Chapters 1 and 2 - Flythrough
This will be a fast review/intro - You're responsible for reading Chapter ! (and 2) and talking to me if there's something you don't follow.
(Think: big ideas/terms, like "line," not the intricacies of, say, proof of Proposition 1.30...)

Fundamentals/Vocabulary
\forall : for all, for every
\exists : there exists
iff: if and only of, \Longleftrightarrow
We won't use sets in much depth. Mostly:

$$
\begin{aligned}
& \mathbb{R}=\text { real \#'s } \\
& \mathbb{R}^{2}=\{(x, y): x, y \in \mathbb{R}\}=\{(x, y) \mid x, y \in \mathbb{R}\}
\end{aligned}
$$

and esp. subsets of those

Recall "Abstrad" Function Notation
$f: A \rightarrow B$
$x \mapsto f(x)$

$$
x \rightarrow f(x)
$$

A: domain, inputs
B: codomain (range, image) set of possible outputs
$E_{x} f: \mathbb{R} \rightarrow \mathbb{R}$ or $\{x: x \geq 0\}$

$$
\begin{aligned}
& x \mapsto x^{2} \\
& \left(f(x)=x^{2}\right)
\end{aligned}
$$

Def f is injective (or one-to-one, $1: 1$) if any two different inputs ore sent to dire. outputs: $x \neq y \Rightarrow f(x) \neq f(y)$ f is surjective (onto) if every et of colememin is actual output: $\forall b \in B$, there exists $a \in A$ such that $f(a)=b$.

Functions Sheet

Vectors, Points and Lines
A (20) vector is an ordered pair of real \#'s, (a, b).
Common notations: $\langle a, b\rangle, \overrightarrow{(a, b)}=\vec{u}=\left(u_{1}, u_{2}\right)$
Our book: $U=\left(u_{1}, u_{2}\right), X=\left(x_{1}, x_{2}\right)$
Graphically, U is an arrow:

Virtually every vector concept has an algebraic def $n /$ interpretation and a geometric/axiomatic one.

Addition

$$
\begin{aligned}
u+v & =\left(u_{1}, u_{2}\right)+\left(v_{1}, v_{2}\right) \\
& =\left(u_{1}+v_{1}, u_{2}+v_{2}\right)
\end{aligned}
$$

(scalar) $\quad c l l=c\left(u_{1}, u_{2}\right)$

$$
\begin{aligned}
& =\left(c u_{1}, c u_{2}\right)
\end{aligned}
$$

Subtraction $U-V=U+(-1) v$
linearly $\quad U=c V$ or $V=c U$
U, V are
dependent $\exists a, b$ such that $a l l+b V=0$, a, b not both 0 .
$u \cdot v,\langle u, v\rangle \quad$ alg
dot product: $\quad U \cdot V=\left(u_{1}, u_{2}\right) \cdot\left(v_{1}, v_{2}\right)$
scalar product, $\quad=u_{1} v_{1}+u_{2} v_{2}$
inner product

$$
\begin{aligned}
u \cdot u & =\left(u_{1}, u_{2}\right) \cdot\left(u_{1}, u_{2}\right) \\
& =u_{1}^{2}+u_{2}^{2}
\end{aligned}
$$

length l $\quad\|u\|=\sqrt{u \cdot u}$
magnitude

1 If you learned vectors from Stewart's book...
Stewart make huge distinctions between points and vectors:

We Won't. For us, vector and point are synonyms.
It's clear from context, and it makes life easier to do it this way. To wit:

Def Given a point P and non-zero vector U, the set $\ell=\{P+s U: s \in \mathbb{R}\}$ is a line_.

U is direction indicator (dir'n vector). Points on l are incident with l, and ore collinear.

$$
\begin{aligned}
\text { Ex } \begin{aligned}
&(-1,2)+s(3,-4)\left(\frac{1}{2}, 0\right) \text { is on line }\left(s=\frac{1}{2}\right) \\
&=(-1+3 s, 2-4 s)
\end{aligned} \\
\left.\begin{array}{rl}
(s, 6) \text { is not. } & -1+3 s=5 \\
2-4 s=6
\end{array}\right\} \text { no solon }
\end{aligned}
$$

\triangle Important Example. What's U?

Warmup Problem (after break)
Recall: $U \cdot V=\left(u_{1}, u_{2}\right) \cdot\left(v_{1}, v_{2}\right)=u_{1} v_{1}+u_{2} v_{2}$
Prove: For all $c \in \mathbb{R}$,

$$
\begin{aligned}
(c u) \cdot V=U \cdot(c V)= & c(u \cdot v) \\
\underline{P f}:(c u) \cdot V=\left(c u_{1}, c u_{2}\right) \cdot\left(v_{1}, v_{2}\right) & =\left(u_{1} v_{1}+c u_{2} v_{2}\right. \\
& =u_{1}\left(c v_{1}\right)+u_{2}\left(c v_{2}\right) \\
& =u \cdot(c v) \text { etc. }
\end{aligned}
$$

Warmup Problem (after break)
Recall: $U \cdot V=\left(u_{1}, u_{2}\right) \cdot\left(v_{1}, v_{2}\right)=u_{1} v_{1}+u_{2} v_{2}$
Prove: The dot product is commutative: $U \cdot V=V \cdot U$

$$
u \cdot v=u_{1} v_{1}+u_{2} v_{2}=v_{1} u_{1}+v_{2} u_{2}=v \cdot u
$$

Prove: The dot product is distributive: $U \cdot(V+w)=U \cdot V+U \cdot \omega$

$$
\begin{aligned}
u \cdot(v+w) & =\left(u_{1}, u_{2}\right) \cdot\left(v_{1}+w_{1}, v_{2}+w_{2}\right) \\
& =u_{1}\left(v_{1}+w_{1}\right)+u_{2}\left(v_{2}+w_{2}\right) \\
& =-u_{1} v_{1}+u_{1} w_{1}+u_{2} v_{2}+u_{2} w_{2} \\
& =\left(u_{1} v_{1}+u_{2} v_{2}\right)+\left(u_{1} w_{1}+u_{2} w_{2}\right) \\
& =u \cdot v+u_{0} w
\end{aligned}
$$

$$
P+s(Q-P)
$$

$$
\begin{gathered}
\overrightarrow{P Q}=\overrightarrow{Q P} \\
\text { " } \\
\{P+s(Q-P)\} \quad\{Q+s(P-Q)\} \\
\overleftrightarrow{P Q}=\overleftrightarrow{Q P} \\
\overrightarrow{P Q} \neq \overrightarrow{Q P}
\end{gathered}
$$

$$
\|x\|=\sqrt{x \cdot x}
$$

length of $\overline{P Q}$ is $\|Q-P\|=\|P-Q\| \curvearrowleft\|u\|=\|-u\|$

$$
\begin{aligned}
& =\sqrt{\langle Q-P, Q-P\rangle} \\
& =\sqrt{(Q-P) \cdot(Q-P)}
\end{aligned}
$$

Does the def" $\{P+s U\}$ cover everything we expect?

- Can get segments, rays using restricted values of s.
- Two points form a line? Yes (whesheet)
- Is that line unique?!

$$
\{p+s u\}
$$

$$
\{Q+t \vee\}
$$

Prop. 4 two non-zero vectors are DI's of same line iff they're scalar mull's of each other.

Let $P \neq Q$. Then I unique line $\stackrel{\rightharpoonup}{P Q}$ incident with both, $U=Q-P$ is a $D I$ of $\overrightarrow{P Q}$, and every $D I$ of $\overrightarrow{P Q}$ is difference of two pts on the line.

Other Forms

$$
\left.\begin{array}{l}
\text { Ex }(-1,2)+s(3,4)=(-1,2)+(3 s, 4 s)=\frac{(-1+3 s}{x}, \frac{2+4 s)}{y} \\
x=3 s-1 \\
y=-4 s+2
\end{array}\right\} \Rightarrow \begin{aligned}
& s=\frac{1}{3}(x+1) \\
& s=-\frac{1}{4}(y-2) \quad-\frac{1}{4}(y-2)=\frac{1}{3}(x+1)
\end{aligned}
$$

$\begin{aligned} & \text { pt slope } \\ & \text { for }\end{aligned} \rightarrow \quad y-2=-\frac{4}{3}(x+1)$

$$
y=-\frac{4}{3} x-\frac{4}{3}+2
$$

slope intercept $\longrightarrow y=-\frac{4}{3} x+\frac{2}{3}$

Def Two lines l, m are parallel, $l \| m$, if their $D I$'s are $\|$.

Def Two lines l, m are parallel, $l \| m$, if their $D I$'s are $\|$.
Prop 1.6 Lines $l=\{P+s u\}, m=\{Q+t v\}$

- \cap in one pt if U, V linearly independent (not II)
- empty $I_{n}^{\prime} n$ if $U \| V$ and U $Q Q-P$

- same line if $u \| V$ and $u \| Q-P$

Quick Status Check: which of Euclid's Axioms work so far?
(1) Given two pts, ヨ line containing them yes
(2) Lines can be extended indefinitely
(3) Given A, B, \exists circle cent id at A with radius $\overline{A B}$.

$$
\begin{aligned}
& r=\|B-A\| \\
& C:\{X:\|X-A\|=r\}
\end{aligned}
$$

(4) Right angles are all equal ? (Chapter 3)
(5) Il postulate

Perependicularity/Orthogonality $\quad u \cdot v=u_{1} v_{1}+u_{2} v_{2}$

Def $U \perp V$ if $U \cdot V=0$. Two lines are perpendicular if their $\Delta I ' s$ are 1 .
\|I and 1 play important roles...
Corollary l.|l If l is a line and P is a point, \exists exactly one line incident with P and $\|$ to l.

Prop 1.15 If ℓ is a line and P is a point, \exists exactly one line incident with P and \perp to l.

Corollary 1.16 The set of vectors 1 to $U=\left(u_{1}, u_{2}\right) \neq 0$ consists (lemma) of all multiples of $\left(-u_{2}, u_{1}\right)$

Pf: First, we see that $\left(u_{1}, u_{2}\right) \cdot\left(-u_{2}, u_{1}\right)=-u_{1} u_{2}+u_{2} u_{1}=0$.
Now suppose $V \perp U$, so that $u_{1} v_{1}+u_{2} v_{2}=0$. We want to show $V=c\left(-u_{2}, u_{1}\right)$ for some c.
ie. $v_{1}=c\left(-u_{2}\right)$ and $v_{2}=c\left(u_{1}\right)$
Assume $u_{1} \neq 0$. Then $v_{1}=\frac{-u_{2} v_{2}}{u_{1}}=\frac{v_{2}}{u_{1}}\left(-u_{2}\right)$ and then $c\left(u_{1}\right)=\left(\frac{v_{2}}{u_{1}}\right) u_{1}=v_{2}, \quad \frac{L_{1}}{c}$ as desired.
(left for you to finish)

Prop 1.15 If ℓ is a line and P is a point, \exists exactly one line incident with P and \perp to l.

Pf Suppose $l: Q+s U, U \neq 0$

Then $m: P+s \underbrace{\left(-u_{2}, u_{1}\right)}_{V \perp u}$ is $1 l$.
$V \perp U$ by prev. slide.
Suppose \exists another such line $P+s W$, so $U \perp W$ By prev. slide, $W={ }_{c} V$ for some c.

By Prop 1.6, they are same line.

Normal Form Given line l, choose $Y \in l$ and $A \perp \ell$ (i.e. $A \perp u, u_{\text {any }} D I$ of ℓl. Then

$$
\begin{aligned}
& l=\{x: A \cdot(x-y)=0\} \\
& \quad(=\{x: A \perp(x-y)\})
\end{aligned}
$$

(1) A, Y constants $X=\left(x_{1}, x_{2}\right)=(x, y)$

Ex $\quad Y=(3,1), A=(-1,2)$

$$
\begin{gathered}
(-1,2) \cdot\left(\left(x_{1}, x_{2}\right)-(3,1)\right)=0 \\
(-1,2) \cdot\left(x_{1}-3, x_{2}-1\right)=0 \\
-\left(x_{1}-3\right)+2\left(x_{2}-1\right)=0 \\
k \quad \\
\left(x_{2}-1\right)=\frac{1}{2}\left(x_{1}-3\right) \quad y=\frac{1}{2} x-\frac{1}{2}
\end{gathered}
$$

\exists alternate version of normal form:

$$
\begin{aligned}
& A \cdot(x-y)=0 \\
& A \cdot X-\underbrace{A \cdot Y}_{\text {constan }}=0 \\
& A \cdot X=c
\end{aligned}
$$

constant e

Ex $\quad y=(3,1), A=(-1,2) \quad(-1,2) \cdot(x-(3,1))=0$

$$
\begin{gathered}
(-1,2) \cdot(x, y)=(-1,2) \cdot(3,1) \\
-x+2 y=-1 \quad \text { etc. } \\
\left(y=\frac{1}{2} x-\frac{1}{2}\right)
\end{gathered}
$$

Warmup Questions
Prove: $\forall u,\|-u\|=\|u\| \quad$ Prove: $\|-u\|^{2}=\|u\|$

$$
\begin{array}{rlrl}
\sqrt{(-u) \cdot(-u)}-\sqrt{u} \cdot u & \text { Pf: }\|-u\|^{2} & =(-u) \cdot(-u) \\
\vdots & (\text { avoid }) & & (-1)^{2} u \cdot u \\
0 & =0 & & =u \cdot u \\
& =\|u\|^{2}
\end{array}
$$

Prove $\|x-y\|^{2}=\|x\|^{2}+\|y\|^{2}-2 x \cdot y$

$$
\begin{aligned}
\|x-y\|^{2} & =(x-y) \cdot(x-y) \\
& =x \cdot x-x \cdot y-y \cdot x+(-y) \cdot(-y) \\
& =x \cdot x+y \cdot y-2 x \cdot y \\
& =\|x\|^{2}+\|y\|^{2}-2 x \cdot y
\end{aligned}
$$

"Alg. law of cosines"

Betweeness
BosCh

$$
\left(S_{1}<S_{2}\right)
$$

Def/Prop Let $f(s)$ be eqn of line, $f\left(s_{1}\right)=P, f\left(s_{2}\right)=Q$. Then R is between P, Q if $\exists s_{3}, s_{1}<s_{3}<s_{2}$, sit. $f\left(s_{3}\right)=R$.

Corollary 1.22 Given 3 pts on a line, one must be b/w other two.

See book for further corollaries with $4+$ points

A line separates \mathbb{R}^{2} into two "half planes."

Clever Def P, Q are on different sides of l if $\exists R \in l$ between them.

Prop 1.30 Let $l: A \cdot(x-y)=0 \quad(Y \in l, A \perp \ell)$ and $P, Q \& l$. Them P and Q are on samelopposite side of l if $A \cdot(P-Y), A \cdot(Q-Y)$ have same/opposite sign.
\triangle Book uses $A \cdot X=C$, compares $A \cdot P-C, A \cdot Q-C$.
(11) Would be "simple" (well, simpler) if we had

$$
\begin{aligned}
\vec{a} \cdot \vec{b}=\|\vec{a}\| \cdot\|t\| \cos \theta & >0 \text { for } \theta \in[0, \pi / 2) \\
& <0 \text { for } \theta \in(\pi / 2, \pi]
\end{aligned}
$$

Prop 1.30 Let $l: A \cdot(x-y)=0 \quad(Y \in l, A \perp \ell)$ and $P, Q \in l$. Then P and Q are on same/opposite side of l if $A \cdot(P-Y), \quad A \cdot(Q-Y)$ have same /opposite sign.
Pf Let $g(s)=A \cdot[(P+s(Q-P))-Y] \quad$ for $0 \leq s \leq 1$ line sea. $\overline{P Q}$
$g(s)=0$ for some of $\overline{P Q}$ intersects l at $p t R$
 $(\Rightarrow P, Q$ opposite sides)

$$
g(s)=A \cdot(P-y)+s A \cdot(Q-P)=\cdots=b+s c \quad(1+2 s)
$$

That's linear! min/max's at endpts, can be 0 if $\mathrm{t} /-(\mathrm{or}-/ \mathrm{t})$ at endpts

$$
\begin{aligned}
& g(0)=A \cdot(P-y) \\
& g(1)=A \cdot(Q-y)
\end{aligned}
$$

