Fall 2018
Exam 2
12/9/19
Time Limit: 90 Minutes

This exam contains 9 pages (including this cover page) and 13 problems. Check to see if any pages are missing. Enter all requested information on the top of this page, and put your initials on the top of every page, in case the pages become separated.

You may not use your books, notes, or any calculator on this exam.
You are required to show your work on each problem on this exam. The following rules apply:

- If you are applying a theorem, you should indicate this fact, and explain why the theorem may be applied.
- Do not trivialize a problem. If you are asked to prove a theorem, you cannot just cite that theorem.
- Organize your work in a reasonable, tidy, and coherent way. Work that is disorganized and jumbled that lacks clear reasoning will receive little or no credit.
- Unsupported answers will not receive full credit. An answer must be supported by calculations, explanation, and/or algebraic work to receive full credit. Partial credit may be given to well-argued incorrect answers as well.
- If you need more space, use the back of the pages. Clearly indicate when you have done this.

Do not write in the table to the right.

Page	Points	Score
2	10	
3	12	
4	9	
5	9	
6	15	
7	22	
8	10	
9	13	
Total:	100	

You may use the following results on the exam without defining or proving them.
The distance between points (a, b) and (a, d) in the Poincaré Half Plane is $|\ln (d / b)|$.
The distance between points P_{1} and P_{2} on the line $(x-\omega)^{2}+y^{2}=\rho^{2}$, with angles $t_{1}=\left|\angle(\omega+\rho, 0)(\omega, 0) P_{1}\right|$ and $t_{2}=\left|\angle(\omega+\rho, 0)(\omega, 0) P_{2}\right|$ is

$$
\ln \left[\left(\csc t_{2}-\cot t_{2}\right) /\left(\csc t_{1}-\cot t_{1}\right)\right]
$$

1. Let $A B C D$ be a convex, simple quadrilateral.
(a) (4 points) Suppose $A+C=B+D$. Prove the opposite sides of $A B C D$ are parallel (which means $A B C D$ is a parallelogram).

$A+C=B+D \Rightarrow B-A=C-D$, so two of the opposite sides represented by same (hence \|J vector. Thus $\overline{A B} \| \overline{C D}$

$$
\text { Similarly: } A+C=B+D \Rightarrow D-A=C-B \text {, so } \overline{A D} \| \overline{B C}
$$

(b) (6 points) Let W, X, Y and Z be the midpoints of the sides of $A B C D$, as shown in the generic diagram below. Prove that $W X Y Z$ is a parallelogram.

$$
\left.\begin{array}{rl}
W & =\frac{A+B}{2} \\
x & =\frac{B+C}{2} \\
Y & =\frac{C+\Delta}{2} \\
z & =\frac{A+\Delta}{2}
\end{array}\right\}
$$

. (6 points) Let $A B C D$ be a parallelogram with perpendicular diagonals. Prove $A B C D$ is a rhombus (ie. all four side of the quadrilateral are congruent).

Diag's of a lligran bisect each other.
Hence $\triangle A E D \simeq \triangle A E B \simeq \triangle C E B \simeq \triangle C E D$ (by $S A S$)
$\Rightarrow \overline{A D} \simeq \overline{A B} \simeq \overline{C D} \simeq \overline{C E}$

3. (6 points) Given $\triangle A B C$, let D and E be the midpoints of $\overline{A C}$ and $\overline{B C}$ as shown. Using any appropriate methods from the course, prove $\overline{D E} \| \overline{A B}$ and $|\overline{D E}|=\frac{1}{2}|\overline{A B}|$

$$
E-B=\frac{(B+C)}{2}-\frac{(A+C)}{2}=\frac{1}{2}(B-A) .
$$

$$
\text { Thus } \overline{D E} \| \overline{A B} \text { and }|\overline{D E}|=\frac{1}{2}|\overline{A B}|
$$

$$
G=\frac{1}{3}(A+B+C)=\left(\frac{0+6+4}{3}, \frac{3+2+7}{3}\right)=\left(\frac{10}{3}, 4\right)
$$

5. (6 points) Recall that the angle bisector of $\angle P Q R$ is the set of all points which are equidistant to both sides of the angle; see the picture below on the left, where X is on the bisector of $\angle P Q R$; the dotted lines from X are perpendicular to the sides, and are congruent.

Prove that the three angle bisectors of $\triangle A B C$ all intersect in a point I which is equidistant to all three sides. (You can use the picture below on the right for your conenience but your argument must apply to all triangles.)

Let I be intersection of angle bisectors of $\angle S A C$ and $\angle A B C$. Thus

- Iequidistont to $\overline{A B}$ and $\overline{A C}$. (In pic, $d=e)$
- I Ca" $\overline{A B}$ and $\overline{B C}$. ($d=f$

By transitivity, dree and I equidistant to all 3 sides.
6. (3 points) Let A and B be distinct points in \mathbb{R}^{2}. Describe all points $C \in \mathbb{R}^{2}$ for which there exists a circle through A, B and C.
$C \nmid \overleftrightarrow{A B}$

(Also, $C=A$ or $C=B$ allows for cire through A, B, but this case wasn't required.)
$\sqrt{3}$
7. (6 points) Let $m=\{\|X\|=\}\}=\left\{(x, y): x^{2}+y^{2}=3\right\}$. Find the coordinates of the reflection of each of the following points across m. Graph the original points P, Q and R, and their reflections P^{\prime}, Q^{\prime}, and R^{\prime}. Note that the gridlines are drawn every half unit in this picture.

- $P=(0,-\sqrt{3})=(0,-\sqrt{3})$. on mirror, so fixed.
- $Q=(1,1)$

$$
\begin{aligned}
& \text { nad }|\overline{0 Q}| \cdot\left|\overline{Q_{Q}}\right|=\sqrt{2} \cdot\left|\overline{\sigma_{0}}\right|=\rho^{2}=3 \\
& \left|\overline{0 Q^{\prime}}\right|=\frac{3}{\sqrt{2}} \\
& Q^{\prime}=\left(\frac{1}{\sqrt{2}}, \frac{1}{1}\right) \cdot \frac{3}{\sqrt{2}}=\left(\frac{3}{2}, \frac{3}{2}\right) \\
& \text { unit ar for ray. }
\end{aligned}
$$

- $R=(-3,1)$

$$
\begin{aligned}
& \text { Wert }|\overline{O R}| \cdot|\overline{\sigma x}|=3 \\
& \sqrt{10} \cdot\left|\overline{0 R^{\prime}}\right|=\frac{3}{\sqrt{10}} \\
& \text { (or could use } \frac{p^{2}}{\|\times\|^{2}} \times \text { formula) } \\
& R^{\prime}=\left(\frac{-3}{\sqrt{10}}, \frac{1}{\sqrt{10}}\right) \cdot \frac{3}{\sqrt{10}}=\left(-\frac{9}{10}, \frac{3}{10}\right)
\end{aligned}
$$

8. In each part below, sketch ℓ^{\prime}, the reflection (i.e. inversion) of ℓ across the mirror m. Also give the equation for ℓ^{\prime}.
(a) (5 points) $m: x^{2}+y^{2}=2$ and $\ell:(x-1)^{2}+y^{2}=1$.

$\ell \cap m=\{(1, \pm n)\}$ are fixed, hence on l '.
$\theta \in l \Rightarrow \infty \in l$, so l is a line through $(1, \pm 1)$

$$
l^{\prime}: x=1
$$

(b) (5 points) $m: x^{2}+y^{2}=4$ and $\ell: x^{2}+y^{2}=1$.

$0 \notin l$ so $\infty \frac{1}{4} l^{\prime} \Rightarrow l^{\prime}$ a circle. $\infty \xi l \Rightarrow 0 \& l \Rightarrow l^{\prime}$ a circle not through 0

Can reflect 3 pts (egg. $(\pm 1,0),(0,1))$ to find that $l^{\prime}: x^{2}+y^{2}=16$.
(c) (5 points) $m: x^{2}+(y-2)^{2}=4$ and $\ell: y=4$.

$D \in l \Rightarrow(0,2) \in l^{\prime} \quad$ center of m
$0 \notin l \Rightarrow \infty \notin l^{\prime}$ so l^{\prime} a circe through origin.
$(0,4) \in m$, hence fixed. Segment from $(0,2)$ to $(0,4)$ becomes the diameter

$$
f^{\prime}: x^{2}+(y-3)^{2}=1
$$

9. Let $\mathfrak{A}=(-3,0), B=(-3,3)$, and $C=(3,3)$.
(a) (10 points) Sketch the line ℓ through B directed by \mathfrak{A}, and the line $\overleftrightarrow{B C}$. Find the equations of both lines.

$$
\begin{gathered}
\ell: x=-3 \\
\overleftrightarrow{B C}:|\overrightarrow{O C}|=\sqrt{18}=3 \sqrt{2} \quad(\approx 4.25 \mathrm{ish}) \\
x^{2}+y^{2}=18
\end{gathered}
$$

(b) (3 points) Find the length of segment $\overline{B C}$.

$$
\text { From front: } \begin{aligned}
d(B, C) & =\ln \left|\frac{\csc 3 \pi / 4-\cot 3 \pi / 4}{\csc \pi / 4-\cot \pi / 4}\right| \\
& =\ln \left|\frac{\sqrt{2}+1}{\sqrt{2}-1}\right|
\end{aligned} \quad(=\ln (3+2 \sqrt{2}) . \text { Lots of equiv. answers. })
$$

10. Let ℓ be the line directed by $\mathfrak{A}=(-3,0), \mathfrak{B}=(1,0)$, and k be the line directed by \mathfrak{A} and $\mathfrak{C}=(\infty, 0)$.
(a) (6 points) Sketch ℓ and k on the grid below.

(b) (3 points) Give an equation for a line \mathcal{K} containing $(1,2)$ which is asymptotically parallel to both ℓ and k, or explain why none exists. m
$m: x=1$ works; shares a PDI w/ both.
(other answers possible, eg. died by σ and $(d, 0), d>1$.)

On this page, all points, lines, segments, triangles and areas are in the Poincaré Half Plane.
11. (a) (5 points) The area of any triply asymptotic triangle with Poincare Direction Indicators $\mathfrak{P}=(p, 0), \mathfrak{Q}=(q, 0)$ and $\mathfrak{R}=(\infty, 0)$, as shown on the left, is π. Use this fact to prove the area of the triply asymptotic triangle $\triangle \mathfrak{A} \mathfrak{B C}$ on the right is also π.

$$
\begin{aligned}
& \text { Let } \delta==(\infty, 0) . \\
& \begin{aligned}
\|\Delta o n z e\| & =\|\Delta a z \sigma\|+\| \Delta \text { Bes }\|-\| \Delta \Delta \text { ea } \| \\
& =\pi+\pi-\pi \\
& =\pi
\end{aligned}
\end{aligned}
$$

(b) (5 points) The picture below shows a singly asymptotic triangle $\triangle \mathfrak{A} B C$ formed by the lines $x^{2}+y^{2}=4, x=0$ and $x=\sqrt{3}$ in the Poincare Half Plane. Find the area of the triangle using any valid method.

$$
\begin{aligned}
\|\Delta \Delta B C\| & =\pi-\beta-\gamma \\
& =\pi-\frac{\pi}{2}-\frac{\pi}{6} \\
& =\frac{\pi}{2}-\frac{\pi}{6} \\
& =\pi / 3
\end{aligned}
$$

12. For each of the following statements, indicate whether it is True or False by circling the corresponding answer. Briefly justify your answer.
(a) (4 points) Lines $x=\lambda$ and $x=\mu$ in the Poincare Half Plane are always ultra parallel.

True

never ultra-ll. Ahaags share $(\infty, 0)$.

(b) (4 points) $\mathcal{D}(x, y)=(4 x, 4 y)$ is a conformal affinity.

$$
\delta(x, y)=4 \underbrace{C l(x, y)}_{\text {identity }} \text { (an isometry) }
$$

13. (5 points) Recall the incidence axioms from Chapter 10:
I. 1 For any two distinct points P and Q, there exists a unique line that is incident with both P and Q.
I. 2 Every line is incident with at least two points.
I. 3 There exist three points such that no line is incident with all three.

Define an 8 point geometry as follows. The points are the vertices of a unit cube in \mathbb{R}^{3}, as shown below. A line is defined to be a set of four points which form the vertices of a square face of the cube. For example, $\{(0,0,0),(1,0,0),(1,1,0),(0,1,0)\}$ is a line because those points are the vertices of the square on the bottom of the cube.

Does this 8 point geometry satisfy the incidence axioms? Justify your answer.

No - no line incident al $(0,0,0)$ and $(1,1,1)$, for example, so fails I.I.

