The following problems will be relevant for your writing quiz on Thursday, 10/27/16.

Skill / Computational Problems. These problems are not handed in or graded, and do not involve enough writing to be the basis of a writing quiz, but are a good way to check that you understand the concepts used in the writing problems.

- (1) Do the True / False problems at the beginning of the 2.4 exercises.
- (2) Find a specific bijection between (0,1) and [0,1) to show the sets are equinumerous. Explain why your function is a bijection.
- (3) Let  $\mathscr{P}(S)$  be the power set of S. Determine whether each of the following is True of False. Explain your answers.
  - (a) For every set  $S, \emptyset \subseteq \mathscr{P}(S)$ .
  - (b) For every set  $S, \emptyset \in \mathscr{P}(S)$ .
  - (c)  $\{2\} \subseteq \mathscr{P}(\{2,3\})$
  - (d)  $\{2\} \in \mathscr{P}(\{2,3\})$
  - (e)  $\{\{2\}\} \subseteq \mathscr{P}(\{2,3\})$

Writing Problems. Your writing quiz on Thursday will be based on the problems below. A problem on the quiz could appear exactly as stated in the book, or it could be a slightly modified version of a problem below.

- (4) Prove: if S is denumerable, it is equinumerous with a proper subset of itself.
- (5) Prove: every infinite subset has a denumerable subset.
- (6) Prove  $\mathbb{N} \times \mathbb{N}$  is countable. (Hint: you could use an argument similar to what we used for  $\mathbb{Q}^+$ . Alternatively, Theorem 2.4.10 could be useful.)
- (7) If A and B are countable, prove  $A \times B$  is countable. (Hint: again, Theorem 2.4.10 could be useful!)

Notice that exercises with a star have answers or hints in the back of the book. If those problems are assigned, use the back of the book to check your work. If a similar problem is assigned, you can do the starred problem to check whether you understand the concepts.

Jonathan Rogness <rogness@umn.edu>