
Math 5345: Introduction to Topology Solutions to Homework 1

These solutions aren’t intended to be completely comprehensive, but should at least give you an idea of how
to approach each problem. On Homework 1, the eqauivlance class problems in section 1.1 seemed to cause
the greatest difficulty, along with 1.2 #23.

Some of these problems are best explained with a blackboard or a piece of paper, so if you have any trouble
deciphering the solutions, stop by my office and ask. Also, let me know if you spot any typos and I’ll update
them as soon as I can.

1.1 #2: (a): If Ca ∩ Cb 6= ∅, then there exists an element x which is in both Ca and Cb. By
definition, that means x ∼ a and x ∼ b. Since ∼ is an equivalence relation, it is both symmetric
and transitive, so a ∼ x ∼ b and a ∼ b, and it quickly follows that Ca = Cb. (Ask me how to
show this part that “quickly follows,” if you’re not sure.)

(b): This is simpler than the authors probably intended. a ∈ Ca, which we could also write as
{a} ⊂ Ca. Hence ⋃

a∈X

{a} ⊂
⋃

a∈X

Ca ⊂ X

The set on the left is just the union of every element of X, so this is clearly X. That means
the set in the middle is X as well. (This is analagous to 5 ≤ n ≤ n, which forces n = 5.)

(c): Let x ∼ y iff x and y are both contained in one of the Xα’s.
(d): ∼ is reflexive (because the union of the Xα’s is all of X, x must be contained in one of them,

and then x and x are both in the same Xα); symmetric (if x and y are in a set, the order doesn’t
matter; we could just as well say y and x are in the set); and transitive (if x and y are in Xα,
and y and z are in Xβ , then in fact we must have Xα = Xβ , and x and z are both contained in
it. If not, then y ∈ Xα ∩Xβ = ∅, which is impossible).

1.1 #5: . a ≤ b is not symmetric, because (for example) then 1 ≤ 2 would imply that 2 ≤ 1. a ∼ b

is not reflexive, because if a = 0, aa = 0 and hence a is not related to itself. a ≈ b is not trasitive;
suppose a = 0, b = 1 and c = 1. Then a ≈ b and b ≈ c, since |a− b| ≤ 1 and |b− c| ≤ 1, but a and c

are not related—we have |a− c| = 2.
1.1 #10: A sequence {an} is eventually equal to itself; let N = 1. So the relation is reflexive. It’s also

symmetric: if an = bn for all n ≥ N , it’s certainly true that bn = cn for those same values of n. And
if

an = bn for all n ≥ N

bn = cn for all n ≥ M

then an = cn for all n ≥ K = max{N,M}, so the relation is transitive as well.
Note that this is a fairly restrictive notion of when two sequences are eventually equal. You can

ask me about a more general notion.
1.2 #2: One possibility would send x to x except: 1/4 to 0 and 3/4 to 1; 1/8 to 1/4 and 7/8 to 3/4;

1/16 to 1/8 and 15/16 to 7/8; and so on.
1.2 #4: (a): Suppose f is not an injection. Then there exist x1, x2 ∈ X, x1 6= x2, such that

f(x1) = f(x2). But then g(f(x1)) = g(f(x2)), contradicting the fact that g ◦ f is an injection.
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An example would be

f : [0, 1] → R, f(x) = x + 1

g : R → R, g(x) = x2

(b): Suppose g is not an surjection. Then there exists a z ∈ Z such that g(y) 6= z for all y ∈ Y .
But f(x) ∈ Y for all x ∈ X, so it is impossible to have g(f(x)) = z, contradicting the fact that
g ◦ f is a surjection. An example would be

f : N → Z, f(n) = 2n

g : {2, 4, 6, . . .} → {2, 4, 6, . . .}, g(n) = n

(c): If g ◦f is a bijection, then it is surjective and injective. By the first two parts of the problem,
f must be an injection, and g must be a surjection. By the two examples, it is not necessary
that g and f be bijections.

1.2 #7: See Example 1.35 on page 22.
1.2 #22: Prove: for any function f : X → Y , we have f ◦ idX = f and idY ◦ f = f .

The proof is an exercise in writing out the defintions. idX(x) = x for all x ∈ X, so

f ◦ idX(x) = f(idX(x)) = f(x) for all x ∈ X.

Similarly,

idY ◦ f(x) = idX(f(x))) = f(x) for all y ∈ Y.

1.2 #23: (a): First assume that f is a surjection. For any point y ∈ Y , there is at least one
“preimage” of y—i.e. a point in X whose value under the function is equal to y. In fact, a given
y ∈ Y might have many preimages, but the important thing is that it has at least one. That
fact lets us construct the required function g as follows:

g(y) = any x ∈ X such that f(x) = y

By definition, f(g(y)) = y, so f ◦ g = idY .

Conversely, suppose such a function exists. Then f ◦ g is a surjection from Y to Y (because idY

certainly is surjective), so I could cite problem 1.2 #4(b) (or else repeat the work from there)
to prove that f is a surjection.

(b): Suppose f is an injection. Then any y in the range of f has precisely one preimage, using
the terminology from part (a). So we can define the required function g as follows:

g(y) = f−1(y) = the unique x ∈ X such that f(x) = y

By definition, g(f(x)) = x, so g ◦ f = idX .

Conversely, suppose such a function exists. Then g ◦ f is injective, because idX is, so I could
cite problem 1.2 #4(a) (or else repeat the work from there) to prove that f is injective.

In the extreme case that X = ∅, this reasoning breaks down because any f : ∅ → Y is injective—
the condition you have to check for any x1, x2 ∈ ∅ never has to be checked—regardless of what
the function g might be.
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(c): We’ll assume that our sets are non-empty to avoid the weird case in (b); if X = Y = ∅ then
this whole statement is trivial, anyway.

Suppose f : X → Y is a bijection, so it’s both surjective and injective. According to Definition
1.16, g is an inverse function of f if and only if g ◦f = idX and f ◦g = idY . Parts (a) and (b) of
this problem provide functions g which satisfy these equations—BUT YOU MUST SHOW
THAT THEY ARE THE SAME FUNCTION. In this case the function g provided in
(a) really is the same as the g we construct in (b), because f is a bijection, and hence each f(x)
has one (and only one) preimage in X.

(d): g and h are equal if they share the same domain and g(y) = h(y) for all points in that domain.
In our case, they both have the domain (Y ), so we just need to check that the function values
agree.

Let y be any element of Y , and consider the function values g(y) and h(y). Using Definition
1.16, we have:

f(g(y)) = f ◦ g(y) = idY (y) = y

f(h(y)) = f ◦ h(y) = idY (y) = y

By part (c) f is a bijection, so in particular it is injective. Then these previous two lines imply
that g(y) = h(y), and we’re done.

(A): Call the set of irrationals I. Suppose they were countable. Then R = Q ∪ I would be the union
of two countable sets and hence countable. But we showed that R is uncountable. Hence I must be
uncountable as well.

Jonathan Rogness <rogness@math.umn.edu> October 9, 2007
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