U,V〉 = ||U|| ||V|| cosθ 

follows from the previously known formula  〈U0 ,V0〉 = cos(θ).

  
5. §3.11:  The cosine function, the inner product, and right angle trigonometry.  Historically, the

most basic definition of the cosine of an angle was the quotient of adjacent side over hypotenuse
in a right triangle.  In our formulation, this is fairly immediate in the case where the unit vector

 (1,0)  is one of the sides of an angle.

To check this algebraically, we set  U = (1,0)  and  V = (v1,v2)  and then calculate: 
    〈U,V〉 = 〈(1,0),(v1,v2〉 = v1.  Thus,  (v1,0) = v1U = 〈U,V〉U  turns out to be at the base of the

perpendicular from the point  V  to the line  OU .  A negative value of  〈U,V〉  is interpreted as

meaning that the base of this perpendicular lies on the ray opposite to  OU . 
  

6. §3.11:  About the law of cosines.   As noted in the text, the proof of the "first version" of the Law
of Cosines uses Lemma 1 of Chapter 2.  Since that lemma isn't proved in the text, we'll first state
and prove a variant of that auxiliary result.
  
Lemma.   Let  A, B,  and  C  be points in  |R n.  Then:
                            ||A-B||2 = ||A-C||2 + ||B-C||2 - 2〈(A-C),(B-C)〉

  
Proof:   We recall that  ||A-B||2 = 〈(A-B),(A-B)〉  and then insert the "missing term", namely  C,  to

make  A-B  appear as a difference of differences.  More plainly, the idea is to write:
                            A-B = (A-C) - (B-C).
Using this, we calculate the inner product:
                            〈(A-B),(A-B)〉 = 〈(A-C) - (B-C), (A-C) - (B-C)〉

                                                   = 〈(A-C), (A-C)〉 - 〈(A-C),(B-C)〉 - 〈(B-C), (A-C)〉 + 〈(B-C),(B-C)〉. 

{Formally, we used the fact that the inner product is linear in each of the variables.  More

informally, we can view it as similar to expanding the binomial expression  (X-Y)2.}  Next, we can
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use the symmetry of the inner product:  〈U,V〉 = 〈V,U〉 to obtain: 

                           〈(A-B),(A-B)〉 = 〈(A-C), (A-C)〉 - 2〈(A-C),(B-C)〉 + 〈(B-C),(B-C)〉.

Finally, we replace each inner product  〈U,U〉  with the square of the corresponding norm to

obtain:
                           ||A-B||2 = ||A-C||2 + ||B-C||2 - 2〈(A-C),(B-C)〉,

thus proving the lemma.
      To apply this when we're thinking of  A, B,  and  C  as the vertices of a triangle in  |R 2,  we use

the letters  a, b,  and  c  to denote the lengths of  BC , AC ,  and  AB  respectively.  Thus:
_                          c =  AB  = ||A-B||,

and so forth.  If we make these substitutions we obtain the identity:
                           c2 = a2 + b2 - 2〈(A-C),(B-C)〉.

As a final step, we apply the identity  〈U,V〉 = ||U|| ||V|| cosθ  from the previous section, with

 U = A-C,  V = B-C,  and  θ = |∠ΑCB| = |∠C|  to obtain the following identity:

                           c2 = a2 + b2 - 2||A-C||·||B-C|| cos(C),
from which we deduce the law of cosines.
  
Law of Cosines (1st version).   Given  ∆ABC,  let  a BC= , b AC= ,  and  c AB= .  Then:

                           c2 = a2 + b2 - 2ab cos(C),
  

Just to check that our answer makes sense at least in a special case, note that if  |∠C| = π/2,  then

 cos( C) = 0,  and we recover the usual Pythagorean identity  c2 = a2 + b2 .
  
     Finally, we can transform our main identity algebraically to obtain the other version of the law
of cosines.

Law of Cosines (2nd version).   Given  ∆ABC,  let  a BC= , b AC= ,  and  c AB= .  Then:

                           cos(C) = 
a b c

ab

2 2 2

2
+ −

,

In particular, if  c2 < a2 + b2,  this gives a positive value of  cos(C),   corresponding to an acute
angle at  C.     On the other hand, if  c2 > a2 + b2,  the formula gives a negative value of  cos(C), 
corresponding to an obtuse (i.e., non-acute) angle at  C. 
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