
Math 5335: Geometry Exam 2 Solutions

The following is a non-comprehensive list of solutions to the exam problems. In some cases I may give an

answer with just a few words of explanation. On other problems the stated solution may be complete. As

always, feel free to ask if you are unsure of the appropriate level of details to include in your own work.

As you noticed, the exam was fairly triangle-heavy. There are two reasons for that. First, when the homework

from chapters 7 and 7 was delayed, I made an intentional decision to remove some of the test questions covering

material from those chapters; I had to fill the resulting void with questions from chapters 4 and 5. Second,

triangles are fundamental to everything we’ve done, even with polygons – we can split polygons into triangles,

etc. This trend is noticeable in problem 6(b) on the exam, which is straight out of the chapter 6 exercises, and

yet is most easily solved with techniques from chapter 4.

These solutions were typed up while basking in the glory of the Minnesota Wild building a 4-0 lead on the

Washington Capitals, followed by the despair of watching them cough up three goals late in the game. Needless

to say there were a few typos. I think I’ve caught them all, but please let me know if you spot any errors and

Ill update things as soon as possible.

(1) (a) The orthocenter is at the origin; you proved this has to be the case in your homework (Chapter 4

#8). The circumcenter is (2, 3/2). [Note the similarity to Problem 6(a) on this exam!].

(b) The Euler line goes through the orthocenter and circumcenter, so its equation is y = 3
4x. The angle

bisector at vertex A is on the line y = x, which only intersects the Euler line at A. Because the

incenter is on y = x but in the interior of the triangle, it cannot be on the Euler line.

(c) 1
2bh = 1

2 · 4 ·
3
2 = 3.

(2) This problem was extremely similar to multiple homework problems, not to mention the sample problem

I did at the beginning of class two days before the exam.

(a) Draw the median from C and denote its intersection with the opposite side by M . Thus AM ∼= MB.

Hence by SSS (check this!) we have 4ACM ∼= 4BCM : In particular |∠ACM | = |∠BCM | so

that the median CM is also a bisector. Furthermore, |∠AMC| = |∠BMC| and the two angles

must add to π, so each of them must be π/2. This immediately imples that CM is also an altitude

and is part of the perpendicular bisector of AB.

We could have done the same work using the bisectors from the other two vertex angles, so we

conclude that the medians, altitudes, bisectors and perpendicular bisectors through the angles are

all the same. Hence all of these lines (or line segments) intersect at the same point, and the centroid,

orthocenter, incenter and circumcenter all coincide.
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(b) In the diagram below I’ve filled in some of the information we know. The medians of an equilateral

triangle separate the three sides into six congruent segments. We also know the medians are

altitudes, and I’ve labeled the right angles at the feet.

We can also say that AG ∼= BG ∼= CG; this follows either from the definition of perpendicular

bisector or from the definition of angle bisector (and the medians are both). Hence by SSA for

right triangles, the six triangles inside 4ABC are congruent.

(3) I intended people to use (a) to show that 4ABC and 4AMN are similar and use that to solve (b).

Unfortunately, most people immediately claimed that the two triangles were similar by stating (for

example) that |∠AMN | = |∠ABC| and used similarity to prove the segments were parallel. The

problem is that you can’t just claim |∠AMN | = |∠ABC| – that’s a consequence of the line segments

being parallel!

(a) M = (A+B)/2 and N = (A+C)/2, so N −M = A+C−A−B
2 = 1

2 (C−B). Hence N −M is parallel

to C −B, which is equivalent to MN ||BC.

(b) MN ||BC implies that |∠AMN | = |∠ABC| and |∠ANM | = |∠ACB|, so the two triangles4AMN

and 4ABC are similar. Using that and the Law of Sines,

|AB|
|BC|

=
sin |∠ACB|
sin |∠BAC|

=
sin |∠ANM |
sin |∠MAN |

=
|AM |
|MN |

A little cross multiplication finishes the problem.

(4) This was nearly an exact copy of exercise 30 from chapter 7, but I made the angles much easier so you

didn’t need to remember any double angle formulas for cosine and sine to construct the matrix formulas.

I’d suggest following the homework solutions for that problem (and #6,7 from chapter 7) while looking

over these solutions.
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(a) The mirror has a slope of 1, which means it forms an angle of θ = π/2 = 45◦ with the horizontal.

The point P = (0, 2) is on the mirror.

M|(X) = Fθ(X − P ) + P

=

[
0 1

1 0

]([
x

y

]
−

[
0

2

])
+

[
0

2

]

=

[
0 1

1 0

][
x

y

]
−

[
−2

2

]
(b) Here we use our previous knowledge about the composition of reflections.

j and k intersect at a right angle at (1, 3), soMk ◦Mj(X) will be a rotation by 2 · π/2 = π about

the point (3, 3), which has the formula

Mk ◦Mj(X) = X + 2(1, 3)

j and l are parallel, and a vector U which goes straight from j to l would be given by (for example)

U = (1, 1)− (0, 2) = (1,−1). Hence we get a translation:

Ml ◦Mj(X) = X + 2U

(5) On your homework you did the companion problem to this one, and I listed it as being an important

one to study. (This exact problem was also listed as a review problem). Strangely enough this version

seems easier than the homework problem where you start with a rhombus, especially when trying to

show (iii) implies either of the other two conditions.

Keep in mind that we know ABCD is a parallelogram so we can make free use of the following facts:
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• The diagonals bisect each other: DE ∼= EB, AE ∼= EC.

• Opposite sides are congruent: AB ∼= DE, BC ∼= AD.

Now we can prove the desired facts.

(a) Because the angles at A, B, C and D are equal and (as with any convex quadrangle) add to 2π,

they must be right angles. Hence by SAS, 4DAB ∼= 4CBA, so BD ∼= AC.

(b) Now by SSS, 4DAB ∼= 4CBA ∼= 4ADC ∼= 4BCD. Thus all four vertex angles must have equal

measure.

(c) Let’s update our picture to include the midpoints.

Because opposite sides are congruent (see above) and the angles must all be right angles [as in part

(a)], SAS tells us that all four triangles formed by our diagram are congruent. In particular the

four sides of EFGH are congruent, so it’s a rhombus.

(d) Let’s again focus on the four triangles in the diagram. The sides which are part of EFGH are

all congruent since we’re assuming (iii). The other sides (e.g. AH and BF , or AE and DG) are

congruent because we have midpoints of a parallelogram whose opposite sites are congruent. So

SSS tells us the four triangles are congruent, proving [as in part (b)] that the four vertex angles

are equal.

(6) (a) Following the hint, let A = (a, 0), B = (0, b) and C = (0, 0). The perpendicular bisectors of AC

and BC are the lines x = a/2 and y = b/2, respectively. These intersect at the point (a/2, b/2)

which just happens to be the midpoint of AB, so this point is on the perpendicular bisector of that

edge. Hence this point is the intersection of all three perpendicular bisectors and is the circumcenter.

(b) This was a review problem and is very similar to the Theorem of Thales we discussed in class. It

turns out the circle is somewhat of a red herring. Here’s what it amounts to: if O is the midpoint

of AC, then we want to prove OB is congruent to the radii OA and OC.

You could label angles and try to use triangle congruence theorems. The faster way is to use part

(a) to say O is the circumcenter of 4ABC and is therefore the same distance from each vertex of

the triangle.

Jonathan Rogness <rogness@math.umn.edu> November 25, 2008
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