
Math 5335: Geometry Midterm 2 Solutions

7.2.28: The formula for a central inversion centered at a point C is CC(X) = −X + 2C. Assume we have a

line ` which includes C and forms an angle of θ with the horizontal; then the formula for reflection across

` is M`(X) = Fθ(X − C) + C, where Fθ is the reflection matrix we’ve used consistently in class since

October. Computing the two compositions:

CC ◦M`(X) = −(Fθ(X − C) + C) + 2C = · · · = −Fθ(X − C) + C

M` ◦ CC(X) = Fθ((−X + 2C)− C) + C = · · · = −Fθ(X − C) + C

So each composition yields the same result. We now have to identify the net effect of this formula. Exper-

imenting with GeoGebra (or other methods) suggests that the net result is reflection across a line through

C which is perpendicular to `, i.e. a line that forms an angle of φ = θ + π/2 with the horizontal. So we

can check:median

Fφ = Fθ+π/2 =

[
cos 2(θ + π/2) sin 2(θ + π/2)

sin 2(θ + π/2) − cos 2(θ + π/2)

]
Depending on how exactly you defined φ in terms of θ (you could also use φ = θ − π/2) you need to do

some trig work similar to:

cos 2(θ + π/2) = cos2 (2θ + sin2 π) = cos 2θ cosπ − sin 2θ sinπ = − cos 2θ + 0

sin 2(θ + π/2) = sin 2θ + π = sin 2θ cosπ + sinπ cos θ = − sin 2θ + 0

Thus we can conclude

Fφ = Fθ+π/2 =

[
− cos 2θ − sin 2θ

− sin 2θ cos 2θ

]
= −Fθ

Which means CC ◦M`(X) =M` ◦CC(X) = −Fθ(X−C) +C = Fφ(X−C) +C, so our conjecture above

is correct: the compositions give a reflection across a line through C which is perpendicular to `.

7.9.41: This problem has a lot of calculations which simplify to very nice answers. If Rθ =

[
cos θ − sin θ

sin θ cos θ

]
is our standard rotation matrix, then the two given isometries are:

R1(X) = R2π/3

(
X −

[
1

1

])
+

[
1

1

]

R2(X) = R4π/3

(
X −

[
1

−1

])
+

[
1

−1

]

If you crank out the algbera, you find

R1 ◦ R2(X) = X +

[√
3

3

]

R2 ◦ R1(X) = X +

[√
3

−3

]

which represent translations by (
√

3, 3) and (
√

3,−3), respectively.

1



4.11.31: Consider the following picture, where D, E and F are the midpoints of the sides. I find it really

hard to follow descriptions of all the different triangle areas (like ||4GDC||, ||4ADB||, and so on), so I’ve

labeled each of the six small inner triangles with a blue letter which represents its area.

Following the hints given in class, ||4ADB|| = ||4ADC||, so p + q + r = s + t + u = 1
2 ||4ABC||. If we

can prove p = q = r, then each will be one third of one half of ||4ABC||, i.e. one sixth of ||4ABC||. To

do so, first notice triangles p and q have congruent bases, AF and FB, and equal heights, so p = q. Also,

from the other hint in class, p+ q = 2r. (Ask me to explain these hints if you don’t remember them or if

you weren’t in class that day.) But then 2r = p + q = 2p and p = q. Or 2r = p + q = 2q gives q = r. So

p = q = r, and a similar argument on the right shows that s = t = u. Hence each of the small triangles has

area equal to 1
6 ||4ABC||.

4.11.44: From previous problems we know that, if a triangle is equilateral, then the centroid, incenter and

orthocenter are all the same; because the altitudes are also the perpendicular bisectors of the sides, we can

toss the circumcenter into that list as well. In this problem we prove the Fermat Point belongs in that

list, too. The following picture shows the construction of the Fermat Point F for a triangle 4ABC, as

described in section 4.9.

Suppose we know that the Fermat Point F happens to be the centroid, and we wish to prove that4ABC
is equilateral. We can use the diagram above, except we can’t assume a = b = c or anything equivalent

– that’s what we’re trying to prove! We know that the exterior triangles are equilateral, but we don’t yet

know that they’re the same size.

Here’s what we do know. Since F is the centroid, AG is a median and |GC| = |GB|. Hence (by SSS

in Chapter 3) we know 4LGC ∼= 4LGB. But then |∠LGC| = |∠LGB| and these angles add to form a

straight angle, meaning each of them is π/2. Hence |∠FGC| = |∠FGB| = π/2 as well, and AG is not only

a median but also an altitude and perpendicular bisector! By SAS, 4AGB ∼= 4AGC, which means b = c.

Repeating this work with the other exterior triangles gives a = b and a = c. Hence a = b = c and the

triangle is equilateral.
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Conversely, suppose 4ABC is equilateral and let F be the centroid. By previous problems it’s also the

incenter and orthocenter, and AG, BH and CI are medians, angle bisectors, and altitudes. (For this part

of the problem, ignore L, M , N , and any of the segments which are outside of the original triangle.) Using

ASA or other congruence theorems, you can quickly show that all six of the little triangles formed inside

4ABC are congruent. That means each of the six angles surrounding the centroid F are congruent, so

each one is 360◦/6 = 60◦. But then

|∠AFC| = |∠CFB| = |∠BFA| = 120◦ = 2π/3

But forming those angles of 120◦ proves that the centroid F is the Fermat minimizer and therefore, by

Theorem 28, the Fermat Point.

(There are many other possible proofs.)

5.3.22: In general, people broke this problem up into too many cases. We can prove a ≤ b ≤ c⇔ α ≤ β ≤ γ
in two steps. First, show that a ≤ b ≤ c ⇔ sinα ≤ sinβ ≤ sin γ. This is almost immediate from the Law

of Sines and nearly everybody handled it. (But ask me if you got stuck or have questions.) Then we need

to prove that α ≤ β ≤ γ ⇔ sinα ≤ sinβ ≤ sin γ. Here, and only here, is where you need to worry about

obtuse angles. (This second part wouldn’t be true in general, except with the knowledge that α, β and γ

are the angles of a triangle.) Here’s the proof of that second part:

First assume α ≤ β ≤ γ and all three are less than or equal to π/2. On the interval [0, π/2], sin is an

increasing function. From calculus, that means α ≤ β ≤ γ ⇔ sinα ≤ sinβ ≤ sin γ.

Now assume α ≤ β ≤ γ and γ > π/2. For convenience, let θ = π − γ. There are two important

observations:

• sin γ = sin θ. (Draw a picture and/or ask me if you’re not sure why.)

• Because α+β+γ = π, we have α+β = θ which means α and β are smaller than both γ and θ = π−γ.

Furthermore, θ is less than π/2.

By the first part of our proof, α ≤ β ≤ θ ⇔ sinα ≤ sinβ ≤ sin θ. Since θ < γ and sin θ = sin γ, this gives

us α ≤ β ≤ γ ⇔ sinα ≤ sinβ ≤ sin γ.

6.6.22: Let PQRS be the vertices of a convex quadrilateral. Then the midpoints are A = P+Q
2 , B = Q+R

2 ,

C = R+S
2 and D = S+P

2 . The vectors representing the sides are:

U = B −A =
Q+R− P −Q

2
=
R− P

2

V = C −B =
R+ S −Q−R

2
=
S −Q

2

W = D − C =
S + P −R− S

2
=
P −R

2

X = A−D =
P +Q− S − P

2
=
Q− S

2

(Draw a picture and label all these points and vectors if this doesn’t make sense!) Because U = −W and

V = −X, we see that U ‖W and V ‖ X. Hence ABCD is a parallelogram.

6.6.24: The fastest way to complete this problem is a “cycle” of proofs like (i) ⇒ (ii) ⇒ (iii) ⇒ (i), which

amounts to three proofs. Unfortunately in this case it seems hard to make a connection between (ii) and

(iii), so it’s probably faster to prove (i) ⇔ (ii) and (i) ⇔ (iii), a total of four proofs. I’ll give brief
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outlines of the proofs below. Regardless of which condition from (i), (ii) or (iii) we’re assuming, we always

know that ABCD in the following picture is a parallelogram, so the opposite sides are always parallel and

congruent, by Proposition 3.

Math 5335: Geometry Homework 8 Solutions

The following is a non-comprehensive list of solutions to homework problems. In some cases I may give an
answer with just a few words of explanation. On other problems the stated solution may be complete. As
always, feel free to ask if you are unsure of the appropriate level of details to include in your own work.

Please let me know if you spot any typos and I’ll update things as soon as possible.

6.5.16: This problem is an application of Theorem 18. Here’s our setup. Let ABCD be a quadrilateral
whose vertices are on a circle centered at K. Assume K is on the same side of AC as D. By relabeling
points I could always ensure that’s the case, unless AC goes through K, meaning it is a diameter. I’ll
deal with that case separately.

By the first part of Theorem 18, |∠AKC| = 2|∠ADC|. By the third part, |∠AKC| = 2π−2|∠ABC|.
Thus 2|∠ADC| = 2π − 2|∠ABC|; rearrange and divide by two to get |∠ABC| + |∠ADC| = π. Since
all four angles in this convex quadrilateral must add up to 2π, the remaining vertex angles at A and C

must also add to π.
The remaining case, where AC is a diameter, is shorter than the above work. In that case the second

part of Theorem 18 says the vertex angles at B and D are both π/2, in which case they certainly add
to π, and the angles at A and C will add up to 2π − π = π as above.

6.5.24: The fastest way to complete this problem is a “cycle” of proofs like (i)⇒ (ii)⇒ (iii)⇒ (i), which
amounts to three proofs. Unfortunately in this case it seems hard to make a connection between (ii)
and (iii), so it was probably faster to prove (i) ⇔ (ii) and (i) ⇔ (iii), a total of four proofs. I’ll give
brief outlines of the proofs below. Regardless of which condition from (i) to (iii) we’re assuming, we
always know that ABCD in the following picture is a parallelogram, so the opposite sides are always
parallel and congruent, by Proposition 3.

A B

CD

(i)⇒ (ii): Assume ABCD is a rectangle, so all four vertex angles are congruent. Because it’s also a
parallelogram, AD ∼= BC. Hence SAS tells us that %ABD ∼= %BAC; in particular AC ∼= BD,
proving (ii).

1

(i)⇐ (ii): Assume ABCD is a rectangle, so all four vertex angles are congruent. Because it’s also a

parallelogram, AD ∼= BC. Hence SAS tells us that 4ABD ∼= 4BAC; in particular AC ∼= BD,

proving (ii).

(ii)⇐ (i): Now assume AC ∼= BD. Since opposite sides of a parallelogram are congruent, SSS tells us

4ABD ∼= 4BAC; in particular |∠A| = |∠B|. You can use similar reasoning to show |∠B| = |∠C|
and |∠C| = |∠D|, which proves (i).

(i)⇐ (ii): Assume ABCD is a rectangle, so all four vertex angles are congruent. Because it’s also a

parallelogram, opposite sides are congruent. If you insert the midpoints of the sides, you can label

congruent segments as follows:

(ii) ⇒ (i): Now assume AC ∼= BD. Using the fact that opposite sides of a parallelogram are congru-
ent, SSS tells us that #ABD ∼= #BAC; in particular ∠A ∼= ∠B. You can use similar reasoning to
show ∠B ∼= ∠C and ∠C ∼= ∠D, which proves (i).

(i) ⇒ (iii): Assume ABCD is a rectangle, so all four vertex angles are congruent. Because it’s also a
parallelogram, the opposite sides are congruent. If you insert the midpoints of the sides, you can
label congruent segments as shown in this picture:

A B

CD

P

Q

R

S

Because the vertex angles of ABCD are congruent, SAS tells us that the four small triangles are
congruent, which means the four segments connecting P , Q, R and S in the diagram are congruent.
That menas PQRS is a rhombus, proving (iii).

(iii) ⇒ (i): Assume PQRS is a rhombus. Then all four triangles in the above picture are congruent
by SSS. That means the angles at A, B, C and D are congruent, proving (i).

6.5.48: Glancing over some of the homeworks it seems most people chose kites. Here’s another possibility.

7.9.6,7: Note that the language is a little ambiguous here about which isometry to do first, the translation
or the reflection. I’ll accept either answer—they turn out to be the same!—and will compute both here.

The translation in these problems is easy to write a formula for: T (X) = X + (−3,−6) or, if you
prefer, T (x, y) = (x−3, y−6). The equation for the reflection is trickier. We know 〈(2,−1), (x, y)〉 = −3
is equivalent to 2x− y = −3, or y = 2x+3. So the slope of the mirror is 2, and hence the angle it forms
with a horizontal line is θ = arctan 2 ≈ 63.4◦. The y-intercept form of the line makes it clear that (0, 3)
is on the line. Hence a matrix formula for the reflection across this line is:

M(X) =
[
cos 2θ sin 2θ
sin 2θ − cos 2θ

]([
X
]− [0

3

])
+
[
0
3

]

Here’s a picture of the line:
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SAS tells us that the four small triangles are congruent, which means the four segments connecting

P , Q, R and S are congruent. That means PQRS is a rhombus, proving (iii).

(iii)⇐ (i): Assume PQRS in the above picture is a rhombus. Then all four triangles are congruent by

SSS. That means the angles at A, B, C and D are congruent, proving (i).

Jonathan Rogness <rogness@math.umn.edu> December 1, 2010
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