The goal of this handout is to prove *Varignon's Theorem*, which says the area of a convex quadrangle *ABCD* is twice the area of the parallelogram with vertices at the midpoints of the side *ABCD*. Our proof will depend on the following facts about a triangle with the midpoints connected.



**Theorem.** Let *D* and *E* be the midpoints of  $\overline{AC}$  and  $\overline{BC}$ . Then  $\overline{DE} \parallel \overline{AB}$  and  $|\overline{DE}| = \frac{1}{2}|\overline{AB}|$ .

*Proof*: We proved this in class using SAS Similarity; solutions are posted on the course website in the folder with the various activities I've handed out during the semester.  $\Box$ 

**Corollary.** The four triangles in the diagram above all have area  $\frac{1}{4} \| \triangle ABC \|$ .

*Proof*: By the theorem, the base  $\overline{AB}$  of  $\triangle ABC$  is twice as long as the base  $\overline{DE}$  of  $\triangle DEC$ . By similarity, the height of  $\triangle ABC$  is twice that of  $\triangle DEC$  as well. Hence  $\|\triangle ABC\| = 4\|\triangle DEC\|$ , or  $\|\triangle DEC\| = \frac{1}{4}\|\triangle ABC\|$ . Now you can apply the theorem using the other sides of  $\triangle ABC$  as the base, and show  $\|\triangle EFB\| = \|\triangle FDA\| = \frac{1}{4}\|\triangle ABC\|$  as well. Overall,  $\triangle ABC$  is divided into 4 triangles in our diagram. We've shown three of them have area  $\frac{1}{4}\|\triangle ABC\|$ . Hence the remaining triangle must have the same area.

**Prove.** The area of a convex quadrangle ABCD is twice the area of the parallelogram with vertices at the midpoints of the side ABCD.

*Proof*: In the diagram below, E, F, G and H are the midpoints of the sides of ABCD. The dotted lines are the diagonals of ABCD. We'll show  $||EFGH|| = \frac{1}{2} ||ABCD||$ .



The area of the parallelogram EFGH is the area of ABCD minus the area of the shaded triangles.

 $\|EFGH\| = \|ABCD\| - \|\triangle AEH\| - \|\triangle BFE\| - \|\triangle CGH\| - \|\triangle DHG\|$ 

By the Corollary above, each shaded triangle is 1/4 the area of a larger triangle formed with one of the diagonals. For example,  $\|\triangle AEH\| = \frac{1}{4} \|\triangle ABD$ . Hence:

$$\begin{split} \|EFGH\| &= \|ABCD\| - \frac{1}{4} \|\triangle ABD\| - \frac{1}{4} \|\triangle BCA\| - \frac{1}{4} \|\triangle CDB\| - \frac{1}{4} \|\triangle DAC\| \\ &= \|ABCD\| - \frac{1}{4} \left( \|\triangle ABD\| + \|\triangle CDB\| \right) - \frac{1}{4} \left( \|\triangle BCA\| + \|\triangle DAC\| \right) \end{split}$$

In the last line I did a bit of rearranging to match certain triangles together, because they combine to form the whole quadrilateral. Notice that  $\|\triangle ABD\| + \|\triangle CDB\| = \|ABCD\|$ . Similarly,  $\|\triangle BCA\| + \|\triangle DAC\| = \|ABCD\|$ . Thus,

$$\|EFGH\| = \|ABCD\| - \frac{1}{4}\|ABCD\| - \frac{1}{4}\|ABCD\| = \frac{1}{2}\|ABCD\|$$