
Study Guide for Exam 2 Math 2373 - Spring 2006

As always, the review sheets in workshop are a great way to review for the exam. They’re
written by the same person who writes the exam, so you can get a good feel for what will
be emphasized, and what the problems will look like. (Not surprisingly, they’re similar to
the problems in the lecture notes and homework.)

However, some of you won’t get those review sheets until Thursday, mere hours before
the exam. We’ll also review for the exam on Wednesday in class, but that’s not enough
time to go over everything. So for those of you who would like to start studying early, here
are some guidelines.

Instead of section-by-section, I’m organizing this by topic.
Update (Wednesday, 3/22): I’ve corrected a few minor typos. Also, just to make sure

you understand, reading through this guide will give you a good idea of what to expect,
but you won’t be prepared until you actually do some problems like those described here.
It’s a long test, so the more practice you can get, the better. If you’ve done lots of problems
you’re more likely to do the ones on the exam confidentaly and quickly.

Eigenvalues and Eigenvectors

First, you need to know the definition of eigenvalue and eigenvector. If you can find a
number λ and a vector x such that

Bx = λx

then λ is an eigenvalue of B, and x is an eigenvector of B associated to λ.
Given a 2× 2 or 3× 3 matrix B, you need to be able to find its eigenvalues. The lecture

notes show you one way to set up the equations; in class I showed you another way to get
the same thing. In either case, you need to evaluate a determinant:

det (B − λI)

The result of this determinant is a polynomial. Its roots are the eigenvalues of B. In the
2 × 2 case, you’ll either have two real eigenvalues, or a pair of complex eigenvalues which
are conjugates of each other. In the 3× 3 case, you’ll either have three real eigenvalues, or
one real eigenvalue and a pair of complex ones. On the exam it should always be the case
that the eigenvalues are either integers or, in the complex case, expressible using integers.
(In other words, 3 + 4i is a possible eigenvalue for a matrix on the exam; 1

2 + 3
7 i is not.)

If you’re given an eigenvalue, or if you’ve already found one, you need to be able to find
its associated eigenvectors. First write out the matrix equation:

B

(
x
y

)
= λ

(
x
y

)
or B

 x
y
z

 = λ

 x
y
z


Once you’ve written out the matrix B, this gives you a system of linear equations. By
design this system is dependent – in other words, it should have infinitely many solutions.
(This is because every eigenvalue has infinitely many corresponding eigenvectors.) That
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means there are certain tricks you can use to speed up the solution of the system; see your
lecture notes for some of these.

In the 3× 3 case, we’ll make two concessions to make your life easier.

(1) You’ll always have a zero somewhere in the matrix. Use it wisely to speed up the
computation of the eigenvalues and eigenvectors. (Having a zero makes it faster
to compute a determinant, as long as you expand along the row or column which
contains the zero; there’s also a trick we discussed in class to speed up solving the
equations to find an eigenvector. You can find that trick in the “Three Complex
Eigenvalues” section.)

(2) If you’re asked to find the eigenvalues, either λ = 0 will be an eigenvalue, or you’ll
be told one of them in advance. (This may not seem like a concession, but it makes
life easier, because otherwise you’d have to find all three roots of a cubic polynomial
from scratch.)

Remember that, if you have a complex eigenvalue, you should expect the eigenvectors to
have complex numbers. (And the “parameter” you use to solve the system of equations can
now be any complex number.) The process of solving a system of equations with complex
numbers is no different than solving a system with real numbers, but it takes some time to
get comfortable working with complex numbers. Make sure you’ve done enough of these
problems so that you don’t panic at the sight of complex numbers.

Although it’s awkward to work with complex numbers, it can save us some work in
the end: complex eigenvalues come in conjugate pairs, and so do their corresponding
eigenvectors. In other words, if 2 + 3i is an eigenvalue with eigenvectors

s

(
10− 5i
−1 + 6i

)
, s ∈ C,

then 2− 3i is also an eigenvalue, and its eigenvectors are

s

(
10 + 5i
−1− 6i

)
, s ∈ C

Second Order Linear Differential Equations

The bulk of our time since the last exam has been spent on Second Order Linear Differ-
ential Equations, so there’s a lot to keep track of here. For me it helps to think of this as
a progression, from easier equations to harder ones.

Constant Coefficients, Homogeneous. These are the equations

ay′′ + by′ + cy = 0

We always start by assuming that y = emt is a solution; plugging that into the equation
gives

emt(am2 + bm + c) = 0
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In other words, y = emt is a solution as long as am2+bm+c = 0. This is called the auxiliary
equation, and because it’s quadratic, there are generally two values of m that work.1 To
find the general solution to this equation we take all combinations of the resulting solutions:

Two distinct real roots (b2 − 4ac > 0): For example, suppose m = 2, 3. Then y =
e2t and y = e3t are solutions, and the general solution is

y = C1e
2t + C2e

3t

Two conjugate complex roots (b2 − 4ac < 0): For example, suppose m = 2± 3i.
Then y = e(2+3it and y = e(2−3i)t are solutions, but we showed in class that we can
transform these to the “nicer” solutions y = e2t cos 3t and y = e2t sin 3t. Normally
we skip straight to those nicer solutions. The general solution is

y = C1e
2t cos 3t + C2e

2t sin 3t

= e2t(C1 cos 3t + C2 sin 3t)

Special terms. When an equation like this describes the motion of a spring (or voltage
in an LRC circuit), then the case with two complex roots is called underdamped. If you
have two distinct real roots, the system is overdamped. The special case in between, where
b2 − 4ac = 0, is called critically damped.

Constant Coefficients, Nonhomogenous. These are the equations

ay′′ + by′ + cy = f(t)

The equation ay′′+by′+cy = 0 is called the associated homogenous equation. If the general
solution to the associated equation is ym(t), then the general solution to the nonhomogenous
equation is

y(t) = ym(t) + yp(t)

where yp(t) is some particular solution to the nonhomogeneous equation. We generally find
yp(t) by guessing what it looks like, based on f(t). For example,

f(t) = e2t: We’d guess yp(t) = Ae2t.
f(t) = t2: We’d guess yp(t) = At2 + Bt + C.
f(t) = 49 sin 4t: We’d guess yp(t) = A cos 4t + B sin 4t.
f(t) = e5t5 sin 4t: We’d guess yp(t) = e5t(A cos 4t + B sin 4t).

This isn’t a comprehensive list of possible f(t)’s and corresponding guesses. See your
lecture notes for more. Once you’ve made your guess, you need to take its first and second
derivatives, plug them into the nonhomogeneous differential equation, collect like terms
(this can be a lot of work) and solve for A, B, or whatever other constants you have.

1The case where b2− 4ac = 0, so we have one repeated real root, is special; see the lecture notes for how
to deal with that.
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Special terms. When an equation like this describes the motion of a spring (or voltage in
an LRC circuit), then the general solution of the associated homogenous equation is called
the transient solution. (It’s transient because there will be a term like e−t out front, which
approaches zero as t grows larger, so this whole term approaches zero.) The particular
solution yp(t) is called the steady state solution, because it does not degrade over time.

Non-constant Coefficients, Nonhomogenous. These are the equations

a(t)y′′ + b(t)y′ + c(t)y = f(t)

These are the toughest and longest problems we’ve had to deal with, and you should be
prepared to do one on the exam. They’re so hard that you can’t even start unless you’re
already given a solution y1(t) to the associated homogeneous equation a(t)y′′ + b(t)y′ +
c(t)y = 0. Then you guess that the general solution to the nonhomogeneous equation will
look like y = y1u, where u is some function which will have two constants, C1 and C2.

First you have to calculate y′ = (y1u)′ and y′′ = (y1u)′′ and plug them into the equation
above. If all goes well. you should have a new equation which looks like this:

d(t)u′′ + e(t)u′ = g(t)

Aha! If we make the substitution w = u′,

d(t)w′ + e(t)w = g(t)

then this is a First Order Linear Differential Equation, which we learned to solve at the
beginning of the year using an integrating factor. So go ahead and solve for w. This will
give you some solution involving a constant, which you can call C1.

Once you have w, you need to go back and find u. Since u′ = w, it follows that u =
∫

w dt.
Evaluating that integral gives you another constant, which you can call C2.

You’re on the home stretch now. You want to solve for y = y1u. Now that you have u,
you can calculate the general solution y, and you’re finally done!

Other Topics

Boundary Value Problems. This is really just a variant of the Second Order Linear
Differential Equations above. The difference is that, unlike an initial value problem where
you’re given values of y(0) and y′(0), in a boundary value problem you’re given two values
of the function at either end (i.e. the boundary) of an interval—say, y(0) and y(4). You
aren’t given any values of the derivative y′.

Boundary value problems might have no solution, one unique solution, or infinitely many
solutions. (How can you have infinitely many? In workshop, you had a problem where the
two boundary values implied that C1 = 0, but there was no restriction on the value of C2.)

In workshop, the biggest difficulty I noticed with these problems was sloppiness in plug-
ging in values of t. I’ve been guilty of this myself. For example, if

y = C1 cos 2t + C2 sin 2t

and you want to use the boundary condition y(π/2) = 0, then you need to evaluate the
sine and cosine functions at π, not π/2.
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Autonomous Differential Equations and Phase Lines. These are the differential
equations of the form dy/dt = f(y), with no t’s on the right hand side. In this class we’re
only concerned with autonomous differential equations of the type

dy

dt
= A(y −B)(y −D)

The “equilibrium solutions” to this equation are y = B and y = D. To see why, look at the
equation; if y = B, for example, then dy/dt is always 0; in other words, y never changes.
It’s fixed at B, which is therefore an equilibrium value. The same reasoning works for
y = D.

If y 6= B,D then we can solve this differential equation by separating the variables and
using partial fractions:

1
(y −B)(y −D)

dy = Ady

This solution is generally a fraction where the top and bottom have a constant term and
an exponential term.

We first covered equations like this back in the Logistic Growth section for Exam 1.
This time around we were a little more careful about the solutions. In addition to the
equilibrium solutions, you need to watch out for things like this: in the book the solution
of y′ = −(y + 2)(y − 10), y(0) = −8 is found to be

y =
10e12t + 6
e12t − 3

Because we’re given the initial value of y when t = 0, we can assume that’s the starting
point for t. Notice that the solution becomes undefined once e12t − 3 = 0, or when t =
(ln 3)/12 (which is about 0.179). So this solution is only true for values of t in the interval
[0, (ln 3)/12].

On the other hand, if this were the solution resulting from an initial value for y(10),
then the solution would always be true as t → ∞, because the denominator would never
equal zero.

We also talked about phase lines with respect to autonomous equations. The basic idea
is that you draw the y-axis, and make marks at the equilibrium solutions. Because these
are the only places where y′ = 0, they are the only places where y′ can change from positive
to negative. Now that you’ve split up the y-axis into three intervals, take a y value from
each interval and plug it into your equation for y′. Make a mark in each interval to indicate
if the derivative is positive or negative there. This is a quick way to see what happens for
a given initial value of y, without figuring out the actual solution y(t). For certain initial
values, y(t) increases, either to an equilibrium or to (positive) infinity. For other values,
y(t) decreases to an equilibrium or to (negative) infinity.

If arrows on either side of an equilibrium solution point towards that number, then that
equilibrium is stable. If the arrows on either side point away from the equilibrium, its
unstable.
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Phase Angle Form. Given an expression such as

D cos wt + E sinwt

you need to be able to transform it into the form A sin (wt + d) or A cos (wt + d). There
are examples of both kinds of transformations in the lectures notes. Double check this
with me, but I believe you’ll be given the formulas for sin (x + y), sin (x− y), cos (x + y)
and cos (x− y). Once you’ve transformed the function, you should be able to find the
amplitude (it’s A) and the period (which is 2π/w). To graph it you also need to be able
to figure out the shift in the sine or cosine wave; it’s d/w, and the direction of the shift
depends on the sign of that quotient. Ask us if you need help remembering how these
function transformations go.

Jonathan Rogness <rogness@math.umn.edu> April 26, 2006
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