
Math 5335: Geometry Homework 7 Solutions

The following is a non-comprehensive list of solutions to homework problems. In some cases I may give an
answer with just a few words of explanation. On other problems the stated solution may be complete. As
always, feel free to ask if you are unsure of the appropriate level of details to include in your own work.

Please let me know if you spot any typos and I’ll update things as soon as possible.

6.5.10: Since n = 6, Theorem 14 tells us s = 2r sin (π/6) = 2r(1/2) = r. (If you draw a picture of the
regular hexagon this is clear, because the triangles you create by connecting the center to the vertices
are equilateral, so of course s = r.) Hence the perimeter is n× s = 6r.

6.5.17: This problem is an application of the first and third parts of Theorem 16. (The second case of
Theorem 16, with a right angle, is really just a special case of the first one.) Here’s our setup; I’m
assuming K is on the same side of AC as D, or perhaps K is on AC. By relabeling points I could
always ensure that’s the case.

By the first part of Theorem 16, |∠AKC| = 2|∠ADC|. By the third part, |∠AKC| = 2π−2|∠ABC|.
Thus 2|∠ADC| = 2π − 2|∠ABC|; rearrange and divide by two to get |∠ABC|+ |∠ADC| = π. Similar
work shows that the other pair of vertex angles of ABCD also add to π.

6.5.23: Let ABCD be any quadrangle. Then the midpoints are

E = (A + B)/2

F = (B + C)/2

G = (C + D)/2

H = (A + D)/2

To show that EFGH is a parallelogram we can show it satisfies any of the six conditions in Proposition
3. I think the fourth is easiest – that the diagonals of EFGH bisect each other. We calculate the
midpoints of the diagonals:

E + G

2
=

(A + B)/2 + (C + D)/2
2

=
A + B + C + D

4
F + H

2
=

(B + C)/2 + (A + D)/2
2

=
A + B + C + D

4
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(Draw a picture of this!) Because the midpoints of the two diagonals are equal, the diagonals must
bisect each other, so EFGH is a parallelogram.

6.5.26: First let’s prove that conditions (i) and (ii) are equivalent, using the following diagram.

Assume ABCD is a rhombus. Because it’s also a parallelogram (by definition), the diagonals bisect each
other. Hence you can use the SSS congruence criterion to show that each of the four inside triangles
are congruent to each other. In particular we must have four congruent angles surrounding the point
K, meaning that each is a right angle. This proves (i) ⇒ (ii).

Conversely, assume the diagonals are perpendicular. We still know ABCD is a parallelogram whose
diagonals must therefore bisect each other. So now we can show the four triangles are congruent using
SAS and conclude the sides of ABCD are all equal, proving (ii) ⇒ (i).

Now add the midpoints of the sides to the picture:

Suppose we know (i) or (ii) is true (and therefore both, by our work above!), and we want to prove (iii).
If we can show any one of the vertex angles of EFGH is a right angle then a symmetric argument will
prove it for all of them, and EFGH will be a rectangle. One way to show |∠EFG| = π/2 is to show
that E − F ⊥ G− F . Let’s compute their dot product:

〈E − F,G− F 〉 =
〈

A + B

2
− B + C

2
,
C + D

2
− B + C

2

〉
=

〈
A− C

2
,
D −B

2

〉
=

1
4
〈A− C,D −B〉
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But by (ii), A− C ⊥ D −B so this dot product is zero.
To finish the proof we need to assume (iii) and show that (i) or (ii) (and hence both) are true. This

is the trickiest part. Using the fact that E, F , G and H are midpoints together with the knowledge
that ABCD is a parallelogram and EFGH is a rectangle (and hence has right angles at each vertex),
I can label the following congruent sides and angles. (Ask me if you’re not sure how to get these. This
isn’t an exhaustive picture, either; we still know that the diagonals of ABCD bisect each other, for
example!)

There are lots of ways to finish the problem now. Here’s one. I claim that the diagonals of ABCD

bisect the sides of the rectangle EFGH. Consider the midpoint of E and H:

L =
E + H

2
=

(A + B)/2 + (A + D)/2
2

=
2A + B + D

4
=

3A + C

4

where the last equality comes from the fact that B + D = A + C (Proposition 3(vi)).
But that point, 3

4A + 1
4C is on the line segment {A + t(C −A)} from A to C! (Let t = 1/4.) Hence

LE ∼= LH. Furthermore, AC must bisect FG and because EFGH is a rectangle, AC must in fact be
perpendicular to EH and FG. In other words, |∠ALE| = |∠ALH| = π/2.

Now we’re just about done. By SAS, 4ALE ∼= 4ALH. Hence the segments with one tick mark
(such as AE) must be congruent to those with two tick marks (such as AH) and it quickly follows that
ABCD is a rhombus.

6.5.29: Let P be a regular polygon with an unknown number n sides. Following the hint in the back
of the book, we start by drawing in the perpendicular bisectors of two adjacent sides. The bisectors
intersect at a point in the interior of the polygon which I’ll call C. Continuing to follow the hint, we
connect C to the vertex between M and N :
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Because M and N are the midpoints of the sides, AM ∼= AN , and the two triangles we’ve formed
share the side AC. Hence by the SSA congruence criterion for right triangles (Theorem 10 in Chapter
5), 4CMA ∼= 4CNA. In particular, |∠CAM | = |∠CAN |, from which we see that AC bisects ∠MAN .
Also, |CM | = |CN |, as we’re required to prove.

Now draw the segment from C to the next vertex, represented by the dotted line. By SAS (where
the angle is the right angle at N), this new triangle is congruent to 4CNA. Now draw a dotted line
representing the perpendicular bisector of the next side. (This dotted line isn’t in my picture.) You can
once again show this triangle is congruent to the others you’ve formed. At this point you can catch on to
the pattern – you can go all the way around the polygon, forming 2n triangles which are all congruent,
and whose sides are either (1) half of a side of the polygon, (2) the segment from the center point to
the midpoint of a side, or (3) the segment from the center point to a vertex.

Together these facts are enough to prove the theorem. (Ask me if you want me to fill in the remaining
details.)

6.5.49: Glancing over some of the homeworks it seems most people chose kites. Here’s another possibility.
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