Chapter 6-Classitication of Isometries
This material is all in the book, but presented in a different order or with a different vieupoint/approach. (eeg. the formula for reflections) Take good notes, and follow class notes instead of book.

Overriding Questions: How many isometries are there? What ore they? How do we know that list is complete?

We know (Ch 4) $U: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ isometry of $U(x)=M X+P$ where M is

$$
R_{\theta}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \text { or } F_{\theta}=\left[\begin{array}{cc}
\cos 2 \theta & \sin 2 \theta \\
\sin 2 \theta & -\cos 2 \theta
\end{array}\right]
$$

We know ("Useful Facts") $\quad R_{\varphi} R_{\theta}=R_{\varphi+\theta}, \quad F_{\varphi} F_{\theta}=R_{2(\varphi-\theta)}$

$$
\text { Let } U=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right], V=\left[\begin{array}{c}
-\sin \theta \\
\cos \theta
\end{array}\right]
$$

Then: $F_{\theta} U=U$ and $F_{\theta} V=-V$
and $\quad F_{\theta}(k u)=k U, \quad F_{1}(k V)=-k V \quad \forall k \in \mathbb{R}$
Trig identities:

$$
\begin{aligned}
& \cos (a+b)=\cos a \cos b-\sin a \sin b \\
& \sin (a+b)= \sin a \cos b+\cos a \sin b \\
& \text { if } a=b=\theta: \quad \cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta \\
& \sin 2 \theta=2 \sin \theta \cos \theta
\end{aligned}
$$

Our Path through Chapter 6
Formulas for basic isometries: translins, ot'ns, reflins Composition of isometries:

Symmetry Groups. Basic combinations of rotor, reflins.
Examples of more complicated combinations
Systematic Approach via reflections: Glide Reflections
Fixed Points: Proving glide reflins are new, and our list is complete.

Conclusion: $G=\left\{R_{0}, R_{120}, R_{240}, L_{1}, L_{2}, L_{3}\right\}, *$ is a group:

Def A group is a set G with an operation - satisfying: closure: $\forall a, b \in G, a \cdot b \in G$
identity: $\exists e \in G$ sot. $\forall a \in G, a \cdot e=e \cdot a=a$ inverses: $\forall a \in G, \exists b \in G$ s.t. $a \cdot b=b \cdot a=e$ associativity: $\forall a, b, c \in G,(a \cdot b) \cdot c=a \cdot(b \cdot c)$
Ex The above group is known as D_{3} (or D_{6}), the symmetry group of the equilateral triangle.

Def A symmetry of a set $S \subseteq \mathbb{R}^{2}$ is an isometry U s.t.

$$
\forall x \in S, U(x) \in S . \quad(\text { So } U(S)=S)
$$

The set of all symmetries of S is called the symmetry group of S.

Question: Who Cares?

Ex An eq. Δ and a square are fundamentally different...

\square
... because their symmetries are different $\left(R_{120}\right.$ vs $\left.R_{\text {To }}\right)$

Big whoop. We need groups and isometries for that?

Ex Ok. What about these (infinite) pattens?
$p \rho$
$p p p$
$\rho p>$

I
II
III

I, II, III are "same"! (same symm. group, p^{2})
IV is different (pm)
IV

An eq. Δ has a finite symmetry group. $\left(\left|D_{6}\right|=6\right)$ Wallpaper pattens have infinite symmetry groups.

Thy \exists exactly 17 kinds of wallpaper.

$$
(17 \text { "wallpaper groups") }
$$

\& For us: composing isometries results in isometrys $R ' s, F ' s$ - reflections?

$$
F^{\prime} s, F^{\prime} s \text { - ot'ns? }
$$

