MATH 3283W: The Completeness Axiom

Bryan Mosher mosher@umn.edu

October 23, 2013

How is \mathbb{R} different from \mathbb{Q} ?

We want to make precise the idea that " $\mathbb R$ has no holes", a property that $\mathbb Q$ does not enjoy.

Plan:

- 1. Review the definition of *supremum*.
- 2. Work with the concept of supremum in examples.
- 3. State the Completeness Axiom.
- 4. Prove the Archimedean property.
- Write down some useful reformulations of the Archimedean property.

Definition of supremum

Definition

Let S be a nonempty subset of \mathbb{R} . If S is bounded above, then we say that m is a *supremum* of S, and write $m = \sup S$, if:

- 1. $\forall s \in S, s \leq m$.
- 2. If m' < m, then $\exists s' \in S \ni m' < s'$.

- Rewrite part 2 as contrapositive.
- ▶ Why are we entitled to say "*m* is **the** supremum of *S*", if it exists?
- ▶ Define *infimum* similarly. We say $I = \inf S$ if . . .

Finding suprema and infima and justifying

Example

Let

$$S = \left\{ \frac{n-1}{n+1} : n \in \mathbb{N} \right\}.$$

Find $\sup S$ and $\inf S$.

The Completeness Axiom

The Completeness Axiom

Every nonempty subset S of \mathbb{R} that is bounded above has a supremum (in \mathbb{R}).

- ▶ This is a statement about the real numbers that we accept as true.
- ▶ The hypothesis "nonempty" is necessary. Why?
- ▶ The Completeness Axiom is not a property that ℚ enjoys.

The Archimedean Property

Theorem

(Archimedean Property) The set \mathbb{N} of natural numbers is unbounded above in \mathbb{R} .

- ▶ N is unbounded above in R?! Of course it is!
- Prove using the Completeness Axiom.

Equivalent forms of the Archimedean Property

Theorem

The following statements are equivalent:

- 1. (Archimedean property) \mathbb{N} is unbounded above in \mathbb{R} .
- 2. $\forall z \in \mathbb{R}, \exists n \in \mathbb{N} \ni n > z$.
- 3. $\forall x > 0, \forall y \in \mathbb{R}, \exists n \in \mathbb{N} \ni nx > y$.
- $4. \ \forall x > 0, \exists n \in \mathbb{N} \ni 0 < 1/n < x.$

- First let us visualize the meaning of each statement:
 - ▶ 3 = Tiny steps
 - 4 = Capture the flag
- ▶ Then, prove $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 1$. (With 4 implications, we actually prove 12.)