
Math 5335: Geometry Fall 2015 Homework 4 Solutions

The following is a non-comprehensive list of solutions to homework problems. In some cases I may give an answer

with just a few words of explanation. On other problems the stated solution may be complete. As always, feel free to

ask if you are unsure of the appropriate level of details to include in your own work.

Please let me know if you spot any typos and I’ll update things as soon as possible.

3.57: Following the hint from the email I sent out, define the following functions:

M1(X) = Reflection across x2 = 4

T1(X) = Translation by (−5, 0)

M2(X) = Reflection across x2 = −4

T2(X) = Translation by (5, 0)

Then the two glide reflections are G1(X) =M1◦T1(X) = T1◦M1(X) and G2(X) =M2◦T2(X) = T2◦M2(X).

(Make sure you realize why I can write the compositions within each glide reflection in either order; talk to

me if you have questions.) The other important observation from the email is that T1 and T2 are inverses of

each other, so I can write out the composition of the glide reflections in a way that makes them cancel:

(M1 ◦ T1) ◦ (T2 ◦M2) (X) =M1 ◦ (T1 ◦ T2) ◦M2(X)

=M1 ◦M2(X)

So the overall effect of composing these glide reflections is the same as reflection across x2 = −4 followed

by reflection across x2 = 4. Those lines are parallel, so we know that’s a translation, by twice the vector from

the first line to the second. Hence the final answer is the translation

X → X + 2

[
0

8

]
= X +

[
0

16

]

4.2, 4.3: The solution to 4.2 is

(1, 2,−2)4 = 1 · (3,−2) + 2(4,−2)− 2(4,−6) = (3, 6)

For 4.3 we have to set up a system of equations. As discussed in class and email, if you setup the correct

system, there’s no need in this 5000 level math course to show all of the work to find the solution to that

system. Remember to include r + s+ t = 1 in each system! For (0, 0) we have:

3r + 4s+ 4t = 0

−2r − 2s− 6t = 0

r + s+ t = 1

which has solution (r, s, t) = (4,−5/2,−1/2), meaning (0, 0) = (4,−5/2,−1/2)4. With the other system, we

find that (4, 5) = (0, 11/4,−7/4)4.
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5.4: The triangles for which the orthocenter is also a vertex are right triangles. For full credit you should explain

both direction: why the orthocenter of a right triangle is a vertex, and why that’s not the case for other

triangles. (Another way to state the second part is to show that if the orthocenter is a vertex, then it can

only be a right triangle. Alternatively, it’s possible that your explanation for why the orthocenter of a right

triangle is a vertex is actually an if-and-only-if proof.)

Start with a right triangle 4ABC with right angle at C. Then
←→
AC is the altitude from A, and

←→
BC is the

altitude from B. (Draw a picture and convince yourself of this!) Since two altitudes intersect at C, all three

will intersect there, and C is the orthocenter.

Conversely, suppose one of the vertices – let’s say C – is the orthocenter of a triangle. Then the altitude

from A goes through C, which means the altitude actually is AC, and by definition of altitude, AC ⊥ BC. If

those two sides are perpendicular, it’s a right triangle.

5.6: You could do this geometrically or with barycentric coordinates; as discussed via email, I think barycentric

coordinates is easier. If 4ABC is equilateral, then a = b = c, so the incenter (by Proposition 5.19) is

(
a

a+ b+ c
,

b

a+ b+ c
,

c

a+ b+ c

)4

=

(
a

a+ a+ a
,

a

a+ a+ a
,

a

a+ a+ a

)4

=

(
1

3
,

1

3
,

1

3

)4

,

which is the centroid. Conversely, suppose the centroid and incenter are equal:

(
a

a+ b+ c
,

b

a+ b+ c
,

a

a+ b+ c

)4

=

(
1

3
,

1

3
,

1

3

)4

Equating the parts of the barycentric coordinates (and multiplying by 3) gives three equations:

3a = a+ b+ c

3b = a+ b+ c

3c = a+ b+ c

You can check that this system of equations is satifsfied if and only if a = b = c, so that the triangle is

equilateral.

5.13: I mentioned in office hours and via email that you should show more work than a GeoGebra picture for

this problem, but don’t have to write out systems of equations and their solutions—once you demonstrate

that you know the equations of perpendicular bisectors, altitudes, or whatever, then you can use a calculator,

wolfram alpha, or another tool (even GeoGebra!) to find their intersections. I’ve included a GeoGebra picture

below for you to check your answers. I’ve labeled the vertices of the triangle A, B and C. The blue dashed

lines are the altitudes, with feet D, E and F and orthocenter H. The red dotted lines are the perpendicular

bisectors with circumcenter J . The circumradius is the distance from J to any of the vertices. (They’re all

the same distance from J ; that’s the whole point!)

||J −A|| =
√

(5/2− 0)2 + (13/2− 0)2 =
√

97/2

The Euler line is the dark black line through H, J and the centroid G. You can use techniques from

Chapter 1 to write down an equation of it – for example,

aH + bG = a(−4, 9) + b(1/3,−4/3), a+ b = 1
2



5.20: It’s possible to set up huge systems of equations with the barycentric coordinates of the incenter and

orthocenter for this problem, and show they’re equal if and only if a = b = c, but that would be... messy.

I mentioned via email that a geometric approach seems simplest to me for this problem. If you had trouble

solving this, use the diagram below (draw a fresh copy for each direction!) and fill in the details as you read

through the proof. The letters a, b, c, α, β, and γ have their normal meanings for triangle 4ABC.

The crucial observation, as mentioned in my email, is that the incenter and orthocenter are equal if and

only if each angle bisector is also an altitude.

Suppose 4ABC is equilateral. We need to show an angle bisector is also an altitude, so draw the bisector

of ∠BAC, and label its intersection with BC as point D. We have 4BAD ∼= 4CAD by SAS: BA ∼= CA,

∠BAD ∼= ∠CAD, and both triangles share the side AD. By CPCTC, angles ∠ADB and ∠ADC are congruent

and add to π. Hence they are right angles, and AD is an altitude. We could repeat the same work for the

other angle bisectors and altitudes in the triangle.

Conversely, suppose we know the angle bisectors are also altitudes, so starting with a fresh copy of our

diagram above, the line AD is an angle bisector and an altitude. This time the triangles 4ADB and 4ADC
are congruent by ASA, and CPCTC tells us AB ∼= AC. If we repeated this with the angle bisector and altitude

from C, we’d get AC ∼= BC. Hence

AB ∼= AC ∼= BC

and the triangle is equilateral.

Jonathan Rogness <rogness@math.umn.edu> November 12, 2015
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