The goal of this handout is to prove Varignon's Theorem, which says the area of a convex quadrangle $A B C D$ is twice the area of the parallelogram with vertices at the midpoints of the side $A B C D$. Our proof will depend on the following facts about a triangle with the midpoints connected.

Theorem. Let D and E be the midpoints of $\overline{A C}$ and $\overline{B C}$. Then $\overline{D E} \| \overline{A B}$ and $|\overline{D E}|=\frac{1}{2}|\overline{A B}|$.
Proof: We proved this in class using SAS Similarity; solutions are posted on the course website in the folder with the various activities I've handed out during the semester.

Corollary. The four triangles in the diagram above all have area $\frac{1}{4}\|\triangle A B C\|$.

Proof: By the theorem, the base $\overline{A B}$ of $\triangle A B C$ is twice as long as the base $\overline{D E}$ of $\triangle D E C$. By similarity, the height of $\triangle A B C$ is twice that of $\triangle D E C$ as well. Hence $\|\triangle A B C\|=4\|\triangle D E C\|$, or $\|\triangle D E C\|=\frac{1}{4}\|\triangle A B C\|$. Now you can apply the theorem using the other sides of $\triangle A B C$ as the base, and show $\|\triangle E F B\|=\|\triangle F D A\|=\frac{1}{4}\|\triangle A B C\|$ as well. Overall, $\triangle A B C$ is divided into 4 triangles in our diagram. We've shown three of them have area $\frac{1}{4}\|\triangle A B C\|$. Hence the remaining triangle must have the same area.

Prove. The area of a convex quadrangle $A B C D$ is twice the area of the parallelogram with vertices at the midpoints of the side $A B C D$.

Proof: In the diagram below, E, F, G and H are the midpoints of the sides of $A B C D$. The dotted lines are the diagonals of $A B C D$. We'll show $\|E F G H\|=\frac{1}{2}\|A B C D\|$.

The area of the parallelogram $E F G H$ is the area of $A B C D$ minus the area of the shaded triangles.

$$
\|E F G H\|=\|A B C D\|-\|\triangle A E H\|-\|\triangle B F E\|-\|\triangle C G H\|-\|\triangle D H G\|
$$

By the Corollary above, each shaded triangle is $1 / 4$ the area of a larger triangle formed with one of the diagonals. For example, $\|\triangle A E H\|=\frac{1}{4} \| \triangle A B D$. Hence:

$$
\begin{aligned}
\|E F G H\| & =\|A B C D\|-\frac{1}{4}\|\triangle A B D\|-\frac{1}{4}\|\triangle B C A\|-\frac{1}{4}\|\triangle C D B\|-\frac{1}{4}\|\triangle D A C\| \\
& =\|A B C D\|-\frac{1}{4}(\|\triangle A B D\|+\|\triangle C D B\|)-\frac{1}{4}(\|\triangle B C A\|+\|\triangle D A C\|)
\end{aligned}
$$

In the last line I did a bit of rearranging to match certain triangles together, because they combine to form the whole quadrilateral. Notice that $\|\triangle A B D\|+\|\triangle C D B\|=\|A B C D\|$. Similarly, $\|\triangle B C A\|+\|\triangle D A C\|=\|A B C D\|$. Thus,

$$
\|E F G H\|=\|A B C D\|-\frac{1}{4}\|A B C D\|-\frac{1}{4}\|A B C D\|=\frac{1}{2}\|A B C D\| .
$$

