
Math 5251: Error Correcting Codes & Finite Fields: Final Exam

Due by noon on Thursday, 12/21/2006 in my mailbox in Vincent 107, in the “Visiting Faculty” section.
My mailbox was moved during the semester (don’t ask...) so you might have to search for it.

Directions. This is an open book, open notes, open library, open Internet exam, but you may not collab-
orate with others; I am the only person you are allowed to consult. Standard academic rules apply; if you
use something from a source other than our textbook or lectures, you must cite it or risk losing credit. You
are expected to write your own solutions, so under no circumstances would it be acceptable, say, to copy a
large chunk of text from a web page as (any part of) your solution. Having gotten all of that legelese out,
you’re all trustworthy and none of this should be an issue.

Also remember my warning in class: there are a number of excellent coding theory websites, but some of
them (including Wikipedia) include things that are only true with different definitions than ours, or even
downright false. In the case of competing definitions, go with our textbook. Note that nothing on this exam
requires any external source, so you can avoid the Internet and this issue entirely if you wish.

The guidelines for homework problems apply on this exam. Answers to problems should include any com-
putations necessary to get the final answer. To receive full credit, you must also explain what you’ve done
and why you did it. You should write in complete sentences with (reasonably) correct grammar.

(1) (15 Points) Determine whether or not there exists an instantanous code with the following alphabets
and codeword lengths. For any code that exists, exhibit one. For each code that cannot exist, explain
why.
(a) Σ = {0, 1}, lengths 1, 2, 3, 4, 4, 5
(b) Σ = {0, 1, 2}, lengths 1, 1, 2, 2, 3, 3, 3
(c) Σ = {0, 1, 2, 3}, lengths 1, 1, 2, 2, 4

(2) (10 Points) Construct a binary code with at least 8 codewords which is uniquely decipherable but
not instantaneous. Explain why it satisfies these conditions.1

(3) (15 Points) Consider a memoryless source which emits the letters {A,B, C, D, E, F} with probabil-
ities {0.1, 0.2, 0.3, 0.1, 0.2, 0.1}, respectively.
(a) Compute the entropy of this source.
(b) Construct a binary Huffman code for this source; make sure that your code satisfies the bound

in the Noiseless Coding Theorem.

(4) (20 Points) Consider the following matrix, whose rowspace is a linear [n, k] code C over F2.

G =

 1 1 1 1 0 0 0
0 0 1 1 0 1 1
0 1 0 1 1 0 1


(a) Determine n and k.
(b) Find a generating matrix in standard form for C, and determine the encoding of a sourceword

abc ∈ F3
2.

(c) Find a check matrix for C and determine the minimum distance of the code. Find e, the number
of errors the code can correct.

(d) Compute a syndrome lookup table for use in decoding, under the assumption that up to e errors
might occur during transmission.

1In practice we’re not interested in a code like this, but after the confusion on the first exam I promised this issue would
return on the Final. See the solutions to Exam 1 for more.

1



(5) (15 Points) Given two codes C and D, there are many ways to combine them into a third code E.
One fairly simple method is to define a set of codewords

{cd | c ∈ C, d ∈ D}
where cd just means concatenation: write down a codeword from C followed by a codeword from d.
In this problem we’ll use the notation C + D for this construction.
(a) If C1 and C2 have minimum distances d1 and d2, respectively, find the minimum distance of

the code C1 + C2.
(b) If C1 and C2 are [n1, k1] and [n2, k2] linear codes over Fq, respectively, find the parameters [n, k]

for the code C1 + C2. Given generating and check matrices for C1 and C2, how would you
construct a generating matrix and check matrix for C1 + C2?

(6) (5 Points) Prove that any binary Hamming Code (as described in Chapter 17) is perfect.

(7) (20 Points) Suppose NASA sends a spacecraft to Saturn to take high-quality pictures of its rings
in full 24-bit color. (That means each pixel in the picture could be any of 224 = 16, 777, 216 col-
ors.) They anticipate a lot of transmission errors between Saturn and the Earth. Construct a Reed
Solomon code with at least 224 codewords which can correct 5 errors in a codeword.

To “construct” the code you should find a polynomial g(x) in factored form which generates the
appropriate code, find the parameters [n, k] of your code, and write down the generating matrix. Your
matrix might be large, but should still fit on a piece of paper! I’ll post a list of primitive roots on the
course website if it helps you. You may use Mathematica or Maple to multiply out your generating
polynomial if you wish. In Mathematica, for example, you could compute (x − a) · · · (x − z) mod n
with the command

PolynomialMod[(x − a) · · · (x − z), n]

Stop by my office or email me if you need help.

An aside, not worth any points: I mentioned once in class that there are ways to deal with
large burst errors. Here is one method. Suppose the spacecraft takes a digital photograph with
1000 rows and 1000 columns for a total of 10002 = 1 million pixels. The easiest way to transmit
the picture back to earth is to use your codewords to send it pixel by pixel: the first thousand
transmitted codewords represent the first row, the second thousand represent the second row, and
so on, until 1 million words have been sent. However, if an asteroid gets in the way, we could lose
thousands of pixels.

As an alternative, suppose we send the first digits of all 1 million pixels; then send the second
digits of all 1 million pixels, and so on. None of our codewords are complete until the last digits are
sent, at which point we can reassemble everything. (As a short example, suppose I want to send the
codewords 147, 258 and 369 to you; with this new method I would send 1, 2, 3, 4, 5, 6, 7, 8, 9; until
you get the 7, 8 and 9, you don’t know what any of your received codewords will be.)

This “shuffling” of the codeword digits might seem bizarre, but with this method we can now
theoretically correct 5 million errors! If we have a 5 million digit burst error, this transmission
method will spread them out so that each of the million pixels has 5 errors, which your code can
correct. Cool! Food for thought: why is this method more appropriate for things like satellite
transmissions than for cell phones or computer networks?

Jonathan Rogness <rogness@math.umn.edu> December 17, 2006
2

mailto:rogness@math.umn.edu

	Directions

