In Chapter 7 we learned about the centroid, orthocenter, incenter and circumcenter of a triangle, which you might also remember from previous geometry classes. It turns out these aren't the only "centers" and other points that you can construct from a triangle. There are lots of them. Lots of them. This MathWorld page lists twenty such points, but this Encyclopedia of Triangle Centers lists over 24,000. The vast majority of have no specific applications or uses, and are unknown to all but a handful of people.

There are very cool and surprising relationships between some of these points. Sometimes they're evidence of deep, dark, and mysterious connections between various concepts. In other cases, well... it might just be a coincidence. Spend enough time looking at 24,000+ points and eventually you'll find something surprising, but that doesn't mean you've unlocked some fundamental concept of geometry that has gone unnoticed for thousands of years. (But if it turns out you have, you can give me a shout-out in your acceptance speeches when you win major awards.)

In this lab you'll explore a relationship involving the midpoints of the sides of $\triangle ABC$ and its altitudes, and construct the so-called *Nine-Point Circle* of the triangle, sometimes called the *Feuerbach Circle*. (And, of course, sometimes called the *Euler Circle*.¹)

GeoGebra Construction

- (1) Open a new GeoGebra window. Go to the View menu and turn off the axes, so the drawing pad is blank. I'd also recommend going to the Options menu, choose Labeling, and make sure "New Points Only" is selected to avoid having GeoGebra display a label for every single line segment you create. In some versions of GeoGebra you might find this under Settings or Global Settings.
- (2) Choose the *Polygon* tool (it looks like a triangle) and click three times (and once more at your first point) to create $\triangle ABC$. Make sure each vertex angle is acute, i.e. less than $90^{\circ} = \pi/2$.
- (3) Use the *Midpoint* tool to add D, E and F, the midpoints of the sides opposite your vertices. You could also do this with the Input field: enter D = Midpoint[A,B], and so on.
- (4) Use the *Perpendicular Line* tool to select a vertex and the opposite side. Repeat for the other vertices; these are called *altitudes* of the triangle. You want to find the *feet* of the altitudes, e.g. where the altitude through A intersects the line BC. You can do this with the *Intersection* tool, or commands in the Input Field:

```
K = Intersect[d, Line[B,C]]
L = Intersect[e, Line[A,C]]
```

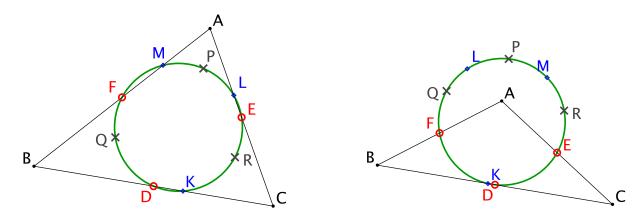
M = Intersect[f, Line[A,B]]

If you use the intersection tool, make sure to rename the points to match those in the commands here.

¹I haven't gone back to verify this from the original sources, but according to the usual story, Feuerbach proved that one circle goes through six of the points described below, and Euler came along a few years later and showed the same circle passes through the other three points. Normally, we'd say "Euler proved something cool about Feuerbach's Circle." Objects are named by (or in honor of) the people who first discovered them. If I figured out something new about the Platonic Solids, they wouldn't be renamed the "Rogness Solids," for example. But Euler is so omnipresent in mathematics that his name has a way of getting attached to everything.

To be fair, I've also seen the story told the other way: that *Euler* discovered the six-point-circle, and Feuerbach proved it passes through the other three points. So perhaps history got it correct. If nothing else, be sure to take every mathematical urban legend with a grain of salt!

- (5) Use the *Intersect* tool to find the intersection of any two (and hence all three) altitudes. This is called the orthocenter of $\triangle ABC$. Rename it H.
- (6) Use the *Midpoint* tool to find the midpoints of the segments from the vertices to the orthocenter. Rename them P, Q and R, where P = (A + H)/2, Q = (B + H)/2, and R = (C + H)/2.
- (7) Use the *Circle* tool to create a circle which goes through the midpoints of the sides of the triangles. (Alternatively, type Circle[D,E,F] in the Input field.
- (8) Click and drag the vertices of your triangle to make sure the circle goes through *nine* (!) of the points you just constructed: the midpoints of the sides, the feet of the altitudes, and the midpoints between the vertices and the orthocenter. If your circle does not go through these points, or if some of the points disappear when you move vertices around, look through your previous work for a mistake.



To receive credit for this assignment, save your file as lastname-5335-lab4.ggb and email it to me as an attachment by the beginning of class on Wednesday, 11/7/18. I'll use the following grading rubric out of 5 points:

- If I can: open your file; can see the nine-point circle; it updates correctly as I drag the vertices; you have named the points as above: 4 points.
- If, in addition, you have spent some time cleaning things up so that only the triangle, the circle, and the nine points are visible: 5 points (full credit). In other words, if you've left the altitudes, or the orthocenter, or unnecessary labels of line segments and circles, your score is capped at 4/5.
- If, an addition, you've spent a little time nicely styling your diagram, I'll consider a bonus point, for a total of 6. (In my images above, for example; the midpoints D, E and F are red, open circles; the feet K, L, and M are blue diamonds; the midpoints from the vertices to the orthocenter are \times 's. You don't need to match those choices; the point is to make it nice enough that you could include it in a report or a textbook.)