
Math 5335: Geometry F09 Exam 2 Solutions

The following is a non-comprehensive list of solutions. I’ve tried to explain enough that you can figure out

any mistakes you might have made, but I haven’t written out every excruciating detail. As always, feel free

to ask if you are unsure of the appropriate level of details to include in your own work. Please let me know

if you spot any typos and I’ll update things as soon as possible.

4.11.43: If 4ABC is isosceles, then the incenter is collinear with both the centroid and circumcenter.

To prove this, consider the isosceles triangle below.

Suppose CD is an angle bisector. Then |∠ACD| = |∠BCD|, and by SAS we have 4ACD ∼=
4BCD. That lets us conclude:

• AD ∼= BD, so D is the midpoint of AB and CD is a median.

• |∠ADC| = |∠BDC| and, since they add up to π, each is π/2. So CD is an altitude and–since

D is the midpoint–a perpendicular bisector.

Since CD is a median, perpendicular bisector and angle bisector, the centroid, circumcenter and

incenter must all lie on it; hence they are collinear. This line will in fact be the Euler line unless the

triangle is equilateral (a special case of isosceles), in which case all of the points coincide and there

is no Euler line.

For full credit you also needed to say a few words about what goes wrong with other triangles. As

mentioned, in equilateral triangles the incenter, centroid and circumcenter are the same, and there

is no Euler line. Proving that the incenter is not on the Euler line for scalene triangles is tricky (or

just tedious, if you use barycentric coordinates), but any sort of explanation or example to show you

had thought about the issue would suffice.

6.6.57: There are a few different approaches you could take to this problem. Notice that the problem

refers to #56, which in turn refers to #55. So if you were really stuck, looking at those problems

could have been useful. The proof I sketch here is based on some of the ideas in those problems.

First, consider an orthcentric quadrangle ABCD, like the dart I suggested in class and shown

below. Notice that I’ve drawn the lines between every pair of vertices, not just the adjacent ones.

The actual quadrilaterial ABCD is highlighted in red.
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We know AB ⊥ CD and BC ⊥ AD, so I’ve labeled the points of intersection of these lines and

drawn in the right angles where appropriate. However, there’s one more right angle: I claim AC ⊥
BD. One way to prove this is to use Problem 6.11.16 from the previous homework assignment. In the

quadrangle AEBG, |∠AEB|+ |∠AGB| = π, and since |∠AEB| = π/2, we conclude |∠AGB| = π/2

as well.

To summarize, we have the following pairs of perpendicular lines:

AB ⊥ CD

BC ⊥ AD

AC ⊥ BD

Now we’re ready to start our proof that, given an orthcentric quadrangle, any vertex is the

orthocenter of the other three. Choose any three points–say A, B and C, although the following

proof works similarly no matter which three we choose. The orthocenter of4ABC is the intersection

of its altitudes:

• The altitude from A is the line through A which is perpendicular to BC. From our list above,

that’s AD.

• The altitude from B is the line through B which is perpendicular to AC. From our list above,

that’s BD.

• The altitude from C is the line through C which is perpendicular to AB. From our list above,

that’s CD.

Notice all three of the altitudes go through D, which is therefore the orthocenter of 4ABC.

In the other direction, it suffices to start with any arbitrary 4ABC, let D be its orthocenter, and

show that ABCD is an orthocentric quadrangle, i.e. that opposite sides are perpendicular:

AB ⊥ CD: This is true because CD is an altitude – it includes the vertex C and the orthocenter.

So it must be perpendicular to the side of 4ABC which is opposite C, namely AB.

BC ⊥ AD: Similarly, this is true because AD is an altitude and must be perpendicular to BC.

Hence ABCD is an orthocentric quadrangle.

7.9.26: Let CC(X) = −X + 2C be a central inversion about a center C, and TP (X) = X + P be a

translation by P . Then:

(i) TP ◦ CC(X) = TP (−X + 2C) = −X + 2C + P = −X + 2
(
C + 1

2P
)

This is the formula for a

central inversion centered at the point
(
C + 1

2P
)
.
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(ii) CC ◦TP (X) = CC(X+P ) = −X−P + 2C = −X+ 2
(
C − 1

2P
)

This is the formula for a central

inversion centered at the point
(
C − 1

2P
)
.

7.9.27: For two points C and D, we have

CD(X) ◦ CC(X) = CD(−X + 2C) = X − 2C + 2D

Which is a translation by P = −2C + 2D = 2(D − C), twice the vector from the center of the first

central inversion to the center of the second. Note that if C = D, P = 0 and the composition will

result in the identity as expected. (Any central inversion is its own inverse.)

7.9.30: (i) The two lines are perpendicular and intersect at C =
(

47
68 ,

1
68

)
. By our work in class, that

means the composition of reflections across the two lines is a central inversion, centered at C:

C(47/68,1/68)(X) = −X + 2(47/68, 1/68)

(ii) The two lines intersect at (2, 0) when t = 0 and s = −1/2. The angle α from the first line to

the second is about 59.03◦; from our work in class, the net result is a rotation about the point

(2, 0) by an angle of 2α. As with earlier homework problems, we can draw triangles on these

lines to determine exact values of cos 2α and sin 2α in order to write down our rotation matrix.

The resulting matrix formula is:

R(X) =
1
17

[
−8 −15

15 −8

](
X −

[
2

0

])
+

[
2

0

]
or

1
17

[
−8 −15

15 −8

]
X +

[
50/17

−30/17

]
(iv,v) These two problem involve three lines, which I’ve named as follows and graphed with GeoGebra:

j : (2, 5) + s(3,−3)

k : 〈(−3, 3), X〉 = 0

l : 〈(−3,−3), X〉 = 0

In part (iv) we are working with j and k, lines which meet at a right angle at C = (7/2, 7/2).

(Verify this!) Hence either Mj ◦Mk or Mk ◦Mj will be a central inversion about the point
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C. (Technically you could argue that one will be a rotation by π and the other a rotation by

−π, but the end result is the same.) The formula is given by

CC(X) = −X + 2C = −X + 2C = −X + 2

[
7/2

7/2

]
= −X +

[
7

7

]

In part (v) we are working with j and l, lines which are parallel. The vector U = (7/2, 7/2) is

perpendicular to both and stretches exactly from O ∈ l to (7/2, 7/2) ∈ j. (Check all of this!)

The composition of two reflections across parallel lines is a translation in the direction from the

first to the second, with a distance twice that between the lines. Thus:

Ml ◦Mj(X) = T−2U (X) = X − 2U = X −

[
7

7

]

7.9.34: Let ` be the line y = −4 and k be y = 4. Then the formulas for the translations and reflections

used in this problem are as follows. [Check these! I’ve written them out with x’s and y’s instead of

matrices and vectors. Ask me if you’re not sure how to get from your matrix formulas to this form.]

T(5,0)(x, y) = (x+ 5, 0)

T(−5,0)(x, y) = (x− 5, 0)

M`(x, y) = (x,−8− y)

Mk(x, y) = (x, 8− y)

We’re asked to figure out the following composition:

T(−5,0) ◦Mk ◦ T(5,0) ◦M`(x, y) = T(−5,0) ◦Mk ◦ T(5,0)(x,−8− y)

= T(−5,0) ◦Mk(x+ 5,−8− y)

= T(−5,0)(x+ 5, 8− (−8− y))

= (x+ 5− 5, 8− (−8− y))

= (x, y + 16)

So the overall net effect is a translation by (0, 16), or in our other notation,

T(−5,0) ◦Mk ◦ T(5,0) ◦M` = T(0,16)

8.4.3: You can almost use the formula given in the book for a circle inversion, with one exception: that

formula assumes the mirror is centered at the origin, whereas our circle is centered at (−8, 13). So

we need to first move everything so the center is at the origin, then invert, and then move it back:

I(X) =


ρ2

||X−C||2 (X − C) + C, X 6= C,∞

∞ X = C

C X =∞
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where C = (−8, 13) and ρ = 29 in our case. By my quick calculations, this yields:

I(0, 0) =
(

4864
233

,
−7904

233

)
I(12,−8) = (12,−8) (this point is on the mirror, so it stays fixed!)

I(∞) = (−8, 13) (the point at ∞ always goes to the circle center)

I(8,−13) =
(

1500
233

,
−4875

233

)

Jonathan Rogness <rogness@math.umn.edu> November 25, 2009
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