
Math 5345: Introduction to Topology Solutions to Homework 2

These solutions aren’t intended to be completely comprehensive, but should at least give you an idea of how
to approach each problem. Some of the problems are best explained with a blackboard or a piece of paper,
so if you have any trouble deciphering the solutions, stop by my office and ask. Also, let me know if you
spot any typos and I’ll update them as soon as I can.

Section 1.3 #11: (a): With a discrete space X as the domain, you can always use δ = 1/2 (or any
other number between 0 and 1). Then, for a given a ∈ X and ε > 0, d(x, a) < δ forces x = a,
in which case |f(x)− f(a)| = 0 < ε.

(b): As discussed extensively in class, this direction is a bit trickier. Let f : R → Y be continuous
at every a ∈ R, where Y is a discrete space. Choose any a ∈ R and specify ε = 1/2. Then there
exists a δ so that |x−a| < δ forces d(f(x), f(a)) < ε = 1/2, which in fact means f(x) = f(a) for
all x ∈ Bδ(a). Because this is true for any a, we can say that f is “locally constant.” We still
need to show it’s globally constant; near a we have f(x) = f(a), and near b we have f(x) = f(b),
and so on, but what if f(a) 6= f(b)?

So assume that f is not constant. Then there are numbers a < b with f(a) 6= f(b). Let

c = sup{x ∈ [a, b]|f(x) = f(a)}

By the work above, there exists a δc such that f(x) = f(c) for all x ∈ (c − δc, c + δc). This
quickly leads to a contradiction, however, because by the definition of c, f(x) = f(a) for all
x ∈ [a, c), which includes the points in (c− δc, c). But to the right of c on the number line, the
values of f must change (by the definition of c, which is impossible since f must be constant
throughout (c−δc, c+δc). Hence our assumption that f is not constant is false, and we’re done.

Section 1.4 #9: Here’s a graphical representation of this sliding process. Remember that the function
will go straight from the first picture to the last picture; the intermediate stages aren’t necessary.
(But they’re helpful when trying to understand what the function is doing.)

(a): One way to show this is to look at the height of each vertical chord. In the circle this height
can be described simply (if not elegantly) as the height of the top half minus the height of the
bottom half:

hc(x) = 1 +
√

1− x2 − (1−
√

1− x2) = 2
√

1− x2

The height of a vertical chord in the ellipse for a given value of x is given by solving the equation
for y:

he(x) =
√

4(1− x2)

These values agree for each x ∈ [−1, 1].
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(b): Given a point (x, y), the amount of vertical sliding is dependent only on x. We slide a point
down equal to the distance from the x-axis to the bottom of the circle. This height is given by
1−

√
1− x2.

(c): Using the information from (b), we have

s(x, y) = (x, y − (1−
√

1− x2))

(d): The inverse function of s is given by

t(x, y) = (x, y + (1 +
√

1− x2)

I will leave it to you (using arguments from a Calculus book, for example) to show that s and
t are both continuous bijections, and therefore homeomorphisms.

Section 1.4 #14: In part (a), “unfold” the quarter plane like a fan:

If you’re having trouble understanding this, it’s most easily described with polar coordinates:

h : R2 → R2, h(r, θ) = (r, 2θ)

You may not map a point (x, y) to both (x, y) and (−x, y). That’s not a function.
Part (b) is very similar. The quarter-space could be described in spherical coordinates as ρ ≥ 0,

θ ∈ [0, π], φ ∈ [0, π/2]. The “unfolding” function is then:

h : R3 → R3, h(ρ, θ, φ) = (ρ, θ, 2φ)

Section 1.5 #3: For (a) and (b) I’ll indicate a possible homeomorphism you could use; I’ll leave it to
you to show that this is a continuous bijection with continuous inverse. (Feel free to ask questions.)

(a): f : (a, b) → (0, 1), f(x) = (x− a)/(b− a)
(b): f : (0, 1) → (a,∞), f(x) = tan

(
π
2 x

)
+ a (other half similar)

(c): Shown in class using the function (and inverse) from Example 1.6 on page 7.
(d): Any two open intervals are homeomorphic to R and hence homeomorphic to each other, since

“homeomorphic to” is an equivalence relation.

Section 1.5 #8: In (a) and (b), pictures can be very instructive but don’t constitute a proof by
themselves. You needed to write enough words to convince the grader that the spaces were [or were
not] path connected.

(a): You can modify the argument in Example 1.45 to show that a path α : [0, 1] → (−∞, a) ∪
(a,∞) cannot “jump over the gap” caused by removing the point a ∈ R.

(b): Consider the Euclidean plane with a point P removed, X = R2 − P . Any two points in X

can almost certainly be joined by a straight line segment; this will only fail if P happens to be
on that segment. In this case another path—such as a circular arc—can still be constructed
between the two points, so X is path connected.

(c): If h were a homeomorphism from R to R2, then the restriction of h to R minus a point would
be a homeomorphism onto its image, which would necessarily be R2 minus a point. But the
domain of this restricted homeomorphism would have two path components, whereas the im-
age would have one. This is impossible, since the number of path components is a topological
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invariant.

Section 1.5 #14: Let c = supA. The crucial observation here is that every intersection A ∩ (c −
1/n, c) 6= ∅; this is a fancy way of saying there are points in A which are arbitrarilty close to c. Why
is this fact true? Suppose not; then there would be an n such that (c− 1/n, c) contains no points in
A. But this would imply that c− 1/n is an upper bound for A – it’s greater than or equal to all the
numbers in A. This would contradict the fact that c is the least upper bound for A.

Thus we can construct a sequence by choosing an to be any number in the non-empty intersection
A ∩ (c− 1/n, c). This sequence certainly converges to c, because an is within 1/n of c.

A: In order:
(1) X ∪ Y is not necessarily path connected, because they may be disjoint. (Example: [0, 1] and

[2, 3].)
(2) X ∩Y is not necessarily path connected, because you could have two sets which intersect in two

disjoint components. (Example: take the parts of the unit circle for which y ≥ 0 and y ≤ 0.)
(3) X × Y is path connected. To construct a path from (x1, y1) to (x2, y2), start with any path α

from x1 to x2 in X, and any path β from y1 to y2 in Y . Then the function from [0, 1] → X ×Y

which maps t to (α(t), β(t) is a path.

(Note that we didn’t really prove the continuity of this function until class on 10/8, but this
point could be glossed over in the homework.)

There are other possible answers; for example, during the first half of the interval [0, 1] you
could use α to move from (x1, y1) to (x2, y1), and then use β to move from (x2, y1) to (x2, y2

during the second half.

B: This probem wasn’t officially graded, which is probably good. Looking through I saw a few argu-
ments which had the right idea but were incorrect in their logic. Some went like this:

“Consider the curve A on the torus T and the curve B on the two-holed torus S. Since A and B

are homeomorphic, we must have T −A and S −B homeomorphic as well.”
The above statement is not true, unless you’ve shown that a particular homeomorphism from T

to S maps A onto B, in which case the restriction of that homeomorhpism will map T −A to S−B.
If you don’t understand what I mean, ask me for a counterexample.

A much better approach would be: “Consider the curve B on the two-holed torus. Removing B

leaves two path components. [You can figure out what B might be!] Any homeomorphism from S to
T would have to match B with a curve on the torus with a similar property. Since there is no curve
on the torus whose removal results in two path components, S and T cannot be homeomorphic.”

(Incidentally, is the fact that there’s no such curve on the torus true? Easy to prove?)

Jonathan Rogness <rogness@math.umn.edu> October 9, 2007
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