
Chapter 6 - Classification of Isometries

This material is all in the book
,

but presented in a

different order or with a different viewpoint Iapproach .

( e.g . the formula for reflections ) Take good notes
,

and follow class notes instead of book .

Overriding Questions : How many isometries are there ? What
-  -

are they? How do we know that

list  is complete?
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Our Path through Chapter 6

Formulas for basic isometries : transl '
ns

,
rot '

ns
,

refl ins

Composition of  isometries :

Symmetry Groups . Basic combinations of rot '
ns

,
ref this

.

Examples of  more complicated combinations

Systematic Approach via reflections : Glide Reflections

Fixed Points : Proving glide refl ins are new
,and our list is complete .
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EI The above group is known as Dg ( or Db )
,

the

symmetry group
of the equilateral triangle .
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The set of all symmetries of S is called the symmetry
group  of S

.

Question : who Cares ?



EI An eg . O and a square are fundamentally different . . .

. . .
because their symmetries are different ( Riso us Red

Big whoop .

We need groups and isometries for that ?
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What about these ( infinite ) patterns ?
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An eg .
O has a finite symmetry group .

( 11361=6 )

Wallpaper patterns have infinite symmetry groups .

The I exactly 17 kinds of wallpaper.

( 17 " wallpaper groups
' ' )

* For us : composing isometries results in  isometry s

R 's
,

F 's - reflections ?

F 's
,

F 's - rot '
as ?


